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Abstract

Data augmentation and adversarial pertur-
bation approaches have recently achieved
promising results in solving the over-fitting
problem in many natural language processing
(NLP) tasks including sentiment classification.
However, existing studies aimed to improve
the generalization ability by augmenting the
training data with synonymous examples or
adding random noises to word embeddings,
which cannot address the spurious association
problem. In this work, we propose an end-to-
end reinforcement learning framework, which
jointly performs counterfactual data genera-
tion and dual sentiment classification. Our ap-
proach has three characteristics: 1) the gen-
erator automatically generates massive and di-
verse antonymous sentences; 2) the discrimina-
tor contains a original-side sentiment predictor
and an antonymous-side sentiment predictor,
which jointly evaluate the quality of the gener-
ated sample and help the generator iteratively
generate higher-quality antonymous samples;
3) the discriminator is directly used as the final
sentiment classifier without the need to build
an extra one. Extensive experiments show that
our approach outperforms strong data augmen-
tation baselines on several benchmark senti-
ment classification datasets. Further analysis
confirms our approach’s advantages in generat-
ing more diverse training samples and solving
the spurious association problem in sentiment
classification.

1 Introduction

Deep learning techniques (e.g., CNN, RNN, pre-
trained language models) have achieved great suc-
cess in many natural language processing (NLP)
tasks including sentiment classification. Despite
their promising results, recent studies reported that
due to the over-fitting problem these models may
easily fail in attacking examples with even little
modification on real examples (Iyyer et al., 2018;
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Ren et al., 2019; Zhang et al., 2020; Xing et al.,
2020). Researchers have attempted to address this
issue from two main perspectives: data augmenta-
tion and adversarial perturbation. The former tries
to augment the training data by generating synony-
mous sentences (Zhang et al., 2015; Kobayashi,
2018; Xu et al., 2019); the latter aims to improve
the generalization ability by applying perturba-
tions to the word embeddings (Miyato et al., 2017;
Croce et al., 2020). Although these methods have
achieved sound performance, they still suffer from
the spurious association problem. Machine learn-
ing systems are trained to exploit the associations
between the input features and the output labels to
make accurate predictions. For example, if a neu-
tral word (e.g.,“book”) occurs more frequently in
the positive class than in the negative class of the
training data, “book” will have a spurious associa-
tion with the positive class.

Recently, counterfactual data augmentation has
shown to be an effective way to address the spu-
rious association problem in sentiment classifi-
cation (Kaushik et al., 2020; Wang and Culotta,
2021; Xing et al., 2020; Xia et al., 2013, 2015b).
The core idea behind this line of work is to con-
struct training and test samples by generating
antonymous sentences and reversing its sentiment
label. In the previous example, by generating
an antonymous sample for each training sample,
the frequency of “book” in the negative class will
also increase, and thus the spurious association be-
tween “book” and the positive class will be allevi-
ated.

However, these methods still have three short-
comings: 1) They either relied on human ef-
forts or resorted to rules for antonymous sam-
ple construction which is labor-intensive and time-
costing. The diversity of generated samples is
also limited; 2) They regarded antonymous sam-
ple generation and sentiment classification as two
separate tasks, and pipeline them; 3) They mostly
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merged the generated antonymous samples into
the original training set, and ignored the one-to-
one correspondence between the antonymous and
original samples.

In this paper, we propose an end-to-end rein-
forcement learning framework named Reinforced
Counterfactual Data Augmentation (RCDA) for
joint counterfactual data augmentation and dual
sentiment classification. The counterfactual sen-
tence generation and the dual sentiment classifica-
tion modules are regarded as a generator and a dis-
criminator, and integrated in a reinforcement learn-
ing framework. First, the generator uses one-to-
many antonym and synonym lists obtained from
WordNet to generate massive antonymous candi-
dates based on multi-label learning, and automat-
ically select the best antonymous sentence based
on reinforcement learning. Second, the discrim-
inator contains an original-side sentiment predic-
tor and an antonymous-side sentiment predictor,
which regards the original and antonymous sam-
ples as pairs to perform dual sentiment classifica-
tion. The action reward in reinforcement learn-
ing is also computed based on both original and
antonymous sides. Finally, the discriminator can
be directly used as the final sentiment classifier for
the testing examples.

Extensive experiments on four benchmark
datasets indicate that our approach significantly
outperform strong data augmentation baselines.
Further analysis demonstrates that our method is
more effective in generating diverse training sam-
ples and alleviating the spurious association prob-
lem in sentiment classification.

The contributions of this paper can be summa-
rized as follows:

• We propose a new framework for joint counter-
factual data generation and dual sentiment clas-
sification.1

• We generate many antonymous candidates for
each original sample and select the best one,
which improves the quality and diversity of the
generated samples.

• We regard the antonymous and original samples
as pairs, and feed them to the discriminator for
dual training and prediction, which alleviates
the spurious association problem in sentiment
classification.
1The source code of this work is publicly released at

https://github.com/NUSTM/RCDA

2 Related Work

With the recent advances of deep learning (Socher
et al., 2013; Kim, 2014; Tai et al., 2015; Joulin
et al., 2017; Johnson and Zhang, 2017; Devlin
et al., 2019), the performance of sentiment classifi-
cation has been significantly improved. However,
these models were typically data-driven and lack
of generalization ability. Some previous studies
pointed out that adding a slight disturbance to the
test data may lead to incorrect predictions (Iyyer
et al., 2018; Ren et al., 2019; Zhang et al., 2020;
Xing et al., 2020).

The studies that attempted to improve the gener-
alization ability of neural network models in NLP
can be roughly divided into three categories.

Adding perturbation focused on applying per-
turbations to the word embeddings (Miyato et al.,
2017; Croce et al., 2020), adding regularization
terms, or using the dropout strategy (Hinton et al.,
2012).

Synonymous sample generation aimed to ran-
domly replace some words in the real samples
with their synonyms, hypernyms, or hyponyms
from WordNet to generate a large amount of syn-
onymous samples (Zhang et al., 2015; Kobayashi,
2018; Xu et al., 2019). However, these methods
tend to suffer from the spurious association prob-
lem. It is worth noting that our model is similar
to Xu et al. (2019), but there are a number of major
differences. Firstly, it focused on generating syn-
onymous samples with the same sentiment label,
while our work aims to generate antonymous sam-
ples with the reversed sentiment label; Secondly,
our discriminator contains an original-side predic-
tor and an antonymous-side predictor which are
paired for dual sentiment classification, and alle-
viate the spurious association problem.

Antonymous sample generation focused
on either manually creating antonymous sam-
ples (Kaushik et al., 2020; Wang and Culotta,
2021) or resorting to WordNet to generate antony-
mous samples by replacing some words in the
real samples with their antonyms (Xia et al., 2013,
2015a,b). However, these methods primarily rely
on human efforts or manually-designed rules,
which limits the diversity of generated samples.

Instead of constructing the antonymous samples
by human efforts or rules, we aim to propose an
end-to-end reinforcement learning framework, for
joint counterfactual data generation and dual senti-
ment classification.

https://github.com/NUSTM/RCDA
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3 Approach

Figure 1 illustrates the overall architecture of our
framework, which contains two main modules: 1)
Antonymous sentence generator. Given an origi-
nal sentence, the generator replaces each word in
the original sentence with one of its antonyms or
synonyms from WordNet to generate a number of
antonymous sentences as candidates; 2) Dual dis-
criminator. It contains an original-side sentiment
predictor and an antonymous-side sentiment pre-
dictor, which regards the original and antonymous
samples as pairs to perform dual sentiment predic-
tion.

3.1 Antonymous Sentence Generator

The word substitution-based methods have been
shown to be effective and stable in synonymous
sentence generation. Inspired by Xu et al. (2019),
we propose to generate antonymous sentences
based on word substitution.

Specifically, we define three word substitution
rules for each word in the sentence: no replace-
ment, replacing with an antonym, and replacing
with a synonym. Given an input sentence, since
its sentiment is often determined by adjectives, ad-
verbs, and verbs, we first utilize WordNet2 to ob-
tain the antonyms of these three types of words,
and replace these words with their antonyms; Sec-
ond, for nouns and the remaining adjectives, ad-
verbs, and verbs that do not have antonyms, we
replace them with their synonyms in WordNet;
Lastly, for other words such as stop words, we
retain them to avoid irrelevant information. For
example, given a sentence “a good and funny
story”, “good” and “funny” are replaced with their
antonyms (e.g., “bad” and “dull”), and “story” is
replaced with its synonym (e.g., “tale”), and other
words are kept. We therefore obtain an antony-
mous sentence “a bad and dull tale”.

As WordNet provides multiple synonyms and
antonyms for each word, we initialize our genera-
tor based on multi-label learning during the warm-
up stage.

Formally, given a sequence of input tokens x =
{w1, w2, · · · , wn} and its label sequence denoted
by Y = {y1, y2, · · · , yn}, each token wt corre-
sponds to a V -dimensional multi-label vector yt =[
y1t , · · · , y

j
t , · · · , yVt

]
, where V is the size of the

vocabulary, and yjt ∈ {0, 1} denotes that whether

2https://wordnet.princeton.edu/

the j-th word in the vocabulary belongs to the set
of replacement words for wt. If the number of re-
placement word (antonyms or synonyms) in Word-
Net for wt is larger than a pre-set threshold K, we
select the top-K words with the highest frequency
as the supervision signals in multi-label learning.

Specifically, we feed the input sentence to an
LSTM encoder, and obtain the hidden representa-
tion of each word, denoted by ht. Next, we feed
ht to V separate binary classifiers:

p(yjt |wt) = logistic (Wjht + bj), j ∈ 1, · · · , V.
(1)

Based on this, we obtain the probability of
each vocabulary word belonging to the replace-
ment word set, and re-normalize the probabilities
to obtain the multinomial word distribution as fol-
lows:

Pt = normalize [p(y1t = 1), · · · , p(yVt = 1)].
(2)

It should be noted that for vocabulary words that
are not inlcuded in WordNet, we set their probabil-
ities in the multinomial distribution to be 0.

Given a training sample (x, s) where s is the
sentiment label, we sample a word according to
Pt in Eqn. (2) for each word wt in x as follow:

wt ∼ Multinomial(Pt), (3)

and repeat this process to get an antonymous sam-
ple: (x̄, s̄), where s̄ denotes the reversed sentiment
label, e.g., positive → negative, or negative → pos-
itive. For example, let us assume the distribution
of antonyms for “good” and “funny” are [stale: 0.3,
bad: 0.4, displeasing: 0.3] and [serious: 0.2, bor-
ing: 0.5, dull: 0.3] respectively, and the synonym
distribution of “story” is [fiction: 0.2, narration:
0.2, tale: 0.6]. Given a positive sentence “a good
and funny story”, we first sample the antonyms
for “good” and “funny” (e.g., stale and boring),
and then sample a synonym for “story” (e.g., nar-
ration). We therefore obtain an antonymous sen-
tence “a stale and boring narration”, and set its
sentiment label to negative. The process can be
repeated to get different antonymous sentences.

According to the method above, a set of antony-
mous training samples {(x̄i, s̄)}Mi=1 is generated
based on an original training sample (x, s).

3.2 Dual Discriminator
Based on the original and the antonymous samples,
we construct a dual discriminator, which contains

https://wordnet.princeton.edu/
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Figure 1: The overall architecture of our joint counterfactual data generation and dual sentiment classification
framework. The left part is the generator, which acts as an agent in reinforcement learning, and the right side is
the discriminator containing two sentiment predictors, which acts as the environment in reinforcement learning
and also serves as the final sentiment classifier at the test stage. The dashed line indicates that there is no back
propagation during training.

a pair of predictors: an original-side sentiment pre-
dictor Cori and an antonymous-side sentiment pre-
dictor Cant. Cori is trained based on the origi-
nal training set Dori, whose parameters are fixed
during reinforcement learning, whereas Cant is
trained based on the antonymous training set Dant,
whose parameters are incrementally learned and
dynamically updated based on the antonymous
training set generated in each epoch.

For both Cori and Cant, given the antonymous
sentence x̄, their hidden representations h̄ori and
h̄ant are followed by the softmax layers for dual
sentiment predictions respectively:

pori(s|x̄) = softmax (Worih̄ori + bori), (4)

pant(s|x̄) = softmax (Wanth̄ant + bant), (5)

where Wori and bori are the parameters for Cori,
Want and bant are the parameters for Cant. We em-
ploy LSTM, BERT-base, and BERT-large (Devlin
et al., 2019) as the text encoder in the discrimina-
tor.

3.3 Reinforcement Training
To jointly optimize the generator and the discrimi-
nator with reinforcement learning, we regard the
predictor Cori and the predictor Cant as the en-
vironment to get dual sentiment predictions, and
to evaluate the quality of the generated samples.

We expect that the prediction of x̄ from Cori is in-
consistent with the original label s, while the pre-
diction from the antonymous sentiment classifica-
tion module Cant is consistent with s̄. For exam-
ple, given a positive sentence x “a good and funny
story” and the generated negative one x̄ “a stale
and boring narration”, we expect the possibility
of x̄ being positive to be as small as possible, and
the possibility of x̄ being negative to be as large
as possible. Therefore, we design a new action re-
ward which takes predictions from both Cori and
Cant into account:

r(x̄) = (1−α)(s−pori(s|x̄))+αpant(s̄|x̄), (6)

where α is a trade-off parameter. It should be
noted that due to the cold start problem of Cant,
α is initialized to 0 during the training process of
reinforcement learning, and increased to 1 as the
performance of Cant increases.

If the reward of x̄ is relatively large, our model
regards it as a high-quality antonymous sample,
and encourages its generation in the next epoch
of training, otherwise if the reward is relatively
small, our model learns to decrease the possibil-
ity of generating it in the next epoch. In policy
gradient-based methods, it is a common practice
to subtract a baseline reward from the current re-
ward. The goal of the baseline reward rb is to en-
force the generator to select x̄ that yields a reward
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Algorithm 1 RCDA
Require: Generator G; Discriminator Cori and Cant;

dataset Dori

Randomly initialize the models
train Cori using Dori

Warm-up G based on multi-label learning
for training step do

Sample M x̄ using Eq.(3)
for i = 0 to M do

Calculate r
′
(x̄i) using Eq.(7)

Compute the loss in Eq.(8)
end for
Update the parameters of G
Generate x̄ using Eq.(2)
Use x̄ to update the parameters of Cant

end for
Return the generator G; Discriminator Cori and Cant

r(x̄) > rb and discourages those that have reward
r(x̄) < rb.

In contrast to Xu et al. (2019) that only sam-
pled one synonymous sentence for each sentence
and defined rb as the expectation of the reward
of all sampling sentences, we sample M antony-
mous sentences for each sentence, and use the av-
erage value of these M antonymous sentences as
the baseline reward rb = 1

M

∑M
j=1 r(x̄j). Based on

this, we use the following formula to calculate the
reward and then feed it to the generator:

r
′
(x̄) = r(x̄)− rb. (7)

Compared with Xu et al. (2019), our reward func-
tion ensures that for each original sample, at least
one generated antonymous sample is leveraged to
optimize model parameters, and these antonymous
samples can be regarded as supervisory signals to
help the generator generate better antonymous sen-
tences in the next epoch based on the following
cost:

L = −log r
′
(x̄)PG(x̄|x). (8)

Algorithm 1 presents the whole process of our
joint counterfactual data generation and dual senti-
ment classification method.

3.4 Dual Sentiment Classification
In existing antonymous data augmentation ap-
proaches, data generation and sentiment classifi-
cation are often conducted as a pipeline (Kaushik
et al., 2020; Wang and Culotta, 2021; Xia et al.,
2013, 2015a,b), where a sentiment classification
model is separately trained after generating the
antonymous samples. In contrast, our reinforce-
ment learning framework integrates antonymous

sentence generation and sentiment classification in
an end-to-end fashion, and we can also directly
use the two sentiment predictors Cori and Cant to
perform dual sentiment prediction for testing sam-
ples.

Specifically, given an original test sentence x,
we first employ the generator G to generate the
antonymous test sentence x̄, and then use the two
predictors Cori and Cant to perform dual senti-
ment prediction similar as (Xia et al., 2015b):

p(s|x)=
{
pori(s|x), if pori(s|x)>min(τ, pant(s|x̄))
pant(s|x̄), otherwise

(9)
where pori(s|x) is the prediction from Cori on x,
pant(s|x̄) is the prediction from Cant on x̄, and τ
is a confidence threshold. In general, the final pre-
diction relies the original predictor when when the
confidence of original predictor is higher than that
of the antonymous predictor or a threshold ; other-
wise the final prediction relies on the antonymous
predictor.

It is worth noting that a recent study (Wang
and Culotta, 2021) revealed that for antonymous
data augmentation approaches, the performance of
merging antonymous samples with original sam-
ples generally drops when using the antonymous
samples generated from rules or machine learning
approaches, and it can increase only when using
the manually generated samples. In our experi-
ments, we obtain similar observations. The results
of using different ways to leverage the antony-
mous samples are compared in Section 4.4.

4 Experiments

4.1 Experiment Settings
Datasets. We conduct experiments on four bench-
mark datasets for sentence-level sentiment clas-
sification, namely, SST-2, SST-5, RT, and Yelp.
SST-2 and SST-5 are the movie reviews from the
Stanford sentiment treebank (Socher et al., 2013),
which contains both binary and 5-class classifi-
cation tasks. RT is another sentiment classifica-
tion dataset containing movie reviews with two la-
bels, released by Pang and Lee (2005). Yelp is
a large-scale dataset collected from the Yelp web-
site3, which contains a large amount of restaurant
reviews with rating labels varying from 1 to 5. Fol-
lowing Xu et al. (2019), we sample 100K data as
the training set, 10K as the validation set, and 10K
for testing.

3http://www.yelp.com/dataset/challenge

http://www.yelp.com/dataset/challenge
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Settings & Hyperparameters. In the warm
up stage, we train the generator for 40 epochs
and train the original sentiment predictor for 100
epochs, and then train both the generator and the
antonymous sentiment predictor based on rein-
forcement learning for 60 epochs. For the gener-
ator, we set the size of hidden dimension, batch
size, learning rate, and sentence sampling times
M to 300, 8, 1e-3, and 32, respectively. For the
LSTM text encoder, we set the batch size, the size
of hidden dimension, the learning rate, the embed-
ding drop rate, and the representation dropout rate
to 64, 300, 1e-3, 0.4, and 0.1, respectively. For
the BERT text encoder, we set the batch size and
the learning rate to 8 and 2e-5. Besides, for τ , we
set it as 0.8(0.52) for the two binary classification
datasets, and set it as 0.4(0.22) for SST-5 and Yelp
when the encoder is LSTM(BERT). All the param-
eters are optimized with the Adam optimizer, and
tuned on the development set of each dataset.

4.2 Compared Systems

We employ LSTM, BERT-base, and BERT-large
as our text encoder to systematically evaluate
our approach, and compare our Reinforced Coun-
terfactual Data Augmentation (RCDA) approach
with the following methods:

• SynDA (Zhang et al., 2015), which randomly
replaces words in the real samples with syn-
onyms from WordNet to generate synonymous
samples.

• Back-tran (Sennrich et al., 2016), which trans-
lates real to other language via exiting transla-
tion model, and then translates it back to source
language to get synonymous samples.

• ConDA (Kobayashi, 2018), which uses the lan-
guage model to obtain synonyms for each word
and randomly replaces words with these syn-
onyms to obtain adversarial samples.

• VAT (Miyato et al., 2017), which improves the
model robustness by adding random perturba-
tion to the embedding layer to obtain new ad-
versarial examples.

• LexicalAT (Xu et al., 2019), which first uses
the generator to randomly replace words with its
synonym, hyponym or hypernym to obtain new
samples, and then jointly optimizes the gener-
ator and the discriminator based on adversarial
learning.

Method SST-2 SST-5 RT Yelp

LSTM 80.28 39.97 76.03 61.79
+SynDA 80.30 40.20 / /
+Back-tran 80.77 39.59 76.32 61.76
+ConDA 80.10 40.50 / /
+VAT 81.16 37.38 75.94 59.69
+DSA 81.32 40.62 75.92 61.23
+AGC 76.00 32.03 71.80 60.53
+LexicalAT 81.60 41.99 76.22 61.18
+RCDA 82.97 42.35 78.87 62.44

Method SST-2 SST-5 RT Yelp

BERTB 91.52 53.66 87.14 66.17
+Back-tran 91.81 53.93 87.41 65.72
+AGC 89.51 52.76 85.30 65.54
+RCDA 91.98 54.02 88.23 66.57

Method SST-2 SST-5 RT Yelp

BERTL 92.86 55.25 88.33 66.93
+Back-tran 92.96 54.70 88.21 66.84
+AGC 93.02 53.24 87.69 66.17
+LexicalAT 93.03 55.38 88.68 67.50
+RCDA 93.30 55.62 89.07 67.41

Table 1: The accuracy of compared systems on four
benchmark datasets for sentence-level sentiment clas-
sification, where BERTB and BERTL refer to BERT-
base and BERT-large respectively.

• DSA (Xia et al., 2015b), which first replaces
original words with their antonyms from Word-
Net, and then employs the original and antony-
mous samples for dual sentiment analysis under
softmax regression.

• AGC (Wang and Culotta, 2021), which first
uses WordNet to obtain antonyms for N most
important words in the corpus, and then uses the
word substitution method to obtain counterfac-
tual samples to improve the model robustness.

4.3 Main Results

The results of our proposed approach and com-
pared systems are shown in Table 1. We can eas-
ily observe that our RCDA method consistently
outperforms all the compared systems by using
LSTM, BERT-base, and BERT-large as our text en-
coder.

Specifically, for the LSTM text encoder, RCDA
outperforms the baseline approach by around 2 ab-
solute percentage points on accuracy for each data
set. For the BERT text encoder, RCDA outper-
forms BERT-base by 0.46% on SST-2, 0.36% on
SST-5, 1.09% on RT, 0.4% on Yelp, respectively.
Although BERT-large already reaches highly com-
petitive results, our RCDA approach can still sig-
nificantly boost its performance across the four
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datasets.
Moreover, we can easily observe that our

RCDA approach consistently outperforms most
existing data augmentation-based methods includ-
ing SynDA, ConDA, VAT, DSA, and AGC across
the four datasets. In addition, even in compari-
son with one of the state-of-the-art data augmenta-
tion approach LexicalAT, our RCDA method can
generally achieve better performance across four
datasets, except when using BERT-large as the text
encoder. We confirm that the improvements are
significant according to the paired t-test.

All these observations demonstrate the effec-
tiveness and robustness of our proposed RCDA ap-
proach.

4.4 In-depth Analysis

The effect of alleviating spurious association. In
order to evaluate whether our generated antony-
mous samples can alleviate the spurious associa-
tion problem, we use word frequency as features
to train a logistic regression model for the SST-
2 dataset, and observe the coefficient changes of
neutral words before and after adding antonymous
samples to the training data. Take “English” as an
example, because it has a higher word frequency
in positive class than the negative class, its coeffi-
cient in the original classifier is a positive value
(0.5838). After incorporating antonymous sam-
ples, its coefficient drops from 0.5838 to 0.1231.
Similar trends have been observed for other neu-
tral words such as “book”, “movie”, "Chinese" and
so on, as shown in Table 2. It demonstrates that the
incorporation of antonymous samples can allevi-
ate the spurious association between neutral words
and the class labels.

Word Original Coefficient New Coefficient

book -0.3719 -0.1477
English 0.5838 0.1231
Chinese 0.5791 -0.0927
movie -0.2460 -0.0175

Table 2: The coefficients of words before and after
generating antonymous samples.

Diversity of the generated antonymous sam-
ples. We further evaluate the diversity of antony-
mous samples generated by different approaches
under the evaluation metric named distinct-2 (Li
et al., 2016). In Table 3, it can be observed
that the diversity of antonymous samples gener-
ated by our RCDA approach is significantly larger

SST-2 SST-5 RT Yelp

DSA 0.543 0.520 0.524 0.134
AGC 0.561 0.543 0.542 0.138

RCDA 0.567 0.555 0.554 0.143

Table 3: Comparisons on the diversity of antonymous
samples generated by different approaches.

LSTM SST-2 SST-5 RT Yelp

Random-ant 78.58 38.69 74.46 60.92
RCDA-ant 80.72 40.32 76.95 61.59
Random 81.76 40.99 76.67 62.08
RCDA 82.97 42.35 78.87 62.44

BERTB SST-2 SST-5 RT Yelp

Random-ant 80.14 40.20 77.72 62.54
RCDA-ant 81.32 41.54 79.90 63.16
Random 91.65 53.59 87.25 66.40
RCDA 91.98 54.02 88.23 66.57

Table 4: The impact of reinforcement learning. “ant”
refers to only using the antonymous sentiment predictor
for prediction.

than AGC and DSA, because AGC and DSA used
fixed rules for antonymous sentence generation.
This indicates that our method can indeed generate
more diverse antonymous samples than previous
approaches. Moreover, for each original sentence,
our RCDA approach can automatically generate
multiple antonymous sentences, instead of gener-
ating only one antonymous sentence.
The effect of reinforcement learning for antony-
mous sentence generation. To demonstrate the
effectiveness of reinforcement learning for antony-
mous sentence generation, we consider a simple
compared system named Random, i.e., randomly
selecting candidate words to build antonymous
samples, followed by using our dual sentiment pre-
dictors to make the final sentiment classification.
Moreover, we also report the accuracy of only us-
ing the antonymous sentiment predictor for predic-
tion. As shown in Table 4, our RCDA method
consistently outperforms the random sampling ap-
proach for both dual sentiment predictor and the
antonymous sentiment predictor. This implies that
reinforcement learning can gradually filter out the
low-quality antonymous samples, and select the
best antonymous samples for dual sentiment clas-
sification.
Sensitivity analysis of M . In order to analyze
the impact of the number of sampling samples M
in Section 3.3, we further conduct experiments on
the antonymous samples by varying the values of
M for SST-2, SST-5, and RT datasets, respectively.
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Problem Text Confidence Prediction Daul prediction

Out of vocabulary word Original: escapism in its purest form . (0.9513, 0.0487) negative 7 positive 3Antonymous: escapism in its impure work . (0.9978, 0.0022) negative 3

Low frequency word

Original: a trashy , exploitative , thoroughly unpleasant expe-
rience . (0.2619, 0.7381) positive 7

negative 3Antonymous: a valuable , generative , thoroughly pleasant
inexperience . (0.0002, 0.9998) positive 3

Ambiguous sentiment word

Original: all but the most persnickety preteens should enjoy
this nonthreatening but thrilling adventure . (0.8189, 0.1811) negative 7

positive 3Antonymous: some but the fewest humble preteens should
suffer this nonthreatening but unexciting venture . (0.9997, 0.0003) negative 3

Table 5: Several antonymous samples generated by our method. The bold confidence dimension is the correct label.
With the help of the antonymous samples, our dual sentiment classification method made correct predictions.

Experimental results in Figure 2 show that the ini-
tial increase of M gradually improves the perfor-
mance of the antonymous sentiment classifier; the
best performance can be generally observed when
M=32; after that, the performance gradually drops
as M increases. Therefore, we set M as 32 in our
main experiments.

Figure 2: The impact of different values of M on the
antonymous sentiment predictor.

Sensitivity analysis of K. We further analyze the
impact of the value of the maximum number of
antonym (or synonym) substitution ( i.e., K in Sec-
tion 3.1) on the SST-2, SST-5 and RT datasets. Fig-
ure 3 shows that the model can achieve the best
performance when K is around 3. Specifically,
when K is relatively small, the diversity of the
sample is poor; when K is relatively large, words
with small or even zero word frequency may be in-
troduced into the generated antonymous samples,
which will drop the performance of the sentiment
classifier. Based on the result, we set K to 3 across
all the datasets.

4.5 Case Study
Finally, to better understand the advantage of
the generated antonymous samples, we display
several representative test samples in Table 5,
for which the original sentiment predictor made
wrong predictions, while the antonymous senti-
ment predictor made correct predictions. These
samples can be grouped into three categories, i.e.,

Figure 3: The impact of different values of K on the
antonymous sentiment predictor.

containing out of vocabulary words, low frequency
words, and ambiguous sentiment words.

Based on the first example, it can be found that
antonymous samples can solve the out of vocabu-
lary issue. In the original sample, since “purest” is
an out of vocabulary word, the prediction from the
original predictor is wrong. But in the antonymous
sample, “purest” is replaced with “impure” which
occurred many times in the training set. Therefore,
the antonymous predictor made the correct predic-
tion.

In the second example, although the original
sample contains three negative sentiment words,
their word frequency is relatively low in the train-
ing set, which leads to the incorrect prediction of
the original predictor. In contrast, in the antony-
mous sample, these rare words are replaced with
frequent antonymous words such as “valuable”
and “pleasant”, which helps correct the incorrect
prediction.

Finally, for the third example, as “thrilling” is a
word with ambiguous sentiments, the original pre-
dictor gave incorrect predictions. In the antony-
mous sample, “thrilling” is replaced by a nega-
tive word “unexciting”, which helps our model cor-
rectly predict its sentiment.
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5 Conclusion

In this paper, we propose an end-to-end rein-
forcement learning framework named Reinforced
Counterfactual Data Augmentation (RCDA) for
joint counterfactual data augmentation and dual
sentiment classification, to address the over-fitting
problem and improve the generalization ability of
sentiment classification models. RCDA contains
an antonymous sentence generator to automati-
cally generate massive diverse antonymous sen-
tences and a dual discriminator with an original-
side sentiment predictor and an antonymous-side
sentiment predictor, which are jointly optimized
based on our reinforcement learning framework.
Experiments on four benchmark datasets show
that our approach consistently outperforms strong
data augmentation baselines. In-depth analysis
demonstrates the advantage of our approach in
generating diverse training data and alleviating the
spurious association problem.
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