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Abstract
Recent research has investigated quantum
NLP, designing algorithms that process nat-
ural language in quantum computers, and
also quantum-inspired algorithms that im-
prove NLP performance on classical comput-
ers. In this survey, we review representative
methods at the intersection of NLP and quan-
tum physics in the past ten years, categorizing
them according to the use of quantum theory,
the linguistic targets that are modeled, and the
downstream application. The literature review
ends with a discussion on the key factors to
the success that has been achieved by exist-
ing work, as well as challenges ahead, with the
goal of better understanding the promises and
further directions.

1 Introduction

Quantum computing has received much interest in
recent years. The basic idea is to make use the
power of quantum mechanics for solving computa-
tional problems (Shor, 1999; Nielsen and Chuang,
2002). While particular quantum algorithms can be
substantially faster alternatives to classical counter-
parts (Biamonte et al., 2017; Arute et al., 2019), the
mathematical framework of quantum physics has
also been exploited for cognition (Busemeyer and
Bruza, 2012), optimization (Soleimanpour et al.,
2014) and other disciplines. In the field of natural
language processing (NLP), quantum mechanics
has seen a surge of recent research interests, ad-
dressing problems ranging from lexical semantic
ambiguities (Meyer and Lewis, 2020) to seman-
tic composition (Coecke et al., 2020), and from
information retrieval (Jiang et al., 2020) to text
classification (Zhang et al., 2021), where different
characteristics of quantum physics have inspired
novel algorithms.

Despite its growing research literature, no sur-
vey has reviewed and categorized the quantum NLP
field. The most relevant surveys are on quantum-
inspired information retrieval (Uprety et al., 2020;

Melucci, 2015). However, they did not include
many important findings in the quantum NLP field.
Abohashima et al. (2020) and Garg and Ramakrish-
nan (2020) generally reviewed the field of quantum
machine learning. They also briefly mentioned sev-
eral quantum algorithms for NLP, but they did not
discuss them comprehensively or in detail. The
goal of our paper is to, for the first time, propose
a categorization of quantum NLP in the past ten
years, aiming to provide the latest knowledge of
developments and achievements in this field.

We categorize existing work on quantum NLP
based on the following three dimensions:

1 The types of algorithms. Many quantum-
inspired NLP algorithms run on classical com-
puters, and some quantum NLP algorithms
can potentially be implemented on quantum
hardware (Section 3).

2 The modeling target. Quantum physics is used
for modeling different features of language
(Section 4).

3 The applications. These algorithms have dif-
ferent applications, e.g. information retrieval,
question answering (Section 5).

Although quantum NLP is still an emerging field,
existing work shows exciting promise—not only
better performance but also more efficient calcula-
tions are possible. In addition, noisy intermediate-
scale quantum (NISQ) computers already exist and
seem to have potential use in NLP tasks (Coecke
et al., 2020; Lorenz et al., 2021). It has been shown
that quantum NLP can take effect in addressing
the inherent ambiguities of words, representing
lexical semantic correlations, and calculating se-
mantic composition, which is useful for a set of
language modeling and information retrieval tasks.
On the other hand, success has been achieved only
on small scales, and the key reason for achieving
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competitive performance still needs further under-
standing. The theoretical evidence provided in the
literature cannot yet lead to a conclusion that quan-
tum physics can gain substantial computational
advantages in wider NLP tasks.

2 Quantum Physics Preliminaries

The simplest quantum mechanical system is a qubit,
which has two possible states: |0〉 and |1〉, where
’|·〉’ is called the Dirac notation, and a ket |ψ〉 de-
notes a unit column vector. Similarly, the row vec-
tor ψ† is expressed as a bra 〈ψ|, where the dagger
(†) corresponds to the conjugate transpose. A qubit
can be represented by the linear combination of
states, often called superposition:

|ψ〉 = a |0〉+ b |1〉 (1)

where a and b are complex numbers and |a|2 +
|b|2 = 1. Thus the state of a qubit is a unit vector in
a two-dimensional complex vector space. When we
measure a qubit we obtain either 0, with probability
|a|2, or 1, with probability |b|2.

The superposition state can be used for repre-
senting multiple meanings of a word. For exam-
ple, think of a mouse again as a small rodent and
a hand-held pointing device. This two indepen-
dent latent concepts can be denoted as |rodent〉
and |device〉. Then, the word ’mouse’ can be
modeled as a superposition state, i.e. |mouse〉 =
a |rodent〉+ b |device〉.

Entanglement is another elementary and unique
resource of quantum mechanics which plays a key
role in many interesting applications of quantum
computing. Consider the following two-qubit en-
tangled Bell state (Nielsen and Chuang, 2002):

|00〉+ |11〉√
2

(2)

As discussed earlier, when we measure the first
qubit, we obtain two possible results: 0 with proba-
bility 1/2 and 1 with probability 1/2. According
to Eq.2, a measurement of the second qubit always
gives the same outcome as the measurement of
the first qubit, because the measurement results of
these two entangled qubits are correlated. Coecke
et al. (2020) proposed that if words are encoded
into quantum states, then the grammatical structure
is to entangle these states. Because grammar is
what correlates meanings between words. We will
explain this in Section 4.2.2.

Projective measurements are the most gen-
eral form of measurement in quantum mechanics,
where the measurement operators are projectors
P that satisfy P 2 = P . If the state is |ψ〉 before
projective measurement then the probability that
result m occurs is given by p(m) = 〈ψ|Pm |ψ〉.
The state after measurement is:

|ψ〉 → Pm |ψ〉√
〈ψ|Pm |ψ〉

(3)

Projective measurement can be applied to calcu-
late cosine similarity in NLP, which measures the
similarities between two vectors. Suppose |A〉 and
|B〉 represent word A and B, respectively. Then,
the cosine similarity of these two word vectors is

cos2(A,B) = 〈A|PB |A〉 = | 〈A|B〉 |2 (4)

where PB = |B〉 〈B| is a projective measurement
operator.

In addition to state vectors, quantum mechan-
ics can also be formulated using density matrix,
which is mathematically equivalent. Suppose that a
quantum system is in one of the states |ψi〉, where
i is an index, with probability pi. The definition of
the density matrix is:

ρ =
∑
i

pi |ψi〉 〈ψi| (5)

More information about quantum computing can
be found in (Nielsen and Chuang, 2002).

3 The Types of Algorithms

Algorithms at the intersection of NLP and quan-
tum physics can be implemented either on quan-
tum computers or classical computers. The former
ones are usually called quantum algorithms and
the latter ones are usually named quantum-inspired
or quantum-like models which are classical algo-
rithms. We refer to both design of classical NLP
algorithms inspired by quantum physics and quan-
tum algorithms to process NLP tasks as quantum
NLP.

We organize the main surveyed work in Table 1.
This section and the next two sections discuss the
categorization with regard to the algorithm type, the
modeling target, and the application, respectively.

3.1 Quantum Algorithms
In quantum computing, a quantum algorithm is
an algorithm that runs on real quantum comput-
ers. With regard to representation, Coecke et al.
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Paper Types of Algorithms Modeling Target Applications

(Zeng and Coecke, 2016) Quantum Word + Composition /

(Meichanetzidis et al., 2020a) Quantum Word + Composition /

(Meichanetzidis et al., 2020b) Quantum Word + Composition Question answering

(Coecke et al., 2020) Quantum Word + Composition Question answering

(Lorenz et al., 2021) Quantum Word + Composition Syntactic classification

(Sordoni et al., 2013) Classical Composition Information retrieval

(Xie et al., 2015) Classical Composition Information retrieval

(Basile and Tamburini, 2017) Classical Composition Speech recognition

(Li et al., 2018) Classical Composition Information retrieval

(Zhang et al., 2018b) Classical Composition Question answering

(Zhang et al., 2018a) Classical Composition Question answering

(Zhang et al., 2018c) Classical Composition Text classification

(Li et al., 2019) Classical Word + Composition Question answering

(Zhang et al., 2019) Classical Composition Text classification

(Lewis, 2019) Classical Word representation /

(Meyer and Lewis, 2020) Classical Word representation /

(Jiang et al., 2020) Classical Composition Information retrieval

(Zhang et al., 2020) Classical Composition Text classification

(Zhang et al., 2021) Classical+Quantum Word + Composition Text classification

Table 1: Categorization of main surveyed papers according to three dimensions defined in the Introduction.

Figure 1: Graphical framework proposed by (Coecke
and Kissinger, 2018; Coecke et al., 2020) to demon-
strate: (a) A ket |ψ〉, (b) A bra 〈ψ|, (c) Bell state in
Eq. 2, (d) (g(|ϕ1〉 ⊗ |ϕ2〉))⊗ I , where matrix multipli-
cation looks like connecting up the inputs and outputs
of boxes and tensor product looks like placing boxes
side by side.

(2010) constituted a graphical framework (DisCo-
Cat) for natural language that combines words and
builds the meaning of a sentence instead of think-
ing of a sentence as a bag of words. They devised
a graphical framework from previous work which
represents quantum mechanics pictorially by using
lines, triangles, and so on (Coecke and Kissinger,
2018). As an example, in Figure 1, we use this
graphical framework to demonstrate the ket, bra,
and two-qubit entangled states introduced in Sec-
tion 2.

Zeng and Coecke (2016) first discussed whether

a quantum computer can be applied to process natu-
ral language, showing a quantum algorithm for cal-
culating sentence similarity that, under certain con-
ditions, achieves a quadratic speedup over classical
methods (see Table 2). This quadratic speedup,
however, requires quantum random access memory
(QRAM), which is expensive and remains unre-
alized (Biamonte et al., 2017). Considering this
problem, Meichanetzidis et al. (2020a) and Coecke
et al. (2020) proposed quantum algorithms that can
potentially be implemented in existing NISQ com-
puters. Wiebe et al. (2019) presented a representa-
tion for the linguistic structure which can encode
NLP problems into small quantum devices. As a
proof-of-concept experiment, Meichanetzidis et al.
(2020b) performed the first quantum NLP task us-
ing a small dataset on NISQ hardware. To present
larger-scale experiments, Lorenz et al. (2021) im-
plemented models that solve sentence classification
tasks on NISQ computers for datasets of size≥ 100
sentences. These works pave the way for practical
quantum NLP in the NISQ era.
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Algorithms Typical cases

Classical Direct O(NM)
Classical Monte Carlo O(NMd2r4max)

Quantum O(
√
NMlog(M)d2r4max)

Table 2: Complexity comparisons for different closest
vector algorithms. Adapted from (Zeng and Coecke,
2016)

3.2 Classical Algorithms

Quantum-inspired or quantum-like NLP algorithms
have been designed for classical computers, and
some of them achieve comparable performance to
state-of-the-art models (Jiang et al., 2020; Zhang
et al., 2020). For the sake of applicability, these
classical algorithms borrow mathematical frame-
works from quantum mechanics but are not con-
strained by the quantum computing operations
when processing the data.

Van Rijsbergen (2004) first proposed to unify
information retrieval models into the mathematical
framework of quantum mechanics in Hilbert space.
Sordoni et al. (2013) proposed a quantum language
model, which models term dependencies using the
density matrix. This work indicates that the density
matrix may be a more general representation of
texts. Based on this, Basile and Tamburini (2017)
presented a language model using the evolution
of the state which can be implemented in speech
recognition. Li et al. (2019) encoded words as
quantum states and sentences as mixed systems.

Recently, in order to improve practicality, some
quantum-inspired neural networks for natural lan-
guage problems have been proposed. Zhang et al.
(2019) use a density matrix based convolutional net-
work to capture interactions within each utterance,
outperforms a number of state-of-the-art sentiment
analysis algorithms. Jiang et al. (2020) proposed
a quantum interference inspired neural matching
model with application to ad-hoc retrieval. The
main difference between these quantum-inspired
neural models for NLP and the existing neural
based models is that the former models use the
mathematical framework of quantum theory to de-
scribe language features. These features described
by quantum theory are then used as the input of
the neural network. Using quantum mechanics con-
cepts to describe features have better interpretabil-
ity, because they have more transparent physical
explanations. It is also more beneficial to the subse-
quent neural network to extract useful information.

The above quantum-inspired neural networks
are mainly for improving end-to-end performance,
but still lack a theoretical foundation for the con-
nection between quantum-inspired language model
and neural network. Tensor networks, which factor-
ize very large tensors into networks of smaller ten-
sors, can help the theoretical understanding of ex-
isting neural networks (Levine et al., 2018). Based
on tensor decomposition, Zhang et al. (2018b)
proposed a quantum many-body wave function
(QMWF) inspired language modeling and showed
a mathematical understanding of using convolu-
tional neural network (CNN). More recently, Zhang
et al. (2021) proposed a tensor network method
(namely TextTN) for natural language representa-
tion. Tensor network can not only run on a classical
computer but also can be transformed into a quan-
tum circuit. In addition, the hyper-parameters of
TextTN can be well interpreted by the entangle-
ment entropy (Zhang et al., 2021).

4 The Modeling Target

Both quantum-inspired algorithms and quantum
algorithms can model different features in the lan-
guage. We divide them into word representation
(Section 4.1) and composition (Section 4.2).

4.1 Word Representation

How to represent words is essential for most NLP
tasks and can affect performance. Using quantum
physics for word representation has the potential to
help including more features for words.

4.1.1 Modeling Word Ambiguity
Word ambiguity is a combination of distinct known
meanings. Li et al. (2019), Li et al. (2018) and
Coecke et al. (2020) adopted superposition state
and complex number to formulate this combination.
The latent concepts of a word form a set of pure
orthonormal states of the space {|Ci〉}. This word
t is modeled as a superposition state

|t〉 =

n∑
i=1

ai |Ci〉 (6)

in which the amplitude {ai}ni=1 are complex num-
bers and

∑n
i=1 |ai|2 = 1. As mentioned in Section

2, if the superposition state is measured, it will col-
lapse into the basis vector. This means that when
a word is observed within a certain context it will
collapse to one of its known meanings.
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Li et al. (2019) and Wang et al. (2019) showed
that we can benefit from the complex-valued word
embedding and the phases can be linked to some
important features such as word positions. More-
over, the computational space increase exponen-
tially with the size of the system (Coecke et al.,
2020). If we consider a system of n qubits, then a
quantum state of this system can represent a word
that has 2n latent concepts and is specified by 2n

amplitude. Trying to store all these complex num-
bers and vectors can be challenging on classical
computers.

Meyer and Lewis (2020), Bankova et al. (2018)
and Piedeleu et al. (2015) adopted density matrices
to model lexical ambiguity. Unlike commonly-used
methods which map words into vectors, they map
words into matrices.

4.1.2 Modeling Hyponymy Relations
Hyponym refers to the fact that a word’s semantic
field is included within another word’s. This rela-
tions can be encoded in projectors (Lewis, 2019;
Bankova et al., 2018). For example, apple is an
example of fruit, which is an example of food. This
hyponymy relation can be encoded in projectors:

Papple = |00〉 〈00|
Pfruit = |00〉 〈00|+ |01〉 〈01|
Pfood = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈10|

(7)

here the normalized factors are ignored.

4.2 Composition
Given the meaning of each word, sentences can
be understood by the composition of such lexi-
cal semantic units. Algorithms based on quantum
physics can help to model this process.

4.2.1 Modeling Term Dependencies
Quantum-inspired algorithms have been consid-
ered for dependencies between terms in frequently
occurring multiword expressions. The quantum
language model (QLM) proposed by Sordoni et al.
(2013) first applies quantum theory to model term
dependencies, argue that there may be a situation in
which classical probability fails and need to switch
to a more general probabilistic theory. They map
words w to projectors:

w → Πw = |ew〉 〈ew| (8)

where w ∈ V and |ew〉 is the one-hot encod-
ing of the word w. For example, consider V =

Figure 2: Diagrammatic form of the reduction
n(nrsnl)n → (nnr)s(nln) → 1s1 → s, where n
is noun, s is declarative statement, and cup denote the
grammar reductions. According to pregroup grammar
(Lorenz et al., 2021; Lambek, 2008), Jack likes Rose is
grammatical because of above reduction.

{natural, language}. Then Πlanguage is:

Πlanguage =

[
0 0
0 1

]
(9)

The relationship linking two or more words is
represented by a subset of the vocabulary κ =
{w1, w2, ..., wn} and encoded into a new projector:

κ→ |κ〉 〈κ| , |κ〉 =
n∑

i=1

ai |ewi〉 (10)

where {ai}ni=1 are real numbers and
∑n

i=1 a
2
i =

1. For example, we can model the depen-
dency between natural and language, κnl =
{natural, language}, by Knl = |κnl〉 〈κnl|,
where |κnl〉 =

√
2
5 |enatural〉 +

√
3
5 |elanguage〉.

Then

Knl =

[
2
5

√
6
5√

6
5

3
5

]
(11)

|κnl〉 is a superposition state and Knl is a den-
sity matrix. In quantum mechanics, elements of the
density matrix Knl contain the correlation between
quantum states |enatural〉 and |elanguage〉, thus de-
pendency between natural and language is modeled.
This method of modeling term dependency is inter-
pretable and has physical meaning.

Some algorithms have been proposed based on
above QLM. Xie et al. (2015) took entanglement
into consideration which is not considered in origi-
nal QLM, Zhang et al. (2020) adopted word em-
bedding instead of one-hot encoding, and so on.
The basic and important idea behind these algo-
rithms is to treat word vectors as quantum states
from which we can obtain the density matrix of the
sentence or document. Then this density matrix
naturally contains the correlation of these quantum
states, which means the dependence between words
is modeled.
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Task Dataset Models Metrics

F1 Accuracy

Text
classification

MELD dataset
Sentiments (3-class)

CNN (Kim, 2014) 0.604 0.609
RoBERTa (Liu et al., 2019) 0.721 -
QIN (Zhang et al., 2019) 0.662 0.679
QMN (Zhang et al., 2020) 0.729 0.756

OMD dataset
Doc2vector (Le and Mikolov, 2014) 0.3979 0.6103
SentiStrength (Thelwall et al., 2010) 0.6352 0.6110
GQLM+QRE (Zhang et al., 2018c) 0.6261 0.6298

Accuracy

SST-5
Star-Transformer (Guo et al., 2019) 53.0
BERT (Devlin et al., 2018) 52.9
BERT+TextTN (Zhang et al., 2021) 54.8

MAP MRR

Question
answering WIKIQA

Bigram-CNN (Yu et al., 2014) 0.6190 0.6281
AP-BILSTM (Santos et al., 2016) 0.6705 0.6842
NNQLM-II (Zhang et al., 2018a) 0.6496 0.6594
CNM (Li et al., 2019) 0.6748 0.6864

MAP@10 NDCG@10

Information
retrieval

TREC 2013
Unigram 4.91 6.05
QLM (Sordoni et al., 2013) 6.14 6.70
QLM-QE (Li et al., 2018) 8.94 10.37

MAP NDCG@20

ClueWeb-09-Cat-B

MP (Pang et al., 2016) 0.066 0.158
Conv-KNRM (Dai et al., 2018) 0.121 0.285
QLM (Sordoni et al., 2013) 0.082 0.164
QINM (Jiang et al., 2020) 0.134 0.338

Table 3: Tasks and datasets that quantum NLP has shown comparable or better performance over traditional NLP.
The quantum NLP algorithms are indicated in bold.

4.2.2 Modeling Grammar

Pregroup gramma (Lambek, 1997) is used for ana-
lyzing the structure of natural languages. As an al-
gebraic gadget, pregroup grammar can be denoted
using having cup-shaped wires (Lambek, 2008).
We show an example sentence in Figure 2. From
Figure 1 and Figure 2, we can see that diagram-
matic frameworks used for quantum mechanics
and pregroup grammar are partially similar. Co-
ecke et al. (2010) introduced a model based on
tensor product composition, which uses pregroup
grammar to compute the meaning of sentences and
phrases. Coecke et al. (2020) recast this model in
quantum computational terms and showed that pre-
group can always be made using only Bell-effect
and identities.

Here is an example of how to use Bell-effect
and identities to represent applying an adjective
to a noun. Assuming the meaning of story is a
1-qubit state |ψstory〉 ∈ C2 and the meaning of
adjective happy is a 2-qubit state |ψlove〉 ∈ C2 ⊗
C2. In happy story, happy modifies the noun story.
Coecke et al. (2020) model this modification using

Figure 3: Diagrammatic notation of happy story

|ψhappy〉 ⊗ |ψstory〉, calculating:

|ψhappystory〉 =

(I ⊗ 〈Bell|) · (|ψhappy〉 ⊗ |ψstory〉)
(12)

where 〈Bell| = 〈00| + 〈11| and I is the identity.
The mapping (I ⊗ 〈Bell|) shows the interaction
between the meaning of words. Using diagram-
matic notation (Coecke and Kissinger, 2018; Co-
ecke et al., 2020), our example is illustrated in Fig-
ure 3. The pentagon represents the quantum state,
the straight line represents the identity matrix, and
the cup-shaped wire represents the Bell-effect. Co-
ecke et al. (2020) also showed that this type of wire
structure and pregroup grammar can be equivalent,
and thus to some extent NLP is quantum native.

5 Applications

Quantum NLP shows comparable or better perfor-
mance compared with strong baselines for some
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tasks. We summarize the results of these algorithms
in Table 3.

Information retrieval (IR). Sordoni et al.
(2013) first proposed a quantum language model for
IR, representing terms in queries and documents as
superposition events attached with quantum proba-
bility, which has no classical analog. Extensions of
the quantum language model have also been pro-
posed for IR. Xie et al. (2015) advanced the QLM
framework by taking into account quantum entan-
glement, which has a significant cognitive implica-
tion. Li et al. (2018) proposed an algorithm to help
improve convergence. Jiang et al. (2020) took in-
terference into account, which produces additional
contributions to the total probability beyond clas-
sical cases. Based on this new contributions, they
proposed a matching model for ad-hoc retrieval.
The quantum matching models outperform some
traditional models.

Question answering (QA). Zhang et al. (2018a)
used density matrices to represent questions and
answers and introduced a joint representation to
model the similarities between the question and
answers. This joint representation is then used
as an input to a neural network. Li et al. (2019)
proposed a complex-valued network for QA, which
is interpretable and shows comparable performance
to strong CNN and RNN baselines. Coecke et al.
(2020) mentioned that QA tasks can be executed on
quantum computers. After mapping a question to a
vector, QA tasks become the task to find the closest
vector in the answer vectors pool. They exploited
quantum advantage for finding the closest vector
(Wiebe et al., 2015) and showed quantum speedup.
Meichanetzidis et al. (2020b) showed the first-ever
quantum NLP experiment on quantum hardware
through a QA task. Although this is a proof-of-
concept experiment, it paved the way for the future
use of quantum computers to deal with practical
NLP problems.

Speech recognition. Basile and Tamburini
(2017) introduced a quantum language model with
the application for speech recognition, where words
are encoded into measurement operators and the
sequence of words is modeled as the evolution of
quantum systems.

Text classification. Zhang et al. (2018c) ex-
plored the possibility of using quantum physics on
sentiment classification tasks. Two sentiment dic-

tionaries were constructed. They generated density
matrices for dictionaries and documents and used
quantum relative entropy as characterization of the
similarity between dictionaries and documents to
determine its sentiment. Zhang et al. (2019) in-
troduced quantum-inspired interactive networks,
where a density matrix that capture correlations
between words was used as an input of long short-
term memory neural network. In order to effec-
tively combine multiple information from different
sources, Zhang et al. (2020) further extended their
work with two modalities, namely text and visual
modalities. Considering the interpretability and
expressive power of tensor network, Zhang et al.
(2021) proposed a tensor network based architec-
ture for natural language.

6 Discussion

6.1 Benefits

In this section, we make a summary of potential
benefits of quantum NLP, and discuss the most
salient directions that remain under-explored due
to various reasons.

Lowering computational cost. Some articles
have demonstrated quantum speedup for specific
NLP tasks, such as question answering (Coecke
et al., 2020; Zeng and Coecke, 2016). Quantum
search algorithm (Grover, 1996), quantum nearest-
neighbor algorithm (Wiebe et al., 2015) and other
quantum algorithms which achieve speedup over
classical algorithms could be used after classical
language features are encoded into quantum states.
As mentioned in Section 4, the quantum super-
position is suitable for modeling uncertainties in
language, such as word ambiguity (Li et al., 2019;
Wang et al., 2019). And entanglement can describe
the composition of lexical semantic units (Coecke
et al., 2020; Meichanetzidis et al., 2020b). It’s pos-
sible that, by adaptations to quantum algorithms
and deployments to quantum computers, a family
of NLP tasks can enjoy quantum speedup.

Enhancing learning ability. Quantum mechanics
is well-known to generate counter-intuitive patterns
(Biamonte et al., 2017). It is reasonable to hope that
quantum computers can recognize some patterns
that cannot be recognized by classical computers.
As shown in Table 3, some quantum NLP models
have shown comparable or better performance over
strong baselines. And the framework of quantum
mechanics can be applied to model some features
that are difficult to model with classical probabil-
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ity. For example, quantum theory is used to model
interference phenomenon in information retrieval
(Jiang et al., 2020) and term dependencies (Sor-
doni et al., 2013). It’s more consistent with human
cognition. Li et al. (2021) demonstrate that neural
machine translation models fail badly on composi-
tional generalization. According to existing paper,
we believe quantum NLP models have potential ad-
vantages in compositional generalization problem.

Increasing storage capacity. Quantum comput-
ers have strong storage capabilities. As mentioned
before, Coecke hold the view that NLP is quantum-
native (Meichanetzidis et al., 2020b; Coecke et al.,
2020) such that the exponentially large vector space
required to represent sentences can only be natu-
rally and feasibly realized in quantum computers.
From this point of view, developments of quantum
language models will be beneficial also in terms of
storage efficiency.

6.2 Future Directions
Despite the emerging promises, quantum NLP has
yet to see its full-fledged advantages to the domi-
nant neural methods. Significant advances in one
or more of the following directions can give strong
boosts to the research field.

Quantum machine learning. Existing work
showed that there is a fundamental connection
between machine learning and quantum physics
(Levine et al., 2018; Hughes et al., 2019). For ex-
ample, tensor network is a method that bridges
machine learning and quantum theory, which can
also enhance the theoretical understanding of exist-
ing neural networks (Levine et al., 2019). For NLP,
designing an effective tensor network approach can
lead to better interpretability (Zhang et al., 2021).
On the other hand, most quantum NLP models still
use real vectors (Jiang et al., 2020; Zhang et al.,
2020), partly because there are no obvious features
corresponding to the imaginary part. However,
quantum phenomena cannot be fully expressed
without complex numbers. In quantum neural net-
works, complex numbers and quantum phenomena
can be naturally modeled. It has been shown that
both complex-valued representation of natural lan-
guage (Li et al., 2019; Wang et al., 2019), and
complex-valued neural networks (Trabelsi et al.,
2018) can lead to benefits.

Wider applications. We have shown that quan-
tum NLP algorithms can be used for information
retrieval (Jiang et al., 2020), question answering

(Meichanetzidis et al., 2020b), and so on. These are
relatively simple tasks and quantum NLP models
have not been extended to more challenging tasks
such as text generation and automatic summariza-
tion. Finding wider NLP tasks that can benefit from
quantum physics is also a remaining direction.

Quantum advantages. In quantum computing,
quantum supremacy or quantum advantage is the
goal of demonstrating that a quantum computer
can solve a problem that no classical computer can
solve in any reasonable amount of time. Whether
there are concrete examples in NLP that can show
quantum advantages is a fundamental and impor-
tant question. According to existing paper, there
may be quantum advantages in NLP tasks which
need similarity calculations, such as the similarity
of the query and the documents, the similarity of
the sentences, and the similarity of the question
and the answers.

7 Conclusion

Thus far, articles have demonstrated early success
in representing and processing text using quantum
computers. Their design is scalable and when hard-
ware becomes more powerful they can scale up the
size of the meaning spaces and complexity of the
tasks. The key to whether or not quantum comput-
ers will be used to deal with NLP in the future lies
in whether quantum algorithms can show quantum
advantage. Meanwhile, quantum-inspired mod-
els have shown strong performance on classical
computers for certain tasks, and have better inter-
pretability. The main difficulty in this direction is
that neural networks have already achieved high ac-
curacy on many NLP tasks. Nevertheless, it is still
worthwhile to explore the mathematical framework
of quantum mechanics where a strong expressive
ability and a corresponding physical explanation
are expected. Finally, it can also be possible that
if neither of the above two directions has major
breakthroughs, then this quantum NLP field may
temporarily lose research attention during a period
of time.
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