
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3384–3394
November 7–11, 2021. c©2021 Association for Computational Linguistics

3384

Improving Math Word Problems with Pre-trained Knowledge and
Hierarchical Reasoning

Weijiang Yu, Yingpeng Wen, Fudan Zheng, Nong Xiao∗
School of Computer Science and Engineering, Sun Yat-sen University

weijiangyu8@gmail.com, {wenyp6,zhengfd3}@mail2.sysu.edu.cn,
xiaon6@mail.sysu.edu.cn

Abstract

The recent algorithms for math word prob-
lems (MWP) neglect to use outside knowl-
edge not present in the problems. Most
of them only capture the word-level relation-
ship and ignore to build hierarchical reason-
ing like the human being for mining the
contextual structure between words and sen-
tences. In this paper, we propose a Reasoning
with Pre-trained Knowledge and Hierarchical
Structure (RPKHS) network, which contains
a pre-trained knowledge encoder and a hier-
archical reasoning encoder. Firstly, our pre-
trained knowledge encoder aims at reasoning
the MWP by using outside knowledge from
the pre-trained transformer-based models. Sec-
ondly, the hierarchical reasoning encoder is
presented for seamlessly integrating the word-
level and sentence-level reasoning to bridge
the entity and context domain on MWP. Exten-
sive experiments show that our RPKHS signifi-
cantly outperforms state-of-the-art approaches
on two large-scale commonly-used datasets,
and boosts performance from 77.4% to 83.9%
on Math23K, from 75.5 to 82.2% on Math23K
with 5-fold cross-validation and from 83.7% to
89.8% on MAWPS. More extensive ablations
are shown to demonstrate the effectiveness and
interpretability of our proposed method.

1 Introduction

Math Word Problem (MWP) is a reasoning task
for answering a mathematical query based on the
problem description, which is an interdisciplinary
research topic to bridge the mathematics and nat-
ural language processing. As shown in Table 1, a
short narrative is presented to describe a problem
and poses a question about the unknown quantity.
In recent years, research on MWP by using deep
learning methods has been gaining increasing at-
tention. Early research mainly focuses on Seq2Seq-
based models (Sutskever et al., 2014; Ling et al.,

∗Corresponding Author

Problem: Conner has 25000 dollars in his bank
account. Every month he spends 1500 dollars. He
does not add money to the account. How much
money will Conner have in his account after 8
months?
Equation: x = 25000.0− (1500.0 ∗ 8.0);
Solution: 13000.0

Table 1: The example of the math word problem task.
Given a natural language description for a mathemat-
ical problem, it requires the model to infer a formal
math equation and final quantity solution.

2017b; Wang et al., 2017; Huang et al., 2018; Wang
et al., 2017). These Seq2Seq-based methods aim
to train an end-to-end model from scratch by using
the training dataset. Some research focuses on de-
veloping structure-based approaches (Xie and Sun,
2019a; Wang et al., 2018a, 2019b; Liu et al., 2019a;
Zhang et al., 2020b; Li et al., 2020b; Hong et al.,
2021; Li et al., 2020a) by incorporating parsing tree
into the neural models to produce promising results
in generating solution expression for the MWP.

To answer this question, human beings not only
need to parse the question and understand the con-
text but also use external knowledge. However,
the previous methods learn the textual description
purely from the short and limited narrative without
using any background knowledge that not present
in the description, which restrain the ability of the
models for inferring the MWP from a global per-
spective. Moreover, current methods mainly fo-
cus on designing diverse entity-level structures for
word-level reasoning rather than bridging the hier-
archical reasoning between the entity (word-level)
and context (sentence-level). Obviously, it is not
enough to use single-level reasoning for solving
the MWP. In this paper, we propose reasoning with
pre-trained knowledge and hierarchical structure
(RPKHS) to jointly solve the two limitations.

Our RPKHS as shown in Figure 2 consists of

3385

(b) Sentence-level Reasoning

Every month …

Conner has …

He does …

How much …?

(a) Word-level Reasoning

25000
dollars

money

month

1500

account

8

(c) Hierarchical Reasoning

25000

dollars

money

month
1500

account

8

Every month …

Conner has …

He does …

How much …?

Figure 1: (a) Word-level reasoning is to build the relationship of each word in all textual descriptions, which can
also be considered as entity-level reasoning; (b) Sentence-level reasoning aims at mining the intra-relationship of
each sentence from the paragraph. (c) Hierarchical reasoning is to jointly excavate intra-relationship and inter-
relationship between word and sentence from the same paragraph.

two encoders, namely pre-trained knowledge en-
coder and hierarchical reasoning encoder, and a
tree-structured decoder. It effectively incorporates
the implicit linguistic knowledge into the model
via pre-trained knowledge encoder and generates
structural representation by our hierarchical rea-
soning encoder. The outputs of the two encoders
are fed into a tree-structured decoder (Xie and Sun,
2019b) for final prediction.

To the best of our knowledge, we are the first one
to study the application of pre-trained knowledge to
the MWP task. We have implicit knowledge which
is embedded into some non-symbolic form such as
the weights of a neural network derived from an-
notated data or large-scale unsupervised language
training. Recently, Transformer-based (Vaswani
et al., 2017) and specifically BERT-based (Devlin
et al., 2019b; Liu et al., 2019c) models have been
proposed, which incorporate large-scale linguistic
pre-training, implicitly capturing language-based
knowledge. This type of knowledge can be quite
useful for parsing the textual description.

For example, there are two sentences: ‘He has
25000 dollars in his bank account.’; ‘Paul appeared
before the faculty to account for his various misde-
meanors’. The word ‘account’ has totally different
meanings between the two sentences due to differ-
ent scene-aware descriptions. Hence, we think such
diverse semantics of each word containing rich rep-
resentation in the implicit pre-trained knowledge.
Such knowledge can be also regarded as a huge im-
plicitly vocabulary to endow each word with rich
representation. It can help the model to parse the
correct semantics of words from complex text. In

this paper, we take advantage of the implicit knowl-
edge in pre-trained Roberta (Liu et al., 2019c) and
analyze the effect of various pre-trained knowledge
on the MWP task.

Current methods mainly learn the MWP by build-
ing word-level reasoning (as shown in Figure 1 (a))
by GNN (Zhang et al., 2020b; Li et al., 2020b)
and Seq2Seq model (Wang et al., 2017). They
seldom consider modeling hierarchical structure.
Since the descriptions of MWP have a hierarchical
structure (words from sentences, sentences from a
narrative), we likewise construct hierarchical rea-
soning (as shown in Figure 1 (c)) by first building
representations of sentences from words, and then
aggregating those into a whole narrative represen-
tation.

It is observed that different words and sentences
in a mathematical narrative are differentially infor-
mative. The importance of words and sentences are
highly context-dependent, i.e. the same word or
sentence may be differentially important in differ-
ent contexts (e.g., 5 dollars and 5 pencils, the word
of 5 has different meanings.). To include sensitivity
to this fact, our model includes two levels of rea-
soning mechanisms. One at the word-level and one
at the sentence-level. They lead the model to pay
more or less attention to individual words and sen-
tences when constructing the representation of the
narrative. Taking an example as shown in Table 1,
intuitively, the first, second and fourth sentences
have stronger information in assisting the predic-
tion of the solution. Within these sentences, the
words 25000 dollars and every month contribute
more in inferring the math-aware results. In this

3386

paper, we propose a hierarchical reasoning encoder
to achieve this functionality.

Contributions. (1) As far as we know, we are the
first one to explore pre-trained knowledge on the
MWP task via our pre-trained knowledge encoder.
(2) We propose a hierarchical reasoning encoder to
seamlessly integrate the word-level and sentence-
level reasoning for bridging the entity and context
domain on MWP. It can provide insight into which
words and sentences contribute to the prediction
which can be of value in applications and analysis.
(3) Our RPKHS outperforms previous approaches
by a significant margin.

2 Related Work

The MWP is the task of translating a short para-
graph consisting with multiple short sentences
into target mathematical equations. Previous ap-
proaches usually solve the MWP by using rule-
based methods (Yuhui et al., 2010; Bakman, 2007),
statistical machine learning methods (Kushman
et al., 2014; Mitra and Baral, 2016; Roy and Roth,
2018; Zou and Lu, 2019), semantic parsing meth-
ods (Shi et al., 2015; Roy and Roth, 2015; Huang
et al., 2017) and deep learning methods (Ling et al.,
2017a; Wang et al., 2018b; Liu et al., 2019b; Wang
et al., 2017; Zhang et al., 2020a). Recently, the
deep learning based methods have been paid more
attention for their significant improvement. (Wang
et al., 2017) proposed a Seq2Seq-based model to di-
rectly map the linguistic text to a solution. (Wang
et al., 2018b) and (Chiang and Chen, 2019) im-
plicitly modeled tree-based structure for decoding
the MWP expressions, while (Wang et al., 2019a;
Liu et al., 2019b; Xie and Sun, 2019b) optimized
the decoder via explicit tree structure. Some re-
search focused on graph structure on word-level
reasoning. For example, (Zhang et al., 2020a) built
two customized graphs for enriching the quantity
representations in the problem. (Li et al., 2020b)
presented a graph-to-tree encoder-decoder frame-
work for grammar parsing.

However, they ignore the sentence-level relation-
ship and the correlation between word and sentence.
Different from the previous methods, we propose
to use hierarchical reasoning containing word-level
and sentence-level reasoning. Besides, we are the
first ones to explore the effect of implicit knowl-
edge from the pre-trained neural network weights
on the task of math word problems.

3 Methodology

3.1 Overview

In this section, we explain the architecture and
design of our proposed RPKHS network (i.e. Rea-
soning with Pre-trained Knowledge and Hierarchi-
cal Structure) composed of pre-trained knowledge
encoder, hierarchical reasoning encoder and tree-
structured decoder, which can appropriately incor-
porate the outside knowledge into the model and
bridge the hierarchical reasoning between the en-
tity (word-level) and context (sentence-level). The
overview of our RPKHS is illustrated in Figure 2.
Our contributions mainly focus on the design of
a joint-learning framework and two innovative en-
coders on the MWP task, which are unveiled and
discussed in detail in the following sections.

3.2 Problem Formulation

The math word problems (MWP) can be formu-
lated as (P,E), where P is the problem text and E
is a solution expression. Assuming a description of
MWP has L sentences si, and each sentence con-
tains Ti words. wit with t ∈ [1, T] represents the
words in the i-th sentence. Our proposed encoders
project the raw problem descriptions into a vector
representation, on which we build a tree-structured
decoder to predict the mathematical expression.

3.3 Pre-trained Knowledge Encoder

We want to incorporate implicit external knowl-
edge as well as math-aware knowledge which can
be learned from the training set in our model. Lan-
guage models, and especially transformer-based
language models, have shown to contain com-
monsense and factual knowledge (Petroni et al.,
2019; Jiang et al., 2019). We adopt this direc-
tion in our model and build an encoder, pre-trained
with Roberta (Liu et al., 2019c), which has been
pre-trained on the huge language corpora (e.g.,
BooksCorpus (Zhu et al., 2015), Wikipedia (Remy,
2002)) to capture implicit knowledge. We tokenize
a description Q using WordPiece (Wu et al., 2016)
as in BERT (Devlin et al., 2019a), giving us a se-
quence of |Q| tokens and embed them with the pre-
trained Roberta embeddings and append Roberta’s
positional encoding, giving us a sequence of d-
dimensional token representation xQ1 , ..., x

Q
|Q|. We

feed these into the transformer-based pre-trained
knowledge encoder, fine-tuning the representation
during training. We mean-pool the output of all

3387

Hierarchical Reasoning Encoder

Pre-trained Knowledge Encoder

Tree-structured Decoder

M
u

lti-h
e

ad
A

tten
tio

n

N
o

rm
 &

 A
d

d

Feed
Fo

rw
ard

N
o

rm
 &

 A
d

d

N

Lin
ear

wh

wp

FC

If 6 times a number is
decreased by 5, the result is
7 more than 3 times the
sum of the number and 13.
What is the number?

Word
Embedding

Equation: (3.0*13.0+7.0+5.0)/(6.0-3.0)
Solution: 17.0

/

+ -

+

*

3.013.0

7.0

5.0 3.06.0

Concatenation Word Feature Sentence Feature Tree Node Feature Voting Mechanism

Figure 2: Overview of our Reasoning with Pre-trained Knowledge and Hierarchical Structure (RPKHS). The
hierarchical reasoning encoder receives the textual embedding to construct inter-relationship between sentence
and word to aggregate semantics among entity and context. The pre-trained knowledge encoder captures a large
amount of knowledge about the linguistic world from the pre-trained network weights, and incorporates the implicit
knowledge into the input embedding to enrich the input representation. Then we concatenate the results from two
encoders as the input of a tree-structured decoder for parsing the target mathematical equation and solution.

transformer steps to get our combined implicit
knowledge representation Yp.

3.4 Hierarchical Reasoning Encoder

The proposed hierarchical reasoning encoder takes
into account that the different parts of a math
description have no similar relevant information.
Moreover, determining the relevant sections in-
volves modeling the interactions among the words,
not just their isolated presence in the text. There-
fore, to consider this aspect, the model includes two
levels of reasoning mechanisms. One reasoning at
the word level and the other at the sentence level,
which let the model pay more or less attention to
individual words and sentences when constructing
the whole description representation. The hierarchi-
cal reasoning encoder is composed of 2 layers. The
first layer is our word-level reasoning layer and
the second layer is the sentence-level reasoning
layer. In the following sections, we first introduce
the GRU-based operation commonly used in our
two layers. Then we present the details of the two
reasoning layers.

GRU-based Sequence Encoding. The GRU (Bah-
danau et al., 2015) uses a gating mechanism to track

the state of sequences without using separate mem-
ory cells. There are two types of gates: the reset
gate rt and the update gate zt. They jointly control
how information is updated to the state. At time t,
the GRU computes the new state as

ht = (1− zt)� ht−1 + zt � ĥt−1. (1)

This is a linear interpolation between the previous
state ht−1 and the current new state ĥt computed
with new sequence information. The gate zt de-
cides how much past information is kept and how
much new information is added. zt is updated as

zt = σ(Wzxt + Uzht−1 + bz), (2)

where xt is the sequence vector at time t. The
candidate state ĥt is computed by

ĥt = tanh(Whxt + rt � (Uhht−1) + bh), (3)

where rt is the reset gate which controls how much
the previous state contributes to the candidate state.
If rt is zero, then it forgets the past state. The reset
gate is updated by

rt = σ(Wrxt + Urht−1 + br). (4)

3388

TheW and U mean the learnable matrix weights
and the b is the learnable bias vector.

Word-level Reasoning. In this layer, the model
uses bidirectional GRU (Bahdanau et al., 2015) to
produce representation of words by summarizing
information from both directions. Therefore, it
incorporates the contextual information in the word-
level representation. Given a sentence with words
wit , t ∈ [1 ,T] and an embedding matrix We , a
bidirectional GRU contains the forward GRU

−→
f

which reads the sentence si from wi1 to wiT and a
backward GRU

←−
f which reads from wiT to wi1 by

using

xit = Wewit , t ∈ [1 ,T], (5)
−→
hit =

−→
f (xit), t ∈ [1 ,T], (6)

←−
hit =

←−
f (xit), t ∈ [T , 1]. (7)

The word-level representation for a given word
wit is obtained by concatenating the forward hid-
den state and backward hidden state, i.e., hit =
[
−→
hit,
←−
hit], which summarizes the information of the

whole sentence centered around wit . Not all words
contribute equally to the representation of the sen-
tence meaning. Hence, we introduce an attention
mechanism to extract such words that are important
to the meaning of the sentence and aggregate the
representation of those informative words to form
a sentence vector. Specifically,

uit = tanh(Wwhit + bw), (8)

αit =
exp(u>ituw)∑
t exp(u

>
ituw)

, (9)

si =
∑

αithit. (10)

We first feed the word-level feature hit through
a one-layer MLP to get uit as a hidden represen-
tation of hit. Then we measure the importance of
the word as the similarity of uit with a word-level
context vector uw and get a normalized importance
weight αit through a softmax function. After that,
we compute the sentence vector si as a weighted
sum of the word representations based on the learn-
able weights. The word context vector uw in Eq. 9
can be seen as a high-level representation of a fixed
query like “what is the informative word” over the
words. It is inspired by the memory networks (Ku-
mar et al., 2016). The word context vector uw is
randomly initialized and jointly learned during the
training process.

Sentence-level Reasoning. Given the sentence
vectors si, we get a problem description vector
in an analogical way. We use a bidirectional GRU
to encode the sentences:

−→
hit =

−→
f (si), i ∈ [1 ,L], (11)

←−
hit =

←−
f (si), i ∈ [L, 1], (12)

where
−→
f and

←−
f mean the forward GRU and back-

ward GRU, respectively. We concatenate
−→
hi and←−

hi to get the target representation of sentence i ,
i.e. hi = [

−→
hi ,
←−
hi]. The hi summarizes the neigh-

bor sentences around sentence i but still focus on
sentence i . To reward sentences that are relevant to
correctly parse the problem description, we again
use attention mechanism and introduce a sentence
level context vector us to measure the importance
of the sentences, which can be formulated as

uit = tanh(Wshi + bs), (13)

αit =
exp(u>i us)∑
i exp(u

>
i us)

, (14)

v =
∑

αihi, (15)

where v is the global text vector that summarizes
all the information of sentences in a description.
Similarly, the sentence-level context vector us can
be randomly initialized and jointly learned during
the training process.

Merging Mechanism. After getting the results Yp

and Yh from pre-trained knowledge encoder and
hierarchical reasoning encoder, respectively, we
utilize a parser at the end of two encoders as shown
in Figure 2 to adaptively merge Yp and Yh to get
an enhanced representation Y for final decoding.
The parser can be formulated as

Y = F ([wpYp, w
hYh]), (16)

where wp and wh are derived from the Yp and Yh

to calculate the importance of the task. [.] means
concatenation operation. We use a simple dot prod-
uct to merge the two representations (Yp and Yh).
Then we use linear mapping function F such as
fully connected (FC) layer to produce the enhanced
representation Y for final decoding. The wp and

3389

wh can be calculated as

wp =
exp(ϕp(YpWp))

exp(ϕp(YpWp)) + exp(ϕh(YhWh))
,

(17)

wh =
exp(ϕh(YhWh))

exp(ϕp(YpWp)) + exp(ϕh(YhWh))
,

(18)

where Wp and Wh are both trainable weighted
matrices, and ϕp and ϕh indicate different MLPs.

3.5 Decoder and Optimization

Tree-structured Decoder. Following the goal-
driven tree structure (GTS) (Xie and Sun, 2019b),
we apply a tree-structured decoder as shown in Fig-
ure 2 to leverage the outputs of our encoders for
generating the tree-structured targets like mathe-
matical equations. The math equation often con-
sists of operators and quantities. Firstly, the quan-
tity is defined as a leaf node and each operator
node is required to have two child nodes. Then,
the tree-structured decoder parses an equation ex-
pression by following the pre-order traversal order-
ing. Firstly, the most center operator is generated,
followed by the left child node. The generation
process is recursively used until the final leaf node
is completed. Next, we similarly generate the right
child nodes.

To achieve the above-mentioned tree generation,
our model initializes the root node vector according
to the global context representation Y from two en-
coders. The expression trees in our decoder contain
three types of nodes: math operators Vop, constant
quantities Vcon that are those common-sense nu-
merical values encountered in the target expression
but not in the problem text (e.g. a rabbit has 4
legs.), and the numbers nP encountered in problem
P . For each token y in the target vocabulary V tar,
its token embedding e(y|P) is defined as

e(y|P) =

Mop(y) if y ∈ Vop
Mcon(y) if y ∈ Vcon
hp
loc(y, P) if y ∈ nP

(19)

where Mop and Mcon are two trainable word em-
bedding matrices independent of the specific prob-
lem. However, for a numeric value in nP , we take
the corresponding hidden state hp

loc from encoder
as its token embedding, where loc(y, P) is the in-
dex position of numeric value y in P . The constant
quantities Vcon and numbers nP are always set to
be in leaf nodes position. The math operators Vop

take up the non-leaf positions. The representation
of nP is dependent on certain MWP descriptions.
Because y should take the corresponding hidden
state hp

loc from the encoder outputs. The represen-
tations of Vop and Vcon are independently obtained
from by two embedding matrices Mop and Mcon.

In regard to the tree-structured decoder, we
mainly followed the GTS (Xie and Sun, 2019b)
to parse the root vector to math equations. Being
the same with the decoder of GTS, we have pre-
pared the candidates for operators and numbers
in our target vocabulary. Then we used the root
vector with trainable vectors iteratively to predict
the probability of node token y from the target vo-
cabulary. Then the specific y (operation, number,
etc.) with the highest probability will be selected
to replace with the tree node according to the rules
in Equation (19).

Optimization. Since the MWP task can be for-
mulated as (P,E), we define its loss function as
L(E,P), which can be formulated as a sum of the
negative log-likelihoods of probabilities for pre-
dicting t-node token yt. Formally, the objective
function of the training optimizer can be

L(E,P) =
m∑
t=1

−logp(yt|qt,Yt, P), (20)

where m denotes the size of E, qt and Yt are the
target vector and its context vector at the t-th node.
The p is calculated by distribution computation
function in GTS (Xie and Sun, 2019b).

4 Experiments

In this section, we first introduce the data that we
use and the state-of-the-art baselines that we com-
pare against. Then we show the implementation
details of our experiments. Next, we demonstrate
our results in comparison with other methods and
provide extensive analyses. Finally, we conduct
ablation studies and show some visualizations to
investigate the effectiveness of our proposed com-
ponents of our model (Reasoning with Pre-trained
Knowledge and Hierarchical Structure, RPKHS).

4.1 Datasets and Evaluation

Datasets. We evaluate our proposed RPKHS
and compare it with other state-of-the-art meth-
ods on two commonly-used datasets, namely
MAWPS (Koncel-Kedziorski et al., 2016) with
2,373 problems and Math23K (Wang et al., 2018b)
containing 23,162 problems.

3390

Evaluation. As other works do (Xie and Sun,
2019b), for two datasets, we also measure the per-
formance of our proposed method via the solution
accuracy. For the Math23K dataset, there are two
settings for evaluation on the previous methods.
One is evaluating the model on the test set (denoted
as “Math23K” in Table 2). The other evaluation
setting is using 5-fold cross-validation which is ex-
pressed in “Math23K*”. We evaluate our model
compared with other methods in both settings.

Methods MAWPS (%) Math23K (%) Math23K* (%)
DNS 59.5 - 58.1
Math-EN 69.2 66.7 -
T-RNN 66.8 66.9 -
S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9
AST-Dec - 69.0 -
GTS 82.6 75.6 74.3
HMS 76.1 80.3 -
IRE - 76.7 -
Graph2Tree 83.7 77.4 75.5
EPT-L 84.5 - -
RPKHS (Ours) 89.8 83.9 82.2

Table 2: Model comparison between our model and
other state-of-the-art methods. The Math23K indicates
the results on public test set and Math23K* denotes 5-
fold cross-validation.

4.2 Implementation Details

We implement our proposed RPKHS via Py-
Torch (Paszke et al., 2019) and python3.6 to train
and test our RPKHS in math word problems. All
experiments are conducted on the Ubuntu 18.04
from a server with 4 Tesla V100 GPUs. The Nvidia
CUDA of 10.1 and cuDNN of 7.5 are utilized for
acceleration. Unless noted otherwise, settings are
the same for all experiments.

We set the dimension of the word embedding
to 128 and use the dimension of all hidden states
for the other layers in our hierarchical reasoning
encoder with 512. For our pre-trained knowledge
encoder, we strictly follow the setting in (Liu et al.,
2019c) and use their pre-trained weights as the ini-
tial weights in our pre-trained knowledge encoder.
We utilize the aforementioned objective function
L(E,P) for all experiments. We set batch size to
be 64 for 4 GPUs with 0.5 dropout (Hinton et al.,
2012) rate, and set the weight decay as 1e-5 to pre-
vent overfitting. We use Adam optimizer (Kingma
and Ba, 2015) with an initial learning rate set to
0.0001 on pre-trained knowledge encoder and set to
0.001 on other parts of our model. The β1 and β2 in
our optimizer are set as 0.94 and 0.99, respectively.

We adopt plateau learning rate scheduler that re-
duces the learning rate by half every 20 epoch. Our
model is trained for 80 epochs. The beam size is
set to be 5 in beam search to generate expression
trees, which is inspired by the GTS (Xie and Sun,
2019b).

Word-level Sentence-level pre-trained Math23K (%)
74.9√
75.8√
76.1√
80.1√ √
79.8√ √
81.4√ √
82.3√ √ √
83.9

Table 3: Ablation studies on Math23K test set. The
‘word-level’, ‘sentence-level’ and ‘pre-trained’ means
the word-level reasoning, sentence-level reasoning and
pre-trained knowledge encoder, respectively.

4.3 Results and Analyses

Comparison. We report experimental results on
two benchmark datasets and compare these re-
sults with several state-of-the-art methods, which
are DNS (Wang et al., 2017), Math-EN (Wang
et al., 2018b), T-RNN (Wang et al., 2019a),
S-Aligned (Chiang and Chen, 2019), GROUP-
ATT (Li et al., 2019), AST-Dec (Liu et al., 2019a),
GTS (Xie and Sun, 2019b), HMS (Lin et al., 2021),
IRE (Sahu et al., 2019), Graph2Tree (Zhang et al.,
2020b) and EPT-L (Kim et al., 2020). As shown in
Table 2, our proposed RPKHS consistently and con-
siderably outperforms other state-of-the-art MWP
methods by 6.1%, 6.5% and 6.7% performance
gains, respectively on MAWPS, Math23K and
Math23K* when compared with Graph2Tree. Our
RPKHS performs 3.6% improvement better than
HMS on Math23K, and even outperform EPT-L by
around 5.3% accuracy. The superior performance
further demonstrates the effectiveness of our model
on the math word problems.

4.4 Ablation Studies

The effect of our proposed components. As
shown in Table 3, we use a word embedding layer,
a LSTM layer and a tree-structured decoder as
our baseline model, which achieves 74.9% accu-
racy on Math23K test set. After adding our word-
level reasoning, it can boost the accuracy by 0.9%
from baseline. We analyze the effect of sentence-
level reasoning and observe that it can promote the

3391

Example 1: There are 22 students in a classroom, 12 like grape juice, 15 like orange juice, and 10 like both juices. How
many students like neither juice?
GTS: 22.0-(12.0+15.0)-10.0;(error) Graph2Tree: (12.0+15.0)-22.0+10.0;(error) RPKHS (Ours): 22.0-
(12.0+15.0)+10.0;(correct)
Example 2: While playing at the arcade, Edward won 3 tickets playing ’whack a mole’ and 5 tickets playing ’skee ball’. If
he was trying to buy candy that cost 4 tickets a piece, how many could he buy?
GTS: 3.0+5.0/4.0;(error) Graph2Tree: (5.0-3.0)/4.0;(error) RPKHS (Ours): (3.0+5.0)/4.0;(correct)
Example 3: How many liters of a blue dye that costs 1.80 dollars per liter must be mixed with 20 liters of Anil, which costs
2.60 dollars per liter, to make a mixture that costs 2.12 dollars per liter?
GTS: (20.0*2.6-20.0*2.12)/(2.12-2.6);(error) Graph2Tree: (20.0*2.6-20.0*2.12)/(2.6-1.8);(error) RPKHS (Ours):
(20.0*2.6-20.0*2.12)/(2.12-1.8);(correct)

Table 4: Three examples of solving MWP with GTS, Graph2Tree and RPKHS models.

While on vacation ,
Debby took 24 pictures at the zoo and 12 at the museum .
If she later deleted 14 of the pictures ,
how many pictures from her vacation did she still have ?

There are 64 pigs in the barn .
Some more come to join them .
Now there are 86 pigs .
How many pigs came to join them ?

On Saturday ,
Sara spent $ 10.62 each on 2 tickets to a movie theater .
She also rented a movie for $ 1.59 ,
and bought a movie for $ 13.95 .
How much money in total did Sara spend on movies ?

John and Jim needed to meet to discuss changes in a construction project.
They were 880 miles apart .
If they met after 8 hours and both traveled at the same speed ,
how fast did each go in miles per hour ?

Case 1:
GT Equation: ((24.0+12.0)-14.0) Prediction: (24.0+12.0)-14.0

Case 3:
GT Equation: (86.0-64.0) Prediction: 86.0-64.0

Case 2:
GT Equation: (2*10.62)+1.59+13.95 Prediction: (2*10.62)+1.59+13.95

Case 4:
GT Equation: 880.0/2.0/8.0 Prediction: 880.0/2.0/8.0

Figure 3: Visualizations of weighted connections of our word-level reasoning (blue) and sentence-level reasoning
(green) in our hierarchical reasoning encoder. It provides insight into which words and sentences contribute to the
final prediction, which can be of value in applications and interpretable analysis.

Pre-trained Knowledge Variants Math23K (%)
Bert-base 78.9
Bert-large 80.0
Roberta-base 82.1
Roberta-large 83.9

Table 5: The effects of various pre-trained knowledge
on math word problems.

baseline by 1.2% performance. Furthermore, after
combing both of the reasoning processes, it can
achieve 79.8% performance, which can validate
the availability and superior ability of the hierarchi-
cal reasoning encoder. When it comes to the pre-
trained knowledge encoder, our model can reach
a significant improvement from 74.9% to 80.1%,
which strongly supports the feasibility of using im-
plicit knowledge from pre-trained neural network
on math word problems. Furthermore, the ability
of combination between word-level reasoning and
pre-trained knowledge gets great scores of 81.4%.
The sentence-level reasoning collaborated with the
pre-trained knowledge encoder increases accuracy
by 2.2% compared with purely using pre-trained
knowledge encoder.

The effect of different pre-trained knowledge.
As shown in Table 5, we explore the effect of

language-based knowledge from different pre-
trained transformer-based variants on the MWP
task, which are BERT-base (Devlin et al., 2019b),
BERT-large, Roberta-base (Liu et al., 2019c) and
Roberta-large. We observe that more powerful pre-
trained linguistic models can achieve better perfor-
mance (78.9%→83.9%). One of the reasons for
these gains comes from the commonsense and fac-
tual knowledge in the transformer-based models,
which has been pre-trained on large-scale corpora
to capture the implicit knowledge. These experi-
mental results can also support the effectiveness of
using outside knowledge to assist in the MWP task.

4.5 Case Study

In Table 4, we perform a case study on the solution
expressions generated by GTS, Graph2Tree and
our RPKHS. Previous methods wrongly predict the
operator (e.g., GTS in 1st example, Graph2Tree
in 2nd example.) and calculation order (e.g.,
Graph2Tree in 1st example and GTS in 2nd exam-
ple.). For the last example, GTS and Graph2Tree
predict wrong quantities (e.g., ‘2.12-2.6 on GTS,
‘2.6-1.8’ on Graph2Tree.) while our RPKHS is able
to handle this situation better than them. We be-
lieve it is because our model encodes the MWP in

3392

richer representation by reasoning with pre-trained
knowledge and hierarchical structure.

4.6 Visualizations

To validate that our model is able to select informa-
tive words and sentences in a problem description,
we visualize the hierarchical attention weights in
Figure 3 for four examples. Every line is a sentence
(segment). Green denotes the sentence weight and
blue denotes the word weight. Due to the hierarchi-
cal structure, we normalize the word weight by the
sentence weight to make sure that only important
words in important sentences are emphasized.

After looking through the four examples, we ob-
serve that our model can select the quantity words
(positions) carrying strong contribution to the equa-
tion like 24, 12 and 14 in the 1st case, 64 and 86
in the 3rd case. Besides, our model usually can
accurately localize the relationship between the
quantities and their semantics, such as 2 tickets in
2nd case and 880 miles in the 4th case.

Moreover, our model can deal with complex
across-sentence contexts by building the correla-
tion between different sentences. For instance, the
1st sentence John and Jim... in the 4th case seems
to be unconsidered for solving the problem due to
no quantity words inside it. However, our model
figures out the 1st sentence containing important
quantity information when parsing the 4th sentence
(e.g., how fast did each...) via sentence-level rea-
soning. Through detailed visualized illustrations
throughout the hierarchical reasoning process, we
can reasonably interpret our results with concrete
facts to show the effectiveness of our design.

5 Conclusion

We propose reasoning with pre-trained knowledge
and hierarchical structure to jointly incorporate im-
plicit knowledge and hierarchical representation
into the neural network, which can be achieved
by two encoders. A pre-trained knowledge en-
coder uses implicit knowledge for enhancing tex-
tual representation. A hierarchical reasoning en-
coder bridges the entity and context domain on
MWP by building hierarchical reasoning between
word-level and sentence-level reasoning. Exten-
sive experiments show that the proposed model
achieves a new state-of-the-art performance.

6 Acknowledgments

We thank all reviewers for providing the thought-
ful and constructive suggestions. This work was
supported in part by National Natural Science Foun-
dation of China under Grant No.U1811461, in
part by Natural Science Foundation of Guangdong
Province, China under Grant No.2018B030312002,
and in part by the Major Program of Guangdong
Basic and Applied Research No.2019B030302002.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Yefim Bakman. 2007. Robust understanding of word
problems with extraneous information. arXiv: Gen-
eral Mathematics.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2656–
2668. Association for Computational Linguistics.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019a. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
In NAACL-HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Geoffrey E. Hinton, Nitish Srivastava, A. Krizhevsky,
Ilya Sutskever, and R. Salakhutdinov. 2012. Improv-
ing neural networks by preventing co-adaptation of
feature detectors. ArXiv, abs/1207.0580.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang, and
Song-Chun Zhu. 2021. Learning by fixing: Solv-
ing math word problems with weak supervision. In
Proceedings of the Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI-21.

D. Huang, Shuming Shi, Chin-Yew Lin, and J. Yin.
2017. Learning fine-grained expressions to solve
math word problems. In EMNLP.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

3393

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 213–223, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Zhengbao Jiang, F. F. Xu, J. Araki, and Graham Neu-
big. 2019. How can we know what language models
know? Transactions of the Association for Compu-
tational Linguistics, 8:423–438.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and
G. Gweon. 2020. Point to the expression: Solving al-
gebraic word problems using the expression-pointer
transformer model. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

A. Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and R. Socher. 2016. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. In ICML.

Nate Kushman, Luke Zettlemoyer, R. Barzilay, and
Yoav Artzi. 2014. Learning to automatically solve
algebra word problems. In ACL.

Jierui Li, Lei Wang, Jipeng Zhang, Y. Wang, B. Dai,
and D. Zhang. 2019. Modeling intra-relation in
math word problems with different functional multi-
head attentions. In ACL.

Qing Li, Siyuan Huang, Yining Hong, Y. Chen, Y. Wu,
and S. Zhu. 2020a. Closed loop neural-symbolic
learning via integrating neural perception, grammar
parsing, and symbolic reasoning.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020b. Graph-
to-tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. EMNLP.

Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen,
Qi Liu, Hao Wang, and Shijin Wang. 2021. Hms:
A hierarchical solver with dependency-enhanced un-
derstanding for math word problem. In AAAI.

Wang Ling, Dani Yogatama, Chris Dyer, and P. Blun-
som. 2017a. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word
problems. In ACL.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017b. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167. Associa-
tion for Computational Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for
solving math word problems. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong,
China. Association for Computational Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019b. Tree-structured decoding for
solving math word problems. In EMNLP/IJCNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019c.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

A. Mitra and Chitta Baral. 2016. Learning to use for-
mulas to solve simple arithmetic problems. In ACL.

Adam Paszke, S. Gross, Francisco Massa, A. Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen,
Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS.

F. Petroni, Tim Rocktäschel, Patrick Lewis, A. Bakhtin,
Yuxiang Wu, Alexander H. Miller, and S. Riedel.
2019. Language models as knowledge bases? In
EMNLP.

M. Remy. 2002. Wikipedia: The free encyclope-
dia200214wikipedia: The free encyclopedia. 2001 –
updated daily. gratis http://www.wikipedia.com.

Subhro Roy and D. Roth. 2015. Solving general arith-
metic word problems. ArXiv, abs/1608.01413.

Subhro Roy and D. Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159–172.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and S. Ananiadou. 2019. Inter-sentence re-
lation extraction with document-level graph convo-
lutional neural network. ArXiv, abs/1906.04684.

Shuming Shi, Y. Wang, Chin-Yew Lin, Xiaojiang Liu,
and Y. Rui. 2015. Automatically solving number
word problems by semantic parsing and reasoning.
In EMNLP.

https://www.aclweb.org/anthology/C18-1018
https://www.aclweb.org/anthology/C18-1018
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241

3394

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math word
problem to a expression tree. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1064–1069, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018b. Translating a math word
problem to a expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069. Associa-
tion for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Zhang Jipeng, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019a. Template-based math word problem solvers
with recursive neural networks. In Thirty-Third
AAAI Conference on Artificial Intelligence, pages
7144–7151.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing
Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. 2019b. Template-based math word problem
solvers with recursive neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):7144–7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854. Association for Computational Linguistics.

Y. Wu, M. Schuster, Z. Chen, Quoc V. Le, Moham-
mad Norouzi, Wolfgang Macherey, M. Krikun, Yuan
Cao, Q. Gao, Klaus Macherey, J. Klingner, Apurva
Shah, M. Johnson, X. Liu, Lukasz Kaiser, Stephan
Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens,
George Kurian, Nishant Patil, W. Wang, C. Young,
J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
G. Corrado, Macduff Hughes, and J. Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
ArXiv, abs/1609.08144.

Zhipeng Xie and Shichao Sun. 2019a. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5299–5305. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Zhipeng Xie and Shichao Sun. 2019b. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5299–5305. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Ma Yuhui, Zhou Ying, Cui Guang-zuo, Ren Yun, and
Huang Rong-huai. 2010. Frame-based calculus of
solving arithmetic multi-step addition and subtrac-
tion word problems. 2010 Second International
Workshop on Education Technology and Computer
Science, 2:476–479.

Jipeng Zhang, Lei Wang, R. Lee, Yi Bin, Yan Wang,
J. Shao, and Ee-Peng Lim. 2020a. Graph-to-tree
learning for solving math word problems. In ACL.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937, Online. Association for Computational Lin-
guistics.

Y. Zhu, Ryan Kiros, R. Zemel, R. Salakhutdinov, R. Ur-
tasun, A. Torralba, and S. Fidler. 2015. Aligning
books and movies: Towards story-like visual ex-
planations by watching movies and reading books.
2015 IEEE International Conference on Computer
Vision (ICCV), pages 19–27.

Yanyan Zou and Wei Lu. 2019. Quantity tagger: A
latent-variable sequence labeling approach to solv-
ing addition-subtraction word problems. In ACL.

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

