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Abstract
Machine translation usually relies on parallel
corpora to provide parallel signals for training.
The advent of unsupervised machine trans-
lation has brought machine translation away
from this reliance, though performance still
lags behind traditional supervised machine
translation. In unsupervised machine trans-
lation, the model seeks symmetric language
similarities as a source of weak parallel sig-
nal to achieve translation. Chomsky’s Uni-
versal Grammar theory postulates that gram-
mar is an innate form of knowledge to hu-
mans and is governed by universal principles
and constraints. Therefore, in this paper, we
seek to leverage such shared grammar clues
to provide more explicit language parallel sig-
nals to enhance the training of unsupervised
machine translation models. Through experi-
ments on multiple typical language pairs, we
demonstrate the effectiveness of our proposed
approaches.

1 Introduction

Recently, Neural Machine Translation (NMT)
(Bahdanau et al., 2014; Sutskever et al., 2014) has
been greatly developed and become the dominant
paradigm in machine translation. On the one hand,
the development of deep neural networks such as
Transformer (Vaswani et al., 2017; Li et al., 2021a)
has played a significant role in NMT’s improve-
ments. On the other hand, large-scale parallel cor-
pora like the UN corpus (Ziemski et al., 2016) have
also played an important role.

Despite the recent success of NMT in stan-
dard benchmarks, the need for large-scale parallel
corpora has limited the effectiveness of NMT in
many language pairs, especially in low-resource
language pairs (Koehn and Knowles, 2017). Un-
supervised Neural Machine Translation (UNMT)
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Figure 1: Examples of constituent trees from En-
glish Penn Treebank (PTB) and German dataset of
SPMRL14 shared task. The dotted box indicates the
constituents that can be masked for prediction.

(Artetxe et al., 2018b) was proposed to alleviate
this issue by completely removing the need for
parallel data and training an NMT system in a com-
pletely unsupervised manner, relying on nothing
but monolingual corpora. Unsupervised machine
translation does not need the parallel information
from parallel sentences; rather, it generally uses em-
bedding alignments, initializes parameters with pre-
trained language models, and uses iterative back-
translation between two languages to synthesize
pseudo parallel corpora for model training (Lample
et al., 2018a,c; Yang et al., 2018; Sun et al., 2019;
Conneau and Lample, 2019; Li et al., 2020a).

The pseudo parallel data created by iterative
back-translation is the key to the success of un-
supervised NMT model training (Kim et al., 2020).
It takes advantage of the equivalence of transla-
tion languages to bring supervision (albeit weak
supervision) to model training. Recent results in
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semi-supervised NMT have demonstrated that fur-
ther training a UNMT model with true bilingual
parallel sentences can lead to better translation per-
formance (He et al., 2016; Kim et al., 2020; Con-
neau and Lample, 2019; Song et al., 2019a), which
suggests that after training, UNMT models are still
not optimized because of their lack of explicit su-
pervision.

Universal grammar (UG) is a notion in linguis-
tics and philosophy that goes back at least to Roger
Bacon’s observation, “in its substance, grammar
is one and the same in all languages, even if
it accidentally varies" (Bacon, 1902). Chomsky
(1965a,b) developed a universal grammar theory.
The idea of a universal grammar states that all hu-
man languages are species of a common genus be-
cause they have all been shaped by a factor that is
common to all human beings (Lappin and Shieber,
2007; Nivre, 2015). Therefore, in this paper, we
leverage this grammar commonality to derive addi-
tional supervision to enhance UNMT training. In
other words, our proposed method is built on the
existence of universal grammar. If there is no cross-
lingual commonality and definitional similarity in
the syntactic structure, then we will not be able to
obtain weakly supervised signals for UNMT.

Specifically, we choose the grammar represen-
tation framework of constituent syntax as the re-
search object. Unlike typical approaches to lever-
aging syntax information, rather than adopting a
syntactic encoder to enhance representations, we fo-
cus on acquiring more supervision by finding com-
monalities between two languages’ syntaxes and
demonstrate this supervision by training UNMT
models. Since different languages often share some
of the same constituent types (syntax categories),
predicting these matching constituents in model
training can be used for a weak alignment. As
shown in Figure 1, although the two sentences are
not parallel, during the training, the model is ex-
posed to both NP and VP constituents, and a weak
alignment between these constituents can be used
to enhance the UNMT training, i.e., the NP con-
stituents in English and the NP constituents in Ger-
man (the same to VP, PP, ..., etc.) are more likely
to be parallel. Notably, our method is only an ap-
plication of Universal Grammar in UNMT, but far
from all applications since we only leverage a very
small part of Universal Grammar (universal con-
stituent and syntactic label definition).

Masked Language Modeling (MLM) is a com-

monly used training approach for language mod-
eling. In MLM, some of the tokens in the sen-
tence are masked, and then the model is required
to predict these masked tokens at their placehold-
ers. Based on MLM, we propose a CONSTMLM
approach that also draws from constituent syntax.
In our CONSTMLM, constituents are masked, and
the model is tasked with predicting both the tokens
in a constituent and the constituent’s syntactic cate-
gory. Masking large constituents will present too
difficult a problem for the model, as there will be
insufficient context, so we also propose BTLM, a
method of leveraging back-translation to provide
more context and alleviate this issue. We then im-
plement CONSTBTLM based on the CONSTMLM,
which leverage our proposed BTLM. To accommo-
date both UNMT and language modeling training,
we have prepared both encoder-decoder models
and encoder-only models for our CONSTBTLM,
BTLM, and CONSTMLM approaches.

In our experiments, we demonstrated the effec-
tiveness of leveraging universal grammar and of
our proposed approaches on multiple unsupervised
translation tasks. Our proposed approaches show
consistent improvements compared to the base-
lines in these tasks. We also present a significantly
boosted performance on several low-resource semi-
supervised tasks. These results verify that univer-
sal grammar commonalities can bring additional
supervision information to bolster the training of
unsupervised and low-resource translation models.

2 The Proposed Approaches

2.1 Background

We formally present the background of our baseline
UNMT system in terms of unsupervised machine
translation between languages L1 and L2. Our
UNMT model follows an encoder-decoder archi-
tecture as in standard NMT. We use a joint sub-
word (Sennrich et al., 2016b) vocabulary shared
between languages and share parameters between
source→target and target→source models to take
advantage of multilingualism (Edwards, 2002). In
this framework, three training methods are indis-
pensable for the feasibility of unsupervised ma-
chine translation: initialization, denoising genera-
tion, and iterative back-translation. UNMT mod-
els typically use denoising generation and iterative
back translation simultaneously by alternating be-
tween the two methods in a single phase rather
than separately in multiple phases. The model is
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given monolingual data {Xi} in language L1 and
{Yj} in language L2. |X| and |Y | are the number
of sentences in monolingual data {Xi} and {Xj},
respectively.

Initialization Initialization is a crucial step for
bootstrapping UNMT models. The initialization
process injects non-randomized cross- or multi-
lingual knowledge into a UNMT model. In gen-
eral, two types of initialization are usually adopted
(Lample et al., 2018c). The first entails initializ-
ing the embedding layer of a UNMT model with
pre-trained embeddings, while the second uses a
pre-trained language model with the same structure
as the UNMT encoder to initialize the embedding
layer and most of the neural network parameters
in the encoder and decoder (Conneau and Lample,
2019). The experimental performance in (Conneau
and Lample, 2019) shows that using a pre-trained
language model to initialize a UNMT model can
produce better performance, so we choose this as
our method of initialization.

Denoising Generation Denoising generation
training aims to help UNMT models learn to gen-
erate fluent texts. Noise is introduced to input sen-
tences via replace, delete, and shuffle functions,
and then the UNMT model is tasked with encoding
these noisy sentences and using the encoded noisy
sentences to reconstruct the original sentences. The
UNMT model is optimized by loss LD during this
training process:

LD =

|X|∑
i=1

− logPL1→L1(Xi|N(Xi), θ)

+

|Y |∑
j=1

− logPL2→L2(Yj |N(Yj), θ),

(1)

where N(·) refers to the noise functions and θ rep-
resents the UNMT model parameters. PL1→L1 and
PL2→L2 denote the reconstruction probabilities in
the languages L1 and L2, respectively.

Iterative Back-translation Back-translation
(Sennrich et al., 2016a) was first proposed to
boost translation performance using target-side
monolingual data. By using symmetric models,
it can boost translation in both directions. In
UNMT, back-translation is used to synthesize
pseudo parallel data from monolingual text, which
alleviates the scarcity of true parallel data. This
synthesis is performed repeatedly throughout
the UNMT training. The loss, LB , is defined as

follows:

LB =

|X|∑
i=1

− logPL2→L1(Xi|SL1→L2(Xi, θ), θ)

+

|Y |∑
j=1

− logPL1→L2(Yj |SL2→L1(Yj , θ), θ),

(2)

where SL1→L2 and SL2→L1 represent the transla-
tion processes from L1 to L2 and L2 to L1, respec-
tively. PL1→L2 and PL2→L1 denote the translation
probabilities between the two languages.
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Figure 2: Schema of our proposed CONSTMLM enc-
only, CONSTMLM enc-dec, CONSTBTLM enc-only,
and CONSTBTLM enc-dec.

2.2 CONSTMLM
We propose Constituent Masked Language Model-
ing (CONSTMLM) in this section. ConstMLM is a
variant of MLM that is enhanced with constituent
syntax information. In traditional MLM, given a
sentence X = {x1, x2, ..., xn}, length of tokens n,
and set of masked positionsM, the training loss
LMLM for the MLM training is:

LMLM =

|M|∑
i=1

− logP (xMi |X\M, θ) (3)

where |M| is the size of setM, andX\M indicates
the sequence after masking. The masked positions
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setM consists of randomly sampled discrete po-
sitions, that is, M = TopK([randi(0, 1)]

n
i=1).

Here, TopK is a function that selects positions
by probability until the masking budget has been
spent. In span-based MLM like (Joshi et al., 2020),
a span of length ` is first sampled from a geometric
distribution ` ∼ Geo(p), and the start position of
a span is sampled in the same manner as in MLM,
giving final masked span set MS = {(Mi, `i)}.
In another linguistically guided language model-
ing approach, Zhou et al. (2020b) proposed Syn-
tactic/Semantic Phrase Masking (SPM) for their
model LIMIT-BERT. In SPM, the masked positions
set consists of tuples randomly sampled from the
linguistic span set instead of the discrete token posi-
tion set. Only the span boundary information, how-
ever, is used in SPM; the linguistic label is ignored,
so we remedy this and propose CONSTMLM.

In CONSTMLM, we first extract and filter the
constituent span set CS = {(s, e, c)i}mi=1, where
s, e, and c represent the start position, end posi-
tion, and syntactic category, respectively. During
filtering, constituent parse trees with a span ratio
greater than γ = `/n are removed. Random sam-
pling is also performed on this set to obtain the
masked span set. Unlike SpanBERT and LIMIT-
BERT, we only sample one span at a time because
CONSTMLM not only predicts the masked token
in the sampled span but also predicts the syntactic
category of the sampled span. CONSTMLM sums
the loss from both the span’s syntactic category and
the regular masked language model objective for
each token in the masked span:

LCONSTMLM =
∑
e:s

− logP (xi|X\s:e, θ) +

− logP (c|X\s:e, θ).
(4)

Since the UNMT model architecture, which in-
cludes both an encoder and a decoder, is differ-
ent from pre-trained language models in general,
we provide two implementations of CONSTMLM:
encoder-only and encoder-decoder. In the encoder-
only CONSTMLM, the masked span’s token and
syntactic category prediction are both performed
on the encoder side, which is no different from pop-
ular pre-trained language models such as BERT
that only consist of encoders. Both target predic-
tion probabilities are calculated using the following
process:

P (xi|X\s:e, θ) =Softmax(MLP(enc(X\s:e))),

P (c|X\s:e, θ) =Softmax(MLP(

Pooling(enc(X\s:e)))),

where enc(·) represents the encoding process, and
Pooling(·) is a pooling operation that uses a first-
token pooling strategy.

In the encoder-only CONSTMLM, only the en-
coder is updated by the loss; the decoder can not
benefit from it. Using the same training method on
the decoder as on the encoder is not viable; because
the decoder uses incremental self-attention instead
of full self-attention. To mitigate this, we propose
an encoder-decoder CONSTMLM, in which the
masked token prediction probability is calculated
as:

P (xi|X\s:e, θ) = Softmax(MLP(

dec([〈BOS〉, Xs:e−1], enc(X\s:e)))),

where dec(·) represents the decoding process, and
[〈BOS〉, Xs:e−1] is the operation of prepending a
〈BOS〉 token before sequence Xs:e−1. In encoder-
decoder CONSTMLM, the encoder still handles
the incomplete sentence encoding, so the syntactic
category prediction is consistent with that of the
encoder-only version. This means that the weak
alignment information brought by the syntactic cat-
egory still directly trains the encoder, while the
decoder is optimized by the span generation pro-
cess.

2.3 BTLM and CONSTBTLM
Whether in traditional MLM or span-based MLM,
the number of tokens masked is limited to a certain
ratio of the sentence. In BERT’s implementation,
at most 15% of the tokens are put up for masking.
SpanBERT followed this practice and after obtain-
ing span lengths by sampling a geometric distribu-
tion skewed towards shorter spans, removed spans
with a length greater than `max = 10. Skewing
towards shorter spans is crucial because of an issue
in MLM: if too many tokens are masked, it is dif-
ficult for the model to recover these tokens using
the remaining incomplete sentences. Limiting the
number of masked tokens is especially important
for span-based MLM, as spans can compose much
larger parts of the sentence.

We call this the difficulty of reasoning with insuf-
ficient information. This situation is still acceptable
for language model pre-training, and limiting the
maximum ratio of masked tokens in MLM and the
span length in span-based MLM alleviates the is-
sue, but for linguistically-guided span-based MLM,
the length of the extracted span cannot be flexi-
bly set because it contains specific grammatical
information. Making the maximum span width
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too small means too few spans or even no spans
for some trees are extracted. To combat the dif-
ficulty of reasoning with insufficient information,
we first propose Back-translation Language Model-
ing (BTLM), a training method that can use cross-
lingual translation as a source of information for
inference. It can be formally presented as:

LBTLM =
∑
e:s

− logP (xi|X\s:e, SL1→L2(X), θ), (5)

In BTLM, the sentence X in language L1 is first
translated into language L2 by SL1→L2 for use as
cross-lingual context. Then, X is masked as in
MLM. Finally, the target prediction is performed
by combining and considering the cross-lingual
context and the MLM context. Due to the existence
of a complete (albeit noisy) cross-lingual context,
the proportion of masked spans in a sentence can
be significantly increased. In addition, this train-
ing forces the model to infer with a cross-language
context, which implicitly promotes bilingual align-
ment.

Based on BTLM, as CONSTMLM was built on
MLM, we propose Constituent Back-translation
Language Modeling (CONSTBTLM). The loss of
CONSTBTLM is calculated similarly to that of
CONSTMLM:
LCONSTBTLM =

∑
e:s

− logP (xi|X\s:e, SL1→L2(X), θ) +

− logP (c|X\s:e, SL1→L2(X), θ).

We also implemented encoder-only and encoder-
decoder versions with CONSTBTLM for different
purposes. In encoder-only CONSTBTLM, the tar-
get prediction probability becomes:

P (xi|X\s:e, Ŷ , θ) = Softmax(MLP(enc([Ŷ , X\s:e]))),

P (c|X\s:e, Ŷ , θ) = Softmax(MLP(

Pooling(enc([Ŷ , X\s:e])))),

where Ŷ = SL1→L2(X), and [Ŷ , X\s:e] indicates
that the translated sequence Ŷ is prepended to the
rest of the sequence. Purely from an implemen-
tation perspective, the use of cross-lingual con-
text here is consistent with the TLM proposed in
(Conneau and Lample, 2019), but the difference is
that we only mask the input monolingual sequence,
while TLM masks both the input parallel sentences.

Correspondingly, in the encoder-decoder CON-
STBTLM, the probabilities are calculated as:

P (xi|X\s:e, Ŷ , θ) = Softmax(MLP(

dec([〈BOS〉, X̃, 〈EOS〉], enc(Ŷ )))),

P (c|X\s:e, Ŷ , θ) = Softmax(MLP(

Pooling(dec([〈BOS〉, X̃, 〈EOS〉], enc(Ŷ ))))),

where X̃ is the language sequence after being
masked, which is equivalent to X\s:e in mean-
ing but keeps the same length as the original sen-
tence. [〈BOS〉, X̃, 〈EOS〉] means that a 〈BOS〉 is
prepended to X̃ , and an 〈EOS〉 is appended. Due
to the incremental attention adopted by the decoder,
the Pooling here must choose the last-token pool-
ing strategy.

In CONSTMLM, the encoder handles predict-
ing syntactic categories. Although the encoder-
decoder version is designed so that the decoder can
also be updated during CONSTMLM training, it is
still only responsible for the masked span sequence
generation.

In the encoder-only version with CONSTBTLM,
the encoder also handles the prediction of syntactic
categories, but cross-lingual context is adopted to
support larger span masking. As for the encoder-
decoder version, the encoder handles the cross-
lingual context and the decoder predicts syntactic
categories and generates masked span text. In CON-
STMLM and the encoder-only CONSTBTLM, the
weak alignment training of the syntactic category is
performed on the source side, while it is completed
on the target side in the encoder-decoder CON-
STBTLM. For detailed training process, please
refer to Appendix A.1.

3 Empirical Evaluation

3.1 Setup
Following the XLM codebase1 and model structure
setup (6 stacked Transformer layers with hidden
dimension size of 1024) of (Conneau and Lam-
ple, 2019), we train the baseline UNMT model
with an embedding-shared Transformer encoder-
decoder architecture. The UNMT model training
is divided into two stages: pre-training and unsu-
pervised training. Our method is only used in the
second stage for fast convergence. In order to make
the unsupervised training more sufficient, we used
an epoch size of 400K instead of the original rec-
ommended 200K in XLM. The γ in CONSTMLM
is set to 0.3, and 0.5 in CONSTBTLM.

As the source of monolingual corpus for train-
ing, we use the 2007-2018 News Crawl dataset for
English (En), French (Fr), German (De), Romanian
(Ro), and Chinese (Zh). Since the Chinese News
Crawl data is relatively small, we extracted sen-
tences from Wikipedia dumps and converted them
from traditional Chinese to simplified Chinese for

1https://github.com/facebookresearch/XLM
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Method / Data En-Fr Fr-En En-De De-En En-Ro Ro-En En-Zh Zh-En

Data Used 274M 274M 509M 509M 195M 195M 50M 50M

Results reported from previous papers on large scale datasets
NMT (Lample et al., 2018c) 25.1 24.2 17.2 21.0 21.1 19.4 − −
PBSMT (Lample et al., 2018c) 27.8 27.2 17.7 22.6 21.3 23.0 − −
PBSMT + NMT (Lample et al., 2018c) 27.6 27.6 20.2 25.2 25.1 23.9 − −
XLM (Conneau and Lample, 2019) 33.4 33.3 26.4 34.3 33.3 31.8 − −

Results from our runs on large scale datasets
XLM 36.3 33.8 26.8 34.1 33.9 32.0 25.2 15.4

+ CONSTMLM enc-only 36.5 34.1 27.0 34.5 34.0 32.2 25.8 16.2
+ CONSTMLM enc-dec 36.5 34.4 27.2 34.6 33.9 32.5 25.9 16.3
+ CONSTBTLM enc-only 37.0 34.2 27.3 34.9 34.5 32.8 26.2 16.7
+ CONSTBTLM enc-dec 37.3 34.5 27.9 35.0 35.2 33.0 26.3 17.2

Data Used 10M 10M 10M 10M 10M 10M 10M 10M

Results from our runs on smaller datasets
XLM 33.3 31.2 24.5 29.7 31.2 28.4 19.3 11.0

+ CONSTMLM enc-only 33.6 31.4 24.9 30.4 31.4 28.5 22.9 13.1
+ CONSTMLM enc-dec 33.9 32.0 25.5 30.5 32.0 28.7 23.1 13.4
+ CONSTBTLM enc-only 34.5 33.0 26.3 31.7 32.0 28.9 23.9 14.6
+ CONSTBTLM enc-dec 35.1 33.4 26.0 31.8 32.4 29.0 24.5 15.3

Table 1: BLEU scores on WMT’14 English-French (En-Fr), WMT’16 English-German (En-De), WMT’16
English-Romanian (En-Ro), and WMT’20 English-Chinese (En-Zh) unsupervised translation tasks.

use. Joint Byte-Pair Encodings (BPE) (Sennrich
et al., 2016a) with 60K merge operations were used
in the translation experiments for all language pairs.
We explored the role of UG at two different mono-
lingual corpus sizes in UNMT. All monolingual
data from the newstest 2008-2018 is combined for
use in the large-scale setting, while a subset of
5M sentences per language was randomly sampled
from this data in the smaller scale setting.

Our evaluations were mainly carried out under
unsupervised and low-resource semi-supervised
scenarios. In the unsupervised translation sce-
nario, we reported results on WMT newstest2014
for En-Fr and En-Ro, WMT newstest2016 for En-
De, and WMT newstest2020 for En-Zh. In the
low-resource semi-supervised translation scenario,
the IWSLT’14 En-Fr and En-De parallel sentences
were used for training. IWSLT14.TED.dev2010,
tst2010, tst2011, and tst2012 were merged
to evaluate the En-Fr translation model and
dev2010, dev2012, tst2010, tst2011, and tst2012 in
IWSLT14.TED to evaluate the En-De model.

To acquire constituent parse trees for monolin-
gual sentences, we adopted the current state-of-the-
art Berkeley Neural Parser (Kitaev and Klein, 2018)
as our parsing model and trained an En parser us-
ing PTB (Marcus et al., 1993), Fr and De parsers
using the SPMRL14 multilingual constituent tree-
bank (Seddah et al., 2014), and a Zh Parser using
CTB (Xue et al., 2005). Since a constituent tree-
bank is not available in Ro and for the consistency

of the constituent trees used in En-Ro UNMT, we
created En and Ro pseudo-constituent treebanks
by converting their respective UD 2.7 treebanks
using Head Feature Princinple (HFP) (Pollard and
Sag, 1994), and trained En∗ and Ro∗ parsers using
this. The processing and training details of each
parser are presented in Appendix A.2. For each
language, 500K sentences are parsed with these
trained parsers for UNMT and low-resource semi-
supervised NMT enhancement.

Method En-Fr Fr-En En-De De-En

Unsup. XLM 33.4 36.4 24.3 30.2
Semi. XLM 38.4 40.3 28.0 35.5

+ CONSTMLM† 38.6 40.4 28.3 35.5
+ CONSTMLM‡ 38.7 40.5 28.4 35.7
+ CONSTBTLM† 38.9 40.5 28.8 36.1
+ CONSTBTLM‡ 39.0 40.7 28.9 36.0

Table 2: BLEU scores on the semi-supervised
IWSLT’14 En-Fr and En-De tasks. † means the
encoder-only version is adopted, and ‡ means the
encoder-decoder version is adopted.

3.2 Results and Analysis
The results of the UNMT experiment are mainly
shown in Table 1. When a large-scale monolingual
corpus is used, our baseline model outperforms
XLM’s reported results. This may be due to the use
of the larger epoch size, which makes for more ade-
quate training. Based on our strong baseline model,
the four implementations of our CONSTMLM and
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CONSTBTLM approaches achieve consistent im-
provements in all language pairs, which demon-
strates the effectiveness of universal grammar in
UNMT. Based on the large-scale monolingual cor-
pus scenario, comparing the four implementations
of CONSTMLM and CONSTBTLM, we find that
enc-only is generally weaker than the enc-dec im-
plementation. This shows that training the model
as a whole is better than training part of the model.
This conclusion also partially explains the source
of improvement of other enc-dec pre-training meth-
ods in UNMT like MASS (Song et al., 2019b) and
BART (Lewis et al., 2020).

In the small-scale monolingual training data sce-
nario, the performance of the baseline model has a
large decline compared with the large-scale mono-
lingual scenario, which shows that the size of mono-
lingual data is still an important factor in the perfor-
mance of the UNMT model. Similar to the large-
scale monolingual scenario, our CONSTMLM and
CONSTBTLM achieve improvements in transla-
tion performance, and the maximum increase is
even greater than that in the large-scale monolin-
gual scenario. This shows that in the case of rela-
tively scarce training data, the introduction of uni-
versal grammar as a prior knowledge can effec-
tively alleviate the performance loss.

Comparing the improved results in our ap-
proaches of each language pair horizontally, we
find the average improvement of each language
pair is basically consistent with the overlap of con-
stituent labels between languages; that is, En-De,
En-Zh, and En∗-Ro∗ are more improved than is En-
Fr (refer to Appendix 4.4 for the detailed statistics).
This shows that the more grammatical common-
alities two languages have, the greater their align-
ment’s supervision will be. In addition, compared
to the recent state-of-art work – MASS, due to their
focus on pre-training, while ours concentrate on the
NMT training with weak parallel information from
universal grammar, our contribution is orthogonal
to theirs.

In Table 2, we report the evaluation results of
the low-resource semi-supervised scenario. We
use a small-scale, monolingually trained UNMT
model as the basis, so we also include the results
of the UNMT model evaluated on the test datasets
directly. After using the parallel data, the perfor-
mance of our baseline model greatly improved,
which reinforces our claim that UNMT models
do not receive enough supervision in BT training.
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Figure 3: The Semi-supervised NMT and UNMT per-
formance evaluated on IWSLT En-Fr benchmarks ver-
sus the number of parallel sentences and constituent
trees used, respectively.

Method γ Phrase En-De De-En

XLM Baseline − − 24.5 29.7

+CONSTMLM‡
0.15 58.6% 25.1 30.0
0.3 76.3% 25.5 30.6
0.5 86.1% 24.1 29.3

+CONSTBTLM‡
0.15 58.6% 25.3 30.1
0.3 76.3% 25.8 31.2
0.5 86.1% 26.0 31.8
0.6 88.4% 25.6 30.5

Table 3: Comparison of different maximum span ra-
tios γ in CONSTMLM and CONSTBTLM for En-De
UNMT. The Phrase column refers the proportions of
the phrases kept under the maximum span ratio.

With the use of universal grammar for enhance-
ment, the CONSTMLM and CONSTBTLM enc-
only methods only achieved a slight improvement,
which maybe suggest the training enhancement on
the encoder side does not significantly improve
the performance of translation after the introduc-
tion of parallel data. In the enc-dec approaches,
the encoder and decoder are jointly optimized, and
the performance improvement is greater, especially
in CONSTBTLM enc-dec when larger and more
spans can be leveraged.

4 Ablation Study

4.1 Constituent trees and parallel data size

To show that UG plays a similar role to the align-
ment information given by the parallel corpus, we
compare the semi-supervised and UG-enhanced
UNMT (UGUNMT) settings. The experimental
results are evaluated on IWSLT’14 En-Fr. In the
semi-supervised setting, we vary the amount of
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parallel data, while we vary the number of mono-
lingual parse trees in UGUNMT. The performance
trend is shown in Figure 3.

The trends in the figure demonstrate that the per-
formance of the UNMT model steadily improved
with the addition of parallel corpus. The perfor-
mance changes for UGUNMT also had a similar
trend with the increase in the constituent parse data.
This suggests that UG information plays a role
similar to that of parallel data; that is, it brings
supervision signals. The demand for monolingual
constituent parse data, however, is greater than that
from parallel data, and the improvement of parallel
data is greater than that from constituent parses,
which shows that UG can only provide a weak sig-
nal of supervision. While UG cannot achieve the
same effect as parallel data, it is quite useful when
there is a lack of parallel data.

4.2 Different Maximum Span Ratios
As in our approach description, we propose BTLM
and its variant with the goal of mitigating the diffi-
culty of reasoning with insufficient information in
MLM. Although this problem has been noted in the
training of PrLMs such as SpanBERT, in order to
verify this problem’s presence in the UNMT model
and show that our proposed BTLM alleviates this
issue, we explored the effects of different maxi-
mum span ratios γ in UNMT training. The results
are shown in Table 3.

The comparison shows that the higher γ is, the
greater the utilization proportion of the phrases in
the constituent trees is. In CONSTMLM and CON-
STBTLM, when γ is small, the phrases for training
are limited, and therefore, the performance gains
are limited. With increased γ, the utilization pro-
portion increases, but CONSTMLM struggles with
reasoning with insufficient data because too many
spans are masked, and the performance even de-
clines compared to baseline. CONSTBTLM can
adapt to larger γ and higher phrase utilization pro-
portions, it achieves better results.

4.3 Cross-lingual Alignment Evaluation
In order to verify that better alignment in the
UNMT model is obtained using UG and our pro-
posed training approaches, we conducted an ex-
perimental exploration of embedding alignment
according to the experimental settings of (Conneau
and Lample, 2019) and evaluated models on the
SemEval’17 En-De cross-lingual semantic word
similarity task (Camacho-Collados et al., 2017).

Method Cosine sim. L2 dist. Pearson cor.

Concat Fasttext 0.36 4.89 0.52
MUSE 0.38 5.13 0.65

XLM 0.55 2.64 0.69
+ CONSTBTLM‡ 0.60 2.55 0.71

Table 4: Unsupervised cross-lingual alignment evalu-
ation with word embedding Cosine similarity (Cosine
sim.), L2 distance (L2 dist.), and Pearson correlation
(Pearson cor.) between source words and their transla-
tions.

We adopted the same vocabulary size for Concat
Fasttext (Bojanowski et al., 2016), MUSE (Alaux
et al., 2018), and XLM baselines, and our best En-
De UNMT model and extracted the embeddings
for comparison. The results are shown in Table 4.
As the results show, our method is not only bet-
ter than pure embedding training methods, Concat
Fasttest and MUSE, on the three evaluation metrics,
but also surpasses our strong XLM baseline, which
demonstrates that the alignment of the UGUNMT
model is indeed improved with the weak alignment
information from syntactic categories.

4.4 Universal Constituent Labels

To illustrate the universal nature of the phrase gram-
mar, we calculate statistics on the labels of the
constituents in the annotations of each language.
Specifically, the proportions of shared and differing
labels are also calculated. The statistics are shown
in Table 7. The statistical data shows that most
of the grammatical phenomena (constituent labels)
of the three language pairs overlap, and distribu-
tions of these labels are also close across language.
The proportions of common labels in En-De and
En-Zh are greater than that in En-Fr. Although En,
Fr, De, and Zh have their own unique grammati-
cal phenomena, they have greater proportions of
overlapping labels than differing labels. Since En
and Ro are pseudo-constituent labels transformed
from UD, they cannot be directly compared with
En-Fr, En-De, and En-Zh, but they do also have
many similar labels and comparable common label
proportions, indicating the UD annotation’s uni-
versality and the effectiveness of our conversion
in preserving grammatical features. This does not
explain more complicated issues such as language
similarity or commonality but rather indicates the
overlap of grammatical phenomena and universal
features in the annotations and parser predictions.
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4.5 Effects of SpanBERT, LIMIT-BERT, and
CONSTBTLM for UNMT

From the main experiments, the UNMT perfor-
mance is improved, especially for the small-scale
data setting. To find out that if the improvements
are caused by CONSTMLM/CONSTBTLM and the
syntactic information is really necessary, we com-
pare our approaches with LIMIT-BERT which ap-
ply a linguistically guided span based MLM objec-
tive during UNMT training, and SpanBERT which
is with a non-syntax based span masking strategy.
Compared with SpanBERT and LIMIT-BERT in
our UNMT framework, the implementation is rela-
tively simple. By removing the syntactic category
prediction objective in the CONSTMLM enc-only
variant, it is consistent with the objective of LIMIT-
BERT, and further removes the use of the syntactic
parse tree in the span sampling, the same objective
of SpanBERT is achieved.

The results of the comparison are shown in Ta-
ble 7. The use of SpanBERT and LIMIT-BERT
training approaches has resulted in a performance
improvement in translation over the XLM base-
line, which indicates that additional span-based pre-
training is helpful for UNMT. SpanBERT outper-
forms LIMIT-BERT because syntactic annotation
is costly, the fixed-size syntactic parse tree used
severely limits the pre-training with span bound-
aries considered only, while SpanBERT with dy-
namic span mask can get sufficient training. But
in ConMLM, this disadvantage was mitigated by
the introduction of additional syntactic label predic-
tions, and when we used the enc-dec variant, which
is more suitable for encoder-decoder structures, its
performance exceeded SpanBERT. This suggests
that it is not that syntactic information is useless.
With the help of ConstBTLM, a stronger variant,
the UNMT model achieves much better translation
results. This demonstrates that in UNMT training
on the one hand additional pre-training is helpful,
on the other hand, the use of effective means to
integrate the weak alignment information provided
by syntactic parse tress is also beneficial to improve
translation performance.

5 Related Work

UNMT has been greatly developed in recent years
(Artetxe et al., 2018b; Yang et al., 2018; Sun et al.,
2019; Conneau and Lample, 2019; Ren et al., 2019).
Syntax has been used extensively explored in su-
pervised MT research field (Wu et al., 2018; Zhang

Method En-Fr Fr-En

XLM 33.3 31.2

SpanBERT 33.5 31.7
LIMIT-BERT 33.4 31.4
CONSTMLM enc-only 33.6 31.4
CONSTMLM enc-dec 33.9 32.0
CONSTBTLM enc-dec 35.1 33.4

Table 5: UNMT performance on WMT’14 En-Fr test
set with small-scale data setting.

et al., 2019; Currey and Heafield, 2019; Duan et al.,
2019). Zhou et al. (2020b) leveraged syntactic
and semantic spans for MLM to pre-train the lan-
guage model and delivered promising results. Xu
et al. (2020) incorporated syntax information into a
UNMT model by leveraging linearized parse trees
of the training sentences. In this work, we make
the first attempt to use syntactic information as an
auxiliary training objective for UNMT which dif-
fers from the motivation in syntax for supervised
MT. A more detailed related work introduction and
discussion is presented in the Appendix A.3.

6 Conclusion and Future Work

In this paper, we mine weak alignment information
from universal grammar annotations and use it to
improve unsupervised machine translation. Two
specific training approaches, CONSTMLM and
CONSTBTLM, are proposed to apply this weak
supervision. Via empirical exploration on unsu-
pervised and semi-supervised machine translation
benchmarks, we verify that universal grammar will
boost cross-lingual alignment for UNMT. Our anal-
ysis shows that using universal grammar, the re-
liance on parallel corpora can be reduced under the
premise of achieving the same effect because the
weak supervision signal based on universal gram-
mar can play a similar role to the supervision signal
of the parallel corpus.

In this work, we rely on the dependency syntax
of 100+ languages provided by the universal depen-
dency project for synthesizing pseudo-constituent
syntax in some languages. In the future, we intend
to train a multilingual parser based on the multilin-
gual language model – XLM-R (with the training
data as a combination of 10+ language constituent
syntax), which has the ability to parse 100+ lan-
guages in a single model, further increasing the
practicality of our method. In addition, we will
examine more low-resource languages to verify the
method’s universality.
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A Appendix

A.1 Training Procedure

Algorithm 1: Training Procedure
Input: Source Monolingual Data DS ,

Source Monolingual Data DT ,
Source Parse Tree TDS ,
Target Parse Tree TDT ;
Model Parameters θ;
Training Epochs N ;

1 for t = 1, 2, · · · , N do
2 Back-translation Step
3 BS ← Sample(DS);
4 B̂T ← MTS2T(BS);
5 LT2S ← Likelihood(MTT2S(B̂T ),BS);

6 θ
update←− LT2S;

7 BT ← Sample(DT );
8 B̂S ← MTT2S(BT );
9 LS2T ← Likelihood(MTS2T(B̂S),BT );

10 θ
update←− LS2T;

11 CONSTMLM / CONSTBTLM Step
12 BS ,TrS ← Sample(TDS);
13 BM

S ,B
L
S ← Mask(BS ,TrS);

14 if CONSTBTLM then
15 B̂T ← MTS2T(BS);
16 LS ←

Likelihood(MLM([B̂T �BM
S ]),BS)+

Likelihood(LabelPred([B̂T �
BM

S ]),BL
S);

17 else
18 LS ← Likelihood(MLM(BM

S ),BS) +

Likelihood(LabelPred(BM
S ),BL

S);

19 θ
update←− LS;

20 BT ,TrT ← Sample(TDT );
21 B̂T ← MTS2T(BT );
22 if CONSTBTLM then
23 BM

T ,B
L
T ← Mask(BT ,TrT );

24 LT ←
Likelihood(MLM([B̂T �BM

T ]),BT )+

Likelihood(LabelPred([B̂T �
BM

T ]),BL
T );

25 else
26 LT ← Likelihood(MLM(BM

T ),BT ) +

Likelihood(LabelPred(BM
T ),BL

T );

27 θ
update←− LT;

A.2 Parser Training and Evaluation
In this section, we evaluate the performance of
parsers used in this paper on their respective test
sets. Our parsing model is based on the architec-
ture described in (Kitaev and Klein, 2018), a state-
of-the-art multilingual parser. We trained our En
constituent parser with Penn Treebank (Marcus
et al., 1994), Zh parser with Chinese Penn Tree-
bank (Xue et al., 2005), and the Fr and De parsers

Language P R F1 EM

En 95.54 95.12 95.33 53.24
Fr 87.63 87.03 87.33 24.24
De 91.51 88.71 90.09 54.06
Zh 92.16 91.88 92.02 43.97
En∗ 81.69 80.03 80.85 43.81
Ro∗ 79.28 78.69 78.98 24.42

Table 6: Constituent parsing performance on the
test datasets. ∗ indicates models trained using UD-
transformed constituent data.

with the SPMRL 2013/2014 shared task (Seddah
et al., 2013, 2014). Thus, these parsers are also
evaluated on the test datasets of these treebanks or
shared tasks.

Some languages lack well-annotated constituent
treebanks, which adds some difficulty to our re-
search in using universal grammar for UNMT. Uni-
versal Dependencies (UD), however, is a consis-
tent dependency syntactic annotation on more than
100 languages. Dependency treebanks are usually
converted from constituent treebanks, though they
may be independently annotated as well for the
same languages. Constituent trees can be accu-
rately converted to dependency representations us-
ing grammatical rules or machine learning meth-
ods (de Marneffe et al., 2006). Such convertibility
shows a close relation between constituent and de-
pendency representations. Therefore, we consider
transforming the widely annotated UD treebank2

into a constituent treebank for languages that lack
constituent annotations. It is not hard to obtain an
approximate constituent structure from the depen-
dency structure, but the labels change a lot, and
it is also very difficult to train a machine learn-
ing conversion model when the original constituent
annotations are lacking.

In order to address this inconvenience, we pro-
pose converting the dependency structure to the
constituent structure using the HFP. Our UNMT
model does not need a genuine constituent label;
rather, it only needs labels to be consistent across
corpora in different languages. As a result, we use
the relationship between the head word of a con-
stituent and its dependency head as a constituent
label, resulting in a complete annotated constituent
parse tree. Like (Kitaev et al., 2019), we use the
pre-trained language model BERT to enhance the
parser. En uses bert-base-cased, Zh uses bert-
base-chinese, and Fr, De, and Ro use bert-base-

2http://hdl.handle.net/11234/1-3424
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L1,L2 L1 ∩ L2 L1 − L2 L2 − L1

En,Fr 2 (57.84%, 57.50%) 24 (42.16%) 30 (42.50%)
En,De 4 (87.74%, 72.57%) 22 (12.26%) 21 (27.43%)
En,Zh 11 (81.10%, 75.68%) 15 (18.90%) 15 (24.32%)
En∗,Ro∗ 39 (95.69%, 95.15%) 9 (4.31%) 10 (4.85%)

Table 7: Statistics of common and different constituent
labels in different language pairs. ∗ indicates that the
statistics are based on the dataset transformed from UD.
The L1 ∩ L2 column refers to the number of common
constituent labels for languages L1 and L2, and the
proportions of these labels appearing in the respective
datasets are in parentheses. L1 −L2 refers to the num-
ber and proportions of constituent labels that only exist
in language L1, L2 − L1 refers to the number and pro-
portions of constituent labels that only exist in language
L2.

multilingual-cased. The results of the evaluation
on each language data set are shown in Table 6.

A.3 Related Work

Unsupervised machine translation systems have
been developed since Knight et al. (2006). Ravi
and Knight (2011) framed the unsupervised MT
problem as a decipherment task between two lan-
guages. With the development of deep end-to-end
neural network translation and language models,
UNMT has begun to be competitive in transla-
tion benchmarks. Before this development, unsu-
pervised cross-lingual embeddings (Artetxe et al.,
2017; Zhang et al., 2017) and word translation with
parallel data (Lample et al., 2018b) were alterna-
tive approaches to unsupervised machine transla-
tion. (Artetxe et al., 2018a; Lample et al., 2018c)
studied unsupervised training using phrase-based
translation systems. Recently, UNMT has been a
hot research topic in machine translation (Artetxe
et al., 2018b; Yang et al., 2018; Sun et al., 2019;
Conneau and Lample, 2019; Ren et al., 2019; Sun
et al., 2020; Li et al., 2020b). Our work builds on
part of these works in unsupervised machine trans-
lation, but we focus on improving by leveraging
universal grammar.

Grammar information, especially syntax infor-
mation, has always been the focus of research in
the field of machine translation. In statistical ma-
chine translation, syntactic trees were used as the
basis for re-structuring, re-labeling, and re-aligning
(re-ordering) sentences to improve the translation
accuracy (Wang et al., 2010). Based on the type of
linguistic information used, the syntactic SMT can
be divided into four types: tree-to-string, string-

to-tree, tree-to-tree, and hierarchical phrase-based
(Zhang et al., 2008; Nguyen et al., 2008). Our use
of universal grammar to enhance UNMT, from a
motivation perspective, is similar to a tree-to-tree
approach in SMT. Parallel syntactic trees are used
to obtain structure alignment information in tree-
to-tree SMT, while our approach leverages non-
parallel syntactic parsing trees to obtain weak align-
ment information based on our proposed training
objectives in UNMT. In NMT, syntactic informa-
tion is mainly used as features and/or constraints
(regularization). (Eriguchi et al., 2016; Bastings
et al., 2017) augmented the RNN encoder for fea-
ture extraction with an additional syntactic encoder
as in Tree-LSTM (Tai et al., 2015) and GCN (Kipf
and Welling, 2016); and combined this with a stan-
dard RNN decoder. Chen et al. (2018) extended
the local attention in RNN-based NMT with a
syntax-distance constraint that makes the model
focus more on syntactically related source words.
(Wu et al., 2018; Zhang et al., 2019; Currey and
Heafield, 2019; Duan et al., 2019) explored the role
of explicit syntactic information in Transformer-
based NMT. In addition, He et al. (2018); Li et al.
(2018); Zhou et al. (2020a); He et al. (2019); Li
et al. (2021b) also shown a positive effect for other
downstream tasks.

Sharing NMT model parameters with a syntac-
tic parser for multi-task learning is also a popular
approach to obtaining syntactically-aware repre-
sentations (Luong et al., 2016; Dyer et al., 2016;
Eriguchi et al., 2017; Nădejde et al., 2017). The
use of syntax in UNMT research is relatively rare.
Xu et al. (2020) incorporated syntax information
into a UNMT model by leveraging linearized parse
trees of the training sentences. Although all these
works use syntactic information, our motivation is
very different. Unlike other approaches that use
syntax information as a feature or constraint, we
use syntax information to produce a form of weak
supervision that can guide model training. We dif-
fer from multi-task learning approaches combining
syntax and machine translation in that our purpose
is not to predict the syntactic tree but to align text
across languages using syntactic categories, and
we do this through a masking-prediction process of
syntactic constituents.

Pre-trained language models like BERT (Devlin
et al., 2019; Zhang et al., 2020), XLM (Conneau
and Lample, 2019), ALBERT (Lan et al., 2020),
and ELECTRA(Clark et al., 2020) have shown
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strong performance gains in various NLP tasks by
using a self-supervised training task, masked lan-
guage modeling. SpanBERT (Joshi et al., 2020)
was designed to better represent and predict spans
of text and masked random contiguous spans of
text rather than random individual tokens. LIMIT-
BERT (Zhou et al., 2020b) introduced a Syntac-
tic/Semantic Phrase Masking (SPM) for language
pre-training that used linguistically-guided mask-
ing, meaning the spans masked were ensured to
be valid language components. The CONSTMLM
encoder-only version we proposed is essentially the
same as the LIMIT-BERT, but we further proposed
the CONSTMLM encoder-decoder version in order
to adapt to training a UNMT model.

There is an issue with span-based MLM. When
the span selected for masking is too long, the re-
maining words in the sentence are not enough for
the model to infer the masked part, and this training
will be ineffective. SpanBERT and LIMIT-BERT
only account for this issue by limiting the max-
imum length of spans. Inspired by Translation
Language Modeling (TLM) (Conneau and Lam-
ple, 2019), we propose BTLM to address this is-
sue. Though both BTLM and TLM consider cross-
lingual context for inference, TLM uses parallel
corpora for cross-lingual alignment training, while
BTLM bypasses the need for parallel corpora, uses
its translation as cross-lingual context, and only se-
lects input sentences for MLM. MASS (Song et al.,
2019b) and BART (Lewis et al., 2020) adopted
encoder-decoders for model pre-training, and the
encoder-decoder versions of our approaches follow
this schema but with a different aim and motivation.


