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Abstract
Sequence labeling aims to predict a fine-
grained sequence of labels for the text. How-
ever, such formulation hinders the effective-
ness of supervised methods due to the lack
of token-level annotated data. This is exacer-
bated when we meet a diverse range of lan-
guages. In this work, we explore multilin-
gual sequence labeling with minimal super-
vision using a single unified model for mul-
tiple languages. Specifically, we propose a
Meta Teacher-Student (MetaTS) Network, a
novel meta learning method to alleviate data
scarcity by leveraging large multilingual unla-
beled data. Prior teacher-student frameworks
of self-training rely on rigid teaching strate-
gies, which may hardly produce high-quality
pseudo-labels for consecutive and interdepen-
dent tokens. On the contrary, MetaTS allows
the teacher to dynamically adapt its pseudo-
annotation strategies by the student’s feedback
on the generated pseudo-labeled data of each
language and thus mitigate error propagation
from noisy pseudo-labels. Extensive exper-
iments on both public and real-world multi-
lingual sequence labeling datasets empirically
demonstrate the effectiveness of MetaTS1.

1 Introduction

Sequence labeling or tagging is the task of detect-
ing the boundary of all occurring entity mentions
from unstructured text and classifying them into
predefined types, such as Named Entity Recog-
nition (NER) (Chiu and Nichols, 2016), Aspect-
Based Sentiment Analysis (ABSA) (Mitchell et al.,
2013), etc. An entity mention should be a single
word or a sequence of words that contain key in-
formation, such as a person, location, or institution.
In the E-commerce search domain, we need to rec-
ognize product attributes from short queries, such
as product type, brand, size, to better understand
users’ preferences and intents.

1Our code is open-source and available at https://
github.com/amzn/x-metats

1. Ground-truth Labels
[Mackie] [profx6v3] [6-channel] [mixer] [with] [usb]
2. Pseudo-Labels (Choice #1)
[Mackie] [profx6v3 6-channel]7 [mixer with usb]7
3. Pseudo-Labels (Choice #2)
[Mackie] [profx6v3] [6-channel] [mixer] [with usb]7

Table 1: Ground-truth labels and noisy pseudo-labels
for an English query NER example. We use colors
to denote the entity type and use brackets to indicate
the entity boundary. Entity labels: Brand, ProductLine,
Size, ProductType, NonContent, Misc.

Despite recent advances in deep learning models
for sequence labeling (Huang et al., 2015; Raganato
et al., 2017), they still rely on massive labeled data.
Nonetheless, the sequence labeling tasks usually
lie in the low-data regime due to costly and labor-
intensive human annotation for token-level labels,
especially for a variety of languages (Xie et al.,
2018), as search engines or social networks usually
cover a diverse range of countries and locales us-
ing different languages. In this paper, we attempt
to explore a unified multilingual sequence label-
ing model with minimal supervision, where each
language only has limited labeled data.

The emergence of multilingual pre-trained lan-
guage models (mPLMs) such as mBERT (Devlin
et al., 2019) and XLM (Conneau and Lample,
2019) have enabled breakthroughs on various mul-
tilingual NLP tasks. However, it has been re-
cently noted that mPLMs are not data-efficient
and typically require sufficient fine-tuning data for
superior performance on downstream tasks. To
mitigate data scarcity, Semi-Supervised Learning
(SSL) (Chapelle et al., 2009) has been a promis-
ing paradigm that allows us to take advantage
of large-scale unlabeled multilingual data. Self-
training (Scudder, 1965) stands out among the
SSL approaches, in which a teacher model pro-
duces pseudo-labels for unlabeled examples, and
a student model learns from these examples with
generated pseudo-labels. Self-training has shown

https://github.com/amzn/x-metats
https://github.com/amzn/x-metats
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promising results in instance-level tasks, e.g., im-
age classification (Tarvainen and Valpola, 2017;
Xie et al., 2020b). However, a major research chal-
lenge that dictates the success of self-training is
the well-known confirmation bias problem (Arazo
et al., 2020), which results in progressive drifts
on the noisy pseudo-labeled data provided by the
teacher. This problem is more pronounced in se-
quence labeling (Ruder and Plank, 2018), as com-
plicated dependencies between tokens pose tremen-
dous challenges towards the rigid teaching strate-
gies, e.g., the fixed teacher (Lee et al., 2013) or
the periodically synchronizing teacher (Liang et al.,
2020), to generate accurate pseudo-labels for con-
secutive and interdependent tokens.

To encourage the teacher to generate better
pseudo-labels for multilingual sequence label-
ing, we propose a novel Meta Teacher-Student
(MetaTS) network, where the teacher learns dynam-
ically and continuously from the student’s feedback
to adapt its teaching strategies, i.e., the pseudo-
annotation choices. Concretely, given a language
for each step, the student network will be updated
based on the pseudo-labeled data produced by the
teacher. To quantitatively measure how well the
teacher generates these pseudo-labels at the cur-
rent step, we will evaluate the difference between
the student performance after the update using the
pseudo-labeled data of the language and that before
the update. The improvement or degradation of the
student performance can be used as the feedback to
meta-optimize the teacher network (a.k.a. learning
to learn (Finn et al., 2017)).

Consider an example in Table 1. Pseudo-labels
(choice #2) are closer to the ground-truth labels of
the sentence than pseudo-labels (choice #1). Better
pseudo-annotation strategies by the teacher lead
to more accurate pseudo-labels (e.g., choice #2 in
Table 1), thus boosting the student’s performance
on the labeled data. As such, the proposed MetaTS
method learns to teach the student with better token-
level pseudo-labels and alleviates the serious con-
firmation bias problem in sequence labeling. Em-
pirically, extensive experiments on both the pub-
lic multilingual Open-domain NER dataset (Tjong
Kim Sang, 2002a,b), multilingual E2E-ABSA chal-
lenge benchmark (Pontiki et al., 2014) and a real-
world large-scale multilingual E-commerce NER
dataset have demonstrated the effectiveness of the
MetaTS method.

Overall, our contributions can be summarized

as follows: (1) we explore a unified and effective
multilingual sequence labeling setting with mini-
mal supervision required; (2) we propose a novel
MetaTS framework to alleviate the confirmation
bias problem via learning from the student’s feed-
back to generate better fine-grained pseudo-labels;
(3) we conduct extensive experiments that verify
the effectiveness of MetaTS.

2 Preliminaries

2.1 Sequence Labeling (SL)

Sequence labeling is the process of identify-
ing (boundary) and categorizing (type) entities
in text into a predefined entity set C. For-
mally, given a sentence X=[x1, x2, ..., xN ] with
N tokens, the goal is to predict a tag sequence
Y=[y1, y2, ..., yN ], where yn ∈ C (n ∈ [1, N ]).
Based on the BIO schema (Li et al., 2012), the first
token of an entity mention with type X is labeled as
B-X; the remaining tokens inside that entity men-
tion are labeled as I-X; and the non-entity tokens
are labeled as O.

Low-Resource Multilingual SL Suppose that
there are R languages L = [l1, l2, .., lR]. For each
language li, there are only a small amount of la-
beled data {(Xli

m,Y
li
m)}M li

m=1 and large unlabeled
data {X̃li

m}M̃
li

m=1, where M li�M̃ li . Our goal aims
to train a unified supervised multilingual model that
can achieve better performance on all languages in
the low-resource setting.

2.2 Multilingual Pre-trained Language
Model (mPLM)

The emergence of mPLMs, such as mBERT (De-
vlin et al., 2019), XLM (Conneau and Lample,
2019) and mUnicoder (Yang et al., 2020), has led
to significant performance gains on various mul-
tilingual NLP tasks (Hu et al., 2020). mPLMs
leverage self-supervised learning on a large-scale
multilingual unlabeled corpus, which treats shared
word piece tokens as the anchor across languages
to produce weakly-aligned multilingual represen-
tations. These multilingual contextualized embed-
dings are versatile and can substantially benefit
downstream tasks. However, mPLMs are trained
on open-domain data and lack adaptivity to a spe-
cific domain in the low-data regime (Huang et al.,
2019). Thus, it is critical to exploit enormous un-
labeled data for the downstream tasks to achieve
task-aware adaptation.
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Figure 1: The framework of the Meta Teacher-Student Network (MetaTS).

2.3 Teacher-Student Network

The teacher-student (TS) network is a classic ar-
chitecture widely used in self-training (Scudder,
1965), where the student model has a similar or
higher capacity than the teacher, and knowledge
distillation (Hinton et al., 2015) where the student
model is smaller than the teacher. Mathematically,
let T and S respectively be the teacher and stu-
dent network, parameterized by θT and θS . We
use f(X;θT ) and f(X;θS) denote the entity label
predictions of the sentence X by the teacher and
student, respectively. Then the knowledge transfer
is usually achieved by minimizing the loss between
the predictions from the teacher and student:

L(f(X;θT ), f(X;θS)), (1)

where f(X;θT ) can be a soft target or converted to
a hard target as the pseudo-labels. L is the transfer
loss to enforce the consistency between the teacher
and the student probability distributions, such as
Cross-Entropy (CE) loss, Kullback-Leibler (KL)
divergence loss, or Mean Square Error (MSE).

3 Method

3.1 Meta Teacher-Student Network

Inspired by the teacher-student interaction mecha-
nism, we propose a meta teacher-student (MetaTS)
network for low-resource multilingual sequence
labeling. Our ultimate goal lies in learning from
large-scale multilingual unlabeled data based on

pseudo-labels to mitigate the shortage of labeled
data for token-level classification. The framework
of MetaTS is illustrated in Figure 1.

3.2 Student Network
Given a language li, recall that there are lim-
ited labeled data {(Xli

m,Y
li
m)}M li

m=1 and large
unlabeled data {X̃li

m}M̃
li

m=1. The student net-
work learns the distilled knowledge of unla-
beled data from the teacher, which behaves as
the teacher’s predictions on unlabeled sequences
{X̃li

m=[x̃lim,1, x̃
li
m,2, ..., x̃

li
m,N ]}M̃ li

m=1. At the t-th it-
eration, the teacher model generates hard pseudo-
labels {Ỹli,(t)

m =[ỹ
li,(t)
m,1 , ỹ

li,(t)
m,2 , ..., ỹ

li,(t)
m,N ]}M̃ li

m=1 by

ỹli,(t)m,n = arg max
c
fn,c(X̃

li
m;θ

(t)
T ), (2)

where fn,c denotes the probability of the n-th to-
ken belonging to the c-th class and c∈C. θ(t)

T is
the teacher’s parameters at the t-the step. Then
we achieve the knowledge transfer of Eq. (1) by
minimizing the student’s loss LS on these hard
pseudo-labels

θ
(t+1)
S =argmin

θ

1

M̃ li

M̃li∑
m=1

`(Ỹli,(t)
m , f(X̃li

m;θ
(t)
S )), (3)

where ` is the cross-entropy loss. θ(t)
S and θ

(t+1)
S

are the parameters of the student before and after
the update at the t step, which will be used for the
meta-learning of the teacher in the next section.
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3.3 Teacher Network

The teacher network is jointly optimized by three
objectives: a supervised learning loss Lsup, a semi-
supervised regularization loss Lreg, and a meta-
learning loss Lmeta, i.e.,

LT = Lsup + Lreg + Lmeta,

Supervised learning The supervised loss Lsup on
the labeled data is defined as

Lsup =
1

M li

M li∑
m=1

`(Yli
m, f(Xli

m;θ
(t)
T )). (4)

Semi-supervised regularization The regulariza-
tion loss Lreg alleviates the overfitting of the
teacher to limited labeled data by enforcing the
prediction consistency between the original and
augmented unlabeled samples (Xie et al., 2020a).
However, in the text domain, 1) data augmenta-
tion techniques are much more difficult to main-
tain the original word or sentence semantics com-
pared with those in the vision domain; 2) external
text augmentations are very tedious and usually
unavailable for multilingual corpus, especially for
low-resource languages. Thus, we do not explicitly
augment the sentence but instead propose to add
random Gaussian noisesG(0,σ2) to the BERT em-
bedding of each token to increase the diversity of
the sentence. We name it as virtual data augmen-
tation. Let zm,n∈R|C| denote the soft prediction
fn(X̃li

m;θ
(t)
T ) of the teacher on the n-th token of

X̃li
m. zGm,n∈R|C| is the soft prediction of the same

token with Gaussian noises G. Thus, we have

Lreg =− 1

M liN

M li ,N∑
m,n=1

I(zmax
m,n )

zm,n

τ
log zGm,n,

where τ is a temperature factor to control the
smoothness. zmax

m,n denotes the max probability
over C classes, i.e., arg maxc zm,n. I is an indi-
cator function used to mask the token with low
prediction confidence, i.e., I(z) amounts to 1 if
z>ε, otherwise 0, where ε∈(0, 1) is a threshold.
Meta learning The meta loss Lmeta aims to en-
force the teacher to learn from the student’s feed-
back on the current pseudo-labels in order to ad-
just its pseudo-annotation strategies, which is also
known as learning to learn. To quantitatively mea-
sure the quality of the current pseudo-labels, we
evaluate the student’s performances (loss) on the

labeled data before and after the update, i.e., θtS
and θt+1

S as defined in Eq. (3),

L
li ,(t)
S,lab =

1

M

Mli∑
m=1

`(Yli
m, f(Xli

m;θ
(t)
S )),

L
li ,(t+1)
S,lab =

1

M

Mli∑
m=1

`(Yli
m, f(Xli

m;θ
(t+1)
S )).

The difference between L
li ,(t+1)
S,lab and L

li ,(t)
S,lab, i.e.,

λlimeta =L
li ,(t+1)
S,lab −L

li ,(t)
S,lab can be used as a dynamic

feedback or reward function to meta-optimize the
teacher network towards the direction that gener-
ates better pseudo-labels for the language li. If
the pseudo-labels at the t-th step can improve the
student network, then λlimeta will be negative, and
positive vice versa. Thus, the meta loss Lmeta is
defined as:

Lmeta =
λlimeta

M̃ li

M̃ li∑
m=1

`(Ỹli,(t)
m , f(X̃li

m;θ
(t)
T )).

where Ỹ
li,(t)
m is the pseudo-labels for the language

li produced by the teacher at the t-th step.

3.4 Alternating Training
During the teacher-student interaction stage, we al-
ternately train the student network and the teacher
network by minimizing LS and LT separately for
each language. As such, the teacher and student
can achieve mutual learning, i.e., at this stage, the
student will only learn from the multilingual un-
labeled data with pseudo-labels produced by the
teacher, and meanwhile, the teacher will also ad-
just its pseudo-annotation strategy according to
the feedback from the student. After distilling the
knowledge from the teacher to teach the student
network, we finally take the student model fine-
tuned on the multilingual labeled data as the final
model for evaluation.

4 Experiment

4.1 Datasets
We consider the following three multilingual se-
quence labeling datasets for experiments, of which
the statistics of the datasets are shown in Table 3.
(i) Multilingual Open-domain NER is a open-
domain NER dataset from CoNLL02 (Tjong
Kim Sang, 2002a) and CoNLL03 (Tjong Kim Sang,
2002b) NER shared tasks, containing English (En),
Spanish (Es), German (De) and Dutch (Nl) with
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Hyper-parameter Dataset
O-NER E2E-ABSA E-NER

batch size 8 8 64
learning rate 1−5 1−5 5−5

noise variance σ2 0.01 0.001 0.01
temperature τ 0.7 0.7 0.7

threshold ε 0.6 0.6 0.6

Table 2: Settings of hyper-parameters.

4 entity types: person, location, organization, and
miscellaneous.
(ii) Multilingual E2E-ABSA is an ABSA bench-
mark from SemEval ABSA challenge (Pontiki
et al., 2014). We follow the settings of End-to-
End Aspect-based Sentiment Analysis (Mitchell
et al., 2013; Zhang et al., 2015), which jointly ex-
tracts aspect terms and the associated sentiments
using a unified tagging scheme. It consists of En-
glish (En), French (Fr), Spanish (Es), Turkish (Tr),
Dutch (Nl) and Russian (Ru) with 3 entity types:
positive, neutral, and negative.
(iii) Multilingual E-commerce NER is a real-
world large-scale query NER dataset used for E-
commerce. The queries are collected from a shop-
ping website, including English (En), German (De),
Spanish (Es), French (Fr), Italian (It), Japanese (Jp),
Chinese (Zh), Czech (Cs), Dutch (Nl), Polish (Pl),
Portugal (Pt), Turkish (Tr) with 13 entity types.

4.2 Setting
For the low-resource setting, we only use 1%, 10%,
1% randomly sampled training data as the labeled
data for each language of the open-domain NER,
E2E-ABSA, and E-commerce query NER datasets,
respectively. And we treat the remaining training
data as the unlabeled data. This results in tens to
thousands of labeled data for each language. We
use the span-level micro F1-score (exact match)
as the evaluation metrics.

5 Implementation details

Experimental Environment Our MetaTS model
and baseline methods are all using Pytorch 1.7.0
based on CUDA 11.0, Amazon EC2 virtual ma-
chine with 8 NVIDIA A100-SXM4-40GB GPUs,
and are tested on Linux, Python 3.7.6 from Ana-
conda 4.8.4.
Encoder We use the mBERT-base model: bert-
base-multilingual-cased2 model pre-trained on 104

2https://github.com/huggingface/
transformers

Dataset #Train #Dev #Test #Type %Coverage #Avg len
Multilingual Open-domain NER (long-text)

En 14041 3250 3453 4 16.72 14.50
Es 8323 1915 1517 4 8.11 17.03
De 12152 2867 3005 4 12.39 31.81
Nl 15806 2895 5195 4 9.52 12.82

Multilingual E2E-ABSA (long-text)
En 1600 400 676 3 8.97 14.55
Fr 1332 332 696 3 7.78 17.50
Es 1656 414 881 3 7.23 16.38
Tr 986 246 144 3 6.51 14.75
Nl 1378 344 575 3 8.06 14.20
Ru 2924 731 1209 3 15.13 10.15

Multilingual E-commerce NER (short-text)
En 256571 14193 14269 13 98.87 3.20
De 98980 5442 5473 13 95.49 2.76
Es 63844 3600 3488 13 99.05 3.76
Fr 79176 4383 4504 13 98.91 3.16
It 52136 2933 2867 13 99.04 3.51
Jp 77457 4422 4365 13 98.65 2.48
Zh 22467 1238 1247 13 98.51 2.51
Cs 4430 272 252 13 93.66 4.26
Nl 8562 423 478 13 97.09 2.87
Pl 4489 251 229 13 92.19 4.38
Pt 4467 273 247 13 99.45 2.47
Tr 5093 267 274 13 99.52 2.32

Table 3: Data statistics. Type and Coverage denote the
number of entity type and the ratio of non-O entity.

languages as the encoder, which has 12 layers, 768-
d hidden size, 12 heads and 110M total parameters.
The hidden states of the last layer of the model are
used as the token representations for token-level
label prediction. The mBERT is jointly optimized
with other parameters during the training stage.
Initialization & Training For all the experi-
ments, the model is optimized by the Adam al-
gorithm (Kingma and Ba, 2015) for training. The
weight matrices are initialized with a uniform distri-
bution U(−0.01, 0.01). Gradients with the 1 norm
larger than 40 are normalized to be 1. To allevi-
ate overfitting, we perform early stopping on the
validation set during both the teacher-student inter-
action and finetune stages.
Hyperparameter For the all three multilingual
sequence labeling datasets, the hyper-parameters
are manually tuned on 10% randomly held-out la-
beled training data (downsampled version) of the
all languages. The initial learning rate for Adam is
tuned amongst {10−5, 2×10−5, 3×10−5, 5×10−5,
10−4}. The batch size is tuned amongst {8, 16,
32, 64}. The Gaussian noise variance σ2 is tuned
amongst {0.001, 0.01, 0.1, 1.0} and we have found
that when σ2 is larger than 0.01, the model will
collapse. This is reasonable since too large σ2 can
bring in unbearable noises that the model itself
cannot denoise. The temperature factor τ is tuned

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


3188

amongst {0.5, 0.6, 0.7, 0.8, 0.9}. The threshold
ε is tuned amongst {0.5, 0.6, 0.7, 0.8, 0.9}. For
both the teacher and the student network, we use
label smoothing for Eq. (2) and Eq. (4) with the
smoothing factor 0.15. We use 128 as the maxi-
mum sentence length for all datasets. The detailed
hyperparameters are listed in Table 2.

5.1 Baselines

We compare our model with different groups of
baseline methods to verify the effectiveness.
• Fully-supervised. (i) mBERT (Single) fine-
tunes a mBERT on the sampled labeled data for
each language; (ii) mBERT (Multi) fine-tunes a
mBERT on the sampled labeled data of all lan-
guages; (iii) mBERT (Full) uses the full labeled
data of all languages to fine-tune a mBERT, which
is usually regarded as the upper bound.
• Semi-supervised. (i) MT (KL/MSE)3 (Tar-
vainen and Valpola, 2017) uses Mean Teacher, an
ensemble method to average student model weights
and forms a teacher model using KL divergence or
mean square error to force the prediction consis-
tency. (ii) VAT4 (Miyato et al., 2018; Chen et al.,
2020b) is a regularization method which adopts
virtual adversarial training to smooth the output
distribution to make the model robust to noise.
(iii) NoisyStudent5 (Xie et al., 2020b) extends
the idea of self-training and distillation with the
use of noise added to the student during learning.
(iv) BOND (hard/soft/soft-high)6 (Liang et al.,
2020) employs a state-of-the-art TS framework of
self-training with hard pseudo-labels, soft pseudo-
labels (Xie et al., 2016), as well as the proposed soft
pseudo-labels on selected high confidence tokens.
For a fair comparison, we use the mBERT as the
base encoder for all baselines.

5.2 Main Results

5.2.1 Multilingual Academic Benchmarks
We present the the main results on multilingual
academic datasets for open-domain NER and E2E-
ABSA in Table 4 and Table 5, respectively. Based
on the results, we can observe:
•MetaTS: MetaTS significantly and consistently
outperforms all baseline methods for all languages

3https://github.com/CuriousAI/
mean-teacher

4https://github.com/takerum/vat_tf
5https://github.com/google-research/

noisystudent
6https://github.com/cliang1453/BOND

Method (Span F1) En Es De Nl Avg ∆

Fully-supervised Baselines (1% labeled data)
mBERT (Single) 83.03 75.62 67.31 73.67 74.91 (+5.91)
mBERT (Multi) 82.54 79.90 73.32 79.78 78.88 (+1.94)

Semi-supervised Baselines (1% labeled data)
MT (KL) 83.52 77.99 73.40 80.71 78.91 (+1.91)

MT (MSE) 84.25 79.45 73.95 79.98 79.46 (+1.36)
VAT 83.70 78.27 73.02 81.00 79.00 (+1.82)

NoisyStudent 82.54 79.21 71.08 78.38 77.80 (+3.02)
BOND (hard) 82.75 78.31 75.74 80.29 79.27 (+1.55)
BOND (soft) 85.26 78.39 75.21 78.40 79.32 (+1.50)

BOND (soft-high) 84.62 79.87 72.68 80.31 79.37 (+1.45)
MetaTS (Ours) 85.67† 80.05 76.23† 81.31† 80.82† -

Upper Bound (100% labeled data)
mBERT (Full) 90.34 85.99 81.66 89.43 86.85 -

Table 4: The results (%) on multilingual open-domain
NER. ∆ refers to the improvements. † means the statis-
tically significant improvement over the best baseline
with paired sample t-test p < 0.01.

Method (Span F1) En Fr Es Tr Nl Ru Avg ∆

Fully-supervised Baselines (10% labeled data)
mBERT (Single) 49.39 40.89 52.38 27.75 38.06 44.12 42.10 (+10.50)
mBERT (Multi) 55.85 47.61 58.37 29.24 46.51 46.15 47.29 (+5.31)

Semi-supervised Baselines (10% labeled data)
MT (KL) 56.64 47.06 60.76 28.38 46.80 49.56 48.20 (+4.40)

MT (MSE ) 54.56 48.53 60.88 30.65 47.26 50.28 48.69 (+3.91)
VAT 54.12 46.03 58.84 33.99 46.47 50.35 48.30 (+4.30)

NoisyStudent 55.90 47.13 56.89 34.92 47.53 49.11 48.58 (+4.02)
BOND (hard) 57.36 48.84 59.71 36.62 46.98 48.56 49.68 (+2.92)
BOND (soft) 56.34 50.40 61.95 33.78 50.62 48.14 50.21 (+2.39)

BOND (soft-high) 56.70 49.74 61.08 35.62 47.48 51.42 50.34 (+2.26)
MetaTS (Ours) 59.45† 54.29† 62.90† 37.15† 50.27 51.51 52.60† -

Upper Bound (100% labeled data)
mBERT (Full) 61.54 57.76 65.80 43.11 58.19 56.44 57.14 -

Table 5: The results (%) on multilingual E2E-ABSA.

of two sequence labeling tasks by a large margin
(NER: +1.36% Avg gain over MT (MSE), E2E-
ABSA: +2.26% Avg gain over BOND (soft-high)).
• Supervised: (i) Supervised baselines perform
much worse than semi-supervised baselines. This
demonstrates that even with mPLMs like mBERT,
supervised learning cannot achieve satisfactory re-
sults in the low-data regime. (ii) mBERT (Multi)
significantly beats mBERT (Single), which shows
that the joint usage of labeled data from multiple
languages is better than each monolingual model
when supervision signals are insufficient.
• Semi-supervised: (i) By leveraging large un-
labeled data, semi-supervised baselines can ob-
tain considerable improvements. (ii) Our proposed
MetaTS method can still outperform those semi-
supervised baselines based on the traditional TS
framework. This indicates our meta teacher-student
learning paradigm can capture more underlying
treasures from the unlabeled data, which can learn
to adjust pseudo-annotation strategies by taking
advantage of the student’s learning feedback.

https://github.com/CuriousAI/mean-teacher
https://github.com/CuriousAI/mean-teacher
https://github.com/takerum/vat_tf
https://github.com/google-research/noisystudent
https://github.com/google-research/noisystudent
https://github.com/cliang1453/BOND
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Method (Span F1) En De Es Fr It Jp Zh Cs Nl Pl Pt Tr Avg ∆

Fully-supervised Baselines (1% labeled data)
mBERT (Single) 61.83 57.47 57.62 52.27 57.35 46.80 49.11 41.56 36.31 46.57 21.29 36.84 47.41 (+10.75)
mBERT (Multi) 62.07 61.63 63.48 57.90 63.65 49.73 55.62 50.89 52.98 61.89 35.07 54.10 55.94 (+2.22)

Semi-supervised Baselines (1% labeled data)
MT (KL) 61.38 61.25 63.11 57.38 62.33 49.05 56.02 51.26 54.60 60.86 34.27 55.15 55.73 (+2.43)

MT (MSE) 61.54 63.26 63.77 58.73 64.22 49.52 57.46 56.95 53.81 62.83 33.47 56.01 56.94 (+1.22)
VAT 60.73 61.50 61.84 57.21 62.58 49.02 55.23 51.88 54.71 59.02 35.74 56.26 55.64 (+2.52)

NoisyStudent 62.24 62.81 63.29 58.30 63.71 49.55 54.87 55.05 56.05 62.05 34.91 54.99 56.66 (+1.50)
BOND (hard) 62.38 62.61 64.19 58.67 63.43 49.23 54.48 55.21 54.96 61.77 37.47 53.96 56.67 (+1.49)
BOND (soft) 62.61 62.03 63.29 57.34 63.38 48.68 54.25 56.26 54.24 61.78 34.72 56.15 56.45 (+1.71)

BOND (soft-high) 62.46 61.87 63.95 57.61 63.60 50.19 57.35 51.67 55.11 62.61 35.96 54.91 56.67 (+1.49)
MetaTS (Ours) 63.79† 63.78† 64.77† 60.02† 65.04† 51.81† 58.34† 57.74† 54.59 64.41† 33.96 57.84† 58.16† -

Upper Bound (100% labeled data)
mBERT (Full) 76.51 76.21 77.83 73.08 78.75 67.99 73.73 72.86 75.89 80.64 65.60 73.17 74.36 -

Table 6: The results (%) on multilingual E-commerce NER.

Model O-NER E2E-ABSA E-NER
MetaTS 80.82 52.60 58.16
MetaTS w/o Lreg 79.90 52.28 56.50
MetaTS w/o Lmeta 79.83 50.35 56.23
MetaTS w/ Soft labels 79.73 47.51 56.71
MetaTS w/ Soft-high labels 78.57 45.62 55.41

Table 7: Ablation results (%): average span-level micro
F1-score over all the languages for each dataset.

5.2.2 Multilingual Industrial Dataset

We present the main results on the multilingual in-
dustrial dataset for E-commerce NER in Table 6.
Compared with widely-used benchmark datasets in
the academia, this industrial dataset, as illustrated
in Table 3, behaves more challenging in terms of:
(i) large label space: there are much more (13) en-
tity types, bringing in a significant difficulty for the
prediction; (ii) high entity coverage: almost all to-
kens in the user query are tagged with a non-O tag
(>90% coverage rate) (in low-coverage datasets,
high-performance does not mean the model can
well identity the entities due to the high O pro-
portion (Zhou et al., 2019)); (iii) short text: the
user queries are usually short, which lack suffi-
cient contextual information for context-dependent
token-level prediction; (iv) data imbalance: the
labeled data among different language are very
skewed, closer to the real-world data distribution
of high-resource and low-resource languages; (v)
large-scale data size: this dataset has much more
data (about 700k) than existing public datasets.
Even involving so many challenges for this dataset,
MetaTS can still achieve significant improvements
over all the baseline methods on most languages.
This shows more convincing evidence that MetaTS
generates more high-quality pseudo-labels for even
short-text data in a large label space via the meta
teacher-student learning paradigm.

Figure 2: Average micro span-level F1 w.r.t proportions
of the labeled training data for each language.

5.3 Ablation Results

To verify the efficacy of each component, we com-
pare MetaTS with its ablation variants in Table 7.
w/ Lreg v.s. w/o Lreg: For MetaTS w/o Lreg, we re-
move the regularization loss Lreg on the unlabeled
multilingual data for the teacher. We can observe
that there are remarkable performance drops on all
three datasets. This indicates that it works better
when the teacher is jointly trained with other aux-
iliary tasks such as the virtual data augmentation
since it can enhance the prediction confidence of
the teacher towards the unlabeled data.
w/ Lmeta v.s. w/o Lmeta: For MetaTS w/o Lmeta, we
remove the meta loss Lmeta for the teacher. That is,
we discard the instant feedbacks from the student
on the generated pseudo-labels, so that the teacher
cannot dynamically adjust its pseudo-annotation
strategy. As such, MetaTS w/o Lmeta has demon-
strated significant degradation. Besides, we can
also conclude that the meta-learning loss con-
tributes more to our performance improvements.
Hard labels v.s. Soft labels: Compared with uti-
lizing hard pseudo-labels to teach the student, we
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Input Sentence & Ground-truth Labels Self-Training Labels MetaTS Labels
Open-domain NER (ORG, LOC, PER, MISC) ,

1. The years I spent as manager of the [Republic of
Ireland] were the best years of my life .

[Republic of Ireland]7 [Republic of Ireland]

2. His father [Clarence Woolmer] represented [United
Province] , now renamed [Uttar Pradesh] , in [India]
’s [Ranji Trophy] national championship.

[Clarence Woolmer]
[United Province]7
[Uttar Pradesh]
[India]7 [Ranji Trophy]

[Clarence Woolmer]
[United Province]
[Uttar Pradesh]
[India] [Ranji Trophy]

E2E-ABSA: (POS, NEG, NEU)
3. I liked the [atmosphere] very much but the [food]
was not worth the price .

[atmosphere] [food]7 [atmosphere] [food]

4. Not the biggest [portions] but adequate . None7 [portions]
E-commerce NER: (Brand, ProductType, Size, ProductLine, VisualFeature)

5. [samsung] [tab] [4 t 231][scratch guard] [samsung] [tab]7 [4 t
231]7 [scratch guard]

[samsung] [tab] [4 t
231] [scratch guard]

6. [half and half ] [wigs] [half and half ]7 [wigs] [half and half ] [wigs]

Table 8: Case analysis for three multilingual sequence labeling datasets.

observe that soft pseudo-labels (Xie et al., 2016)
can substantially hurt the model performance and
lower the convergence speed, even worse after high
confidence selection (Liang et al., 2020) is intro-
duced. This circumstance has also been shown
in prior study (Kumar et al., 2020). We hypothe-
size that such performance drops may be attributed
to soft pseudo-labels being noisier than sharpened
hard pseudo-labels in meta-learning.

5.4 Impact of Labeled-Unlabeled Ratio

To investigate the effect of the labeled-unlabeled
data ratio, we vary the labeled proportion of each
language’s training set and compare MetaTS with
mBERT (Multi), MT (MSE), and BOND (soft-
high). We use the average span-level micro F1
score over all languages of the multilingual E2E-
ABSA dataset and change the labeled proportion
from 0.1, 0.2, 0.3, 0.4 to 0.5. Since the remaining
training data is treated as the unlabeled data, the
corresponding labeled-unlabeled ratios are from
1:9, 1:4, 3:7, 2:3 to 1:1. As shown in Figure 2,
the gap between the MetaTS and all baseline meth-
ods grows as the labeled-unlabeled ratio shrinks.
Semi-supervised baselines MT (MSE) and BOND
(soft-high) show marginal improvements over the
supervised learning method mBERT (Multi) and
even perform worse when the labeled size becomes
large. This verifies that the MetaTS is much less
sensitive to the drop in the labeled proportion for
each language by making effective use of the large
amounts of multilingual unlabeled data.

5.5 Pseudo-Labeling Visualization

To qualitatively demonstrate that MetaTS can gen-
erate better token-level pseudo-labels that involve
complicated dependency relations, we perform the
pseudo-labeling visualization of ground-truth la-
bels, self-training (BOND) pseudo-labels, and our
MetaTS model pseudo-labels for three datasets we
used. As illustrated in Table 8, we only show some
English cases for easy understanding, although we
also observe our consistent advantages in many
other languages (This is quantitatively verified by
Section 5.2 Main Results).

As we can see, traditional teacher-student frame-
works with self-training cannot handle the token
pseudo-labeling in complicated contexts, including
(1) entities of ambiguity: the entities have ambigu-
ous semantics, which can denote different types in
light of their surrounding contexts. For example,
in the open-domain NER, self-training usually con-
fuses organization (ORG) with location (LOC) as
a sequence of misclassifying Republic of Ireland
(Case#1) as LOC due to the location word “Ireland”.
In the E-commerce NER, half and half (Case#6) is
used to describe the visual features of wigs instead
of the size; (2) entities in the transition context:
the entities before and after the transition may have
contrastive meanings. For example, the user ex-
presses a positive sentiment towards atmoshpere
but a negative sentiment to food (Case#3). (3) high
entity coverage: most of tokens in the sentence are
truly entities instead of O. For example, in Case#2
and Case#5, self-training cannot identify the cor-
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rect types for all occurring entities. (4) entity miss-
ing: self-training may not be able to capture the
entities like protions in the Case#4. In contrast,
our proposed MetaTS can demonstrate more ro-
bustness to these challenges, attributed to the meta
teacher-student learning paradigm that can adjust
teacher’s pseudo labeling strategies according to
the student’s instant feedback.

6 Related Works

6.1 Multilingual Sequence Labeling

Most recent works on multilingual sequence label-
ing focus on improving the cross-lingual transfer-
ability for different languages (Täckström, 2012;
Fang et al., 2017; Enghoff et al., 2018; Xie et al.,
2018; Rahimi et al., 2019; Johnson et al., 2019; Wu
et al., 2020a,b,c; Li et al., 2020a). Cross-lingual
transfer (Li et al., 2020b) aims to leverage knowl-
edge from source languages to improve the perfor-
mance in target languages only, which puts more
emphasis on how to reduce the language distribu-
tion gaps due to the lack of labeled data for target
languages. Besides, each target language usually
requires training an individual model. This be-
haves particularly resource consuming. On the
contrary, our goal is to improve all languages’ per-
formance using a unified model. Only a few stud-
ies have explored building a unified multilingual
model with enough labeled data to handle multiple
languages (Wang et al., 2020a). Different from that,
we explore a motivated and challenging multilin-
gual setting with minimal supervision.

To alleviate the data-sparsity issue, various ad-
vanced techniques have emerged, such as transfer
learning (Pan and Yang, 2009), semi-supervised
learning (Mishra and Diesner, 2016; He and Sun,
2017; Chen et al., 2018; Wang et al., 2020b; Bhat-
tacharjee et al., 2020; Chen et al., 2020b), domain
adaptation (Li et al., 2017, 2018, 2019b,a), and
data augmentation (Dai and Adel, 2020; Chen et al.,
2020a; Ding et al., 2020). Considering the multi-
lingual setting, data augmentation may be infeasi-
ble and could bring in external knowledge errors.
Semi-supervised learning has shown promising
results in instance-level classification tasks (Tar-
vainen and Valpola, 2017; Miyato et al., 2018; Xie
et al., 2020b) but less effectiveness in more compli-
cated token-level classification.

6.2 Meta Learning

Inspired by human beings’ ability to adapt and
transfer knowledge from previous tasks, meta learn-
ing (Finn et al., 2017; Nichol et al., 2018; Pham
et al., 2020; Yao et al., 2019, 2021) has been ini-
tiated on low-resource NLP, such as text classi-
fication (Yu et al., 2018; Wu et al., 2019; Geng
et al., 2019; Sun et al., 2019; Geng et al., 2020;
Bao et al., 2020), relation classification (Han et al.,
2018; Gao et al., 2019; Obamuyide and Vlachos,
2019), slot tagging (Hou et al., 2020), event detec-
tion (Deng et al., 2020), and natural language un-
derstanding (NLU) (Dou et al., 2019). Considering
multilingualism, only a few works have explored
meta learning to improve the cross-lingual trans-
ferability of low-resource languages, e.g., text clas-
sification (Li et al., 2020b), NLU (Nooralahzadeh
et al., 2020), NER (Wu et al., 2020c), and machine
translation (Gu et al., 2018). On the contrary, our
ultimate goal is to utilize meta learning to better
leverage multilingual unlabeled data for boosting
all languages’ performance. Our work is inspired
by meta-policies for teaching mechanisms (Fan
et al., 2018; Pham et al., 2020), which only fo-
cus on instance-level image classification tasks and
rely on single feedback from the student. Besides,
the success of the two works is conditioned on
additional techniques like data augmentation for
images, which is tedious and almost infeasible in
challenging NLP tasks, especially for multilingual
sequence labeling.

7 Conclusion

The effectiveness of supervised methods for low-
resource multilingual sequence labeling is limited
due to data scarcity. To tackle this challenge, we
propose a novel MetaTS method to enhance the
teacher-student framework of self-training, which
leverages the student’s feedback on multilingual
token-level pseudo-labels to adjust the teacher’s
pseudo-annotation strategies. Extensive evalua-
tions on both the public academic benchmarks
and the large-scale industrial dataset quantitatively
and qualitatively demonstrate the effectiveness
of MetaTS. In the future, the proposed MetaTS
method can potentially be applied to multilingual
natural language understanding (XLU) tasks (Hu
et al., 2020) and be generalized to multi-task learn-
ing (Wang et al., 2019) problems.
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