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Abstract

In various natural language processing tasks,
passage retrieval and passage re-ranking are
two key procedures in finding and ranking rel-
evant information. Since both the two pro-
cedures contribute to the final performance, it
is important to jointly optimize them in order
to achieve mutual improvement. In this pa-
per, we propose a novel joint training approach
for dense passage retrieval and passage re-
ranking. A major contribution is that we intro-
duce the dynamic listwise distillation, where
we design a unified listwise training approach
for both the retriever and the re-ranker. During
the dynamic distillation, the retriever and the
re-ranker can be adaptively improved accord-
ing to each other’s relevance information. We
also propose a hybrid data augmentation strat-
egy to construct diverse training instances for
listwise training approach. Extensive experi-
ments show the effectiveness of our approach
on both MSMARCO and Natural Questions
datasets. Our code is available at https://

github.com/PaddlePaddle/RocketQA.

1 Introduction

Recently, dense passage retrieval has become an
important approach in the task of passage re-
trieval (Karpukhin et al., 2020) to identify rele-
vant contents from a large corpus. The underlying
idea is to represent both queries and passages as
low-dimensional vectors (a.k.a., embeddings), so
that the relevance can be measured via embedding
similarity. Additionally, a subsequent procedure
of passage re-ranking is widely adopted to further
improve the retrieval results by incorporating a re-
ranker (Qu et al., 2021; Luan et al., 2021). Such a
two-stage procedure is particularly useful in a va-
riety of natural language processing tasks, includ-
ing question answering (Mao et al., 2021; Xiong
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et al., 2020b), dialogue system (Ji et al., 2014;
Henderson et al., 2017) and entity linking (Gillick
et al., 2019; Wu et al., 2020).

Following a retrieve-then-rerank way, the dense
retriever in passage retrieval and the re-ranker in
passage re-ranking jointly contribute to the final
performance. Despite the fact that the two mod-
ules work as a pipeline during the inference stage,
it has been found useful to train them in a corre-
lated manner. For example, the retriever with a
dual-encoder can be improved by distilling from
the re-ranker with a more capable cross-encoder
architecture (Qu et al., 2021; Yang et al., 2020),
and the re-ranker can be improved with training
instances generated from the retriever (Qu et al.,
2021; Huang et al., 2020; Gao et al., 2021b).
Therefore, there is increasing attention on corre-
lating the training of the retriever and re-ranker
in order to achieve mutual improvement (Metzler
et al., 2021; Qu et al., 2021; Huang et al., 2020;
Yang et al., 2020). Typically, these attempts train
the two modules in an alternative way: fixing one
module and then optimizing another module. It
will be more ideal to mutually improve the two
modules in a joint training approach.

However, the two modules are usually opti-
mized in different ways, so that the joint learn-
ing cannot be trivially implemented. Specially, the
retriever is usually trained by sampling a number
of in-batch negatives to maximize the probabili-
ties of positive passages and minimize the prob-
abilities of the sampled negatives (Xiong et al.,
2020a; Karpukhin et al., 2020), where the model
is learned by considering the entire list of posi-
tive and negatives (called listwise approach1). As
a comparison, the re-ranker is usually learned in a
pointwise or pairwise manner (Nogueira and Cho,
2019; Nogueira et al., 2019b), where the model is

1Instead of considering the total order as in learning to
rank (Cao et al., 2007), we use “listwise” to indicate that rel-
evance scores are derived based on a candidate list.

https://github.com/PaddlePaddle/RocketQA
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learned based on a single passage or a pair of pas-
sages. To address this issue, our idea is to unify the
learning approach for both retriever and re-ranker.
Specially, we adopt the listwise training approach
for both retriever and re-ranker, where the rele-
vance scores are computed according to a list of
positive and negative passages. Besides, it is ex-
pected to include diverse and high-quality training
instances for the listwise training approach, which
can better represent the distribution of all the pas-
sages in the whole collection. Thus, it requires
more effective data augmentation to construct the
training instances for listwise training.

To this end, we present a novel joint training
approach for dense passage retrieval and passage
re-ranking (called RocketQAv2). The major con-
tribution of our approach is the novel dynamic list-
wise distillation mechanism for jointly training the
retriever and the re-ranker. Based on a unified
listwise training approach, we can readily transfer
relevance information between the two modules.
Unlike previous distillation methods that usually
froze one module, our approach enables the two
modules to adaptively learn relevance information
from each other, which is the key to mutual im-
provement in joint training. Furthermore, we de-
sign a hybrid data augmentation strategy to gener-
ate diverse training instances for listwise training
approach.

The contributions of this paper can be summa-
rized as follows:

• We propose a novel approach that jointly
trains the dense passage retriever and passage
re-ranker. It is the first time that joint training
has been implemented for the two modules.

• We make two major technical contributions
by introducing dynamic listwise distillation
and hybrid data augmentation to support the
proposed joint learning approach.

• Extensive experiments show the effective-
ness of our proposed approach on both MS-
MARCO and Natural Questions datasets.

2 Related Work

Recently, dense passage retrieval has demon-
strated better performance than traditional sparse
retrieval methods (e.g., TF-IDF and BM25) on
the task of passage retrieval. Existing approaches
of learning dense passage retriever can be di-

vided into two categories: (1) self-supervised pre-
training for retrieval (Chang et al., 2020; Lee
et al., 2019; Guu et al., 2020) and (2) fine-tuning
pre-trained language models (PLMs) on labeled
data (Lu et al., 2020; Karpukhin et al., 2020;
Xiong et al., 2020a; Luan et al., 2021; Qu et al.,
2021) . Our work follows the second class of
approaches, which show better performance with
less cost. There are two important tricks to train
an effective dense retriever: (1) incorporating hard
negatives during training (Karpukhin et al., 2020;
Xiong et al., 2020a; Qu et al., 2021) and (2) dis-
tilling the knowledge from cross-encoder-based
reranker into dual-encoder-based retriever (Izac-
ard and Grave, 2020; Yang and Seo, 2020; Qu
et al., 2021; Ren et al., 2021). Based on the
retrieved passages from a retriever, PLM-based
rerankers with the cross-encoder architecture have
recently been applied on passage re-ranking to
improve the retrieval results (Qiao et al., 2019;
Nogueira and Cho, 2019; Wang et al., 2019; Yan
et al., 2019), and yield substantial improvements
over the traditional methods.

Apart from separately considering the above
two tasks, it has been proved that passage retrieval
and passage re-ranking are actually highly related
and dependent (Huang et al., 2020; Gao et al.,
2020; Khattab and Zaharia, 2020). The retriever
needs to capture the relevance knowledge from the
re-ranker, and the re-ranker should be specially
optimized according to the preceding results of
the retriever. Some efforts studied the possibil-
ity of leveraging the dependency of retriever and
re-ranker, and try to enhance the connection be-
tween them in an alternative way (Qu et al., 2021;
Yang et al., 2020; Huang et al., 2020). Further-
more, several studies attempted to jointly train the
retriever and the reader for Open-domain Question
Answering (Guu et al., 2020; Sachan et al., 2021;
Karpukhin et al., 2020). Different from the prior
studies, our method is a joint learning architecture
of the dense passage retriever and the re-ranker.

3 Methodology

In this section, we describe a novel joint training
approach for dense passage retrieval and passage
re-ranking (called RocketQAv2)

3.1 Overview

In this work, we consider two tasks including
dense passage retrieval and passage re-ranking,
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which are described as follows.
Given a query q, the aim of dense passage re-

trieval is to retrieve k most relevant passages from
a large collection of M text passages. The dual-
encoder (DE) architecture is widely adopted by
prior works (Karpukhin et al., 2020; Luan et al.,
2021; Qu et al., 2021), where two separate dense
encoders EP (·) and EQ(·) are used to map pas-
sages and queries to d-dimensional real-valued
vectors (a.k.a., embeddings) separately, and then
an index of all passage embeddings is built for ef-
ficient retrieval. The similarity between the query
q and the passage p is defined using the dot prod-
uct:

sde(q, p) = EQ(q)
> · EP (p). (1)

Given a list of candidate passages retrieved by a
passage retriever, the aim of passage re-ranking
is to further improve the retrieval results with
a re-ranker, which estimates a relevance score
s(q, p) measuring the relevance level of a candi-
date passage p to a query q. Among the imple-
mentations of the re-ranker, a cross-encoder (CE)
based on PLMs usually achieves superior per-
formance (Nogueira and Cho, 2019; Qiao et al.,
2019), which can better capture the semantic in-
teractions between the passage and the query, but
requires more computational efforts than the dual-
encoder. To compute the relevance score sce(q, p),
a special token [SEP] is inserted between q and
p, and then the representation at the [CLS] token
from the cross-encoder is fed into a learned linear
function.

Usually, the passage retriever and the passage
re-ranker are learned in either a separate or al-
ternative way (i.e., fixing one and then training
the other). To achieve the joint training, we in-
troduce dynamic listwise distillation (Section 3.2),
which can adaptively improve both components
in a joint optimization process. To support the
listwise training, we further propose hybrid data
augmentation (Section 3.2) for generating diverse
and high-quality training instances. Based on the
two major contributions, we present the learning
procedure in Section 3.4 and related discussion in
Section 3.5.

3.2 Dynamic Listwise Distillation

Since the re-ranker adopts the more capable
cross-encoder architecture, it has become a com-
mon strategy to distill the knowledge from re-
ranker into the retriever. However, in prior stud-
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Figure 1: The illustration of dynamic listwise distilla-
tion in our approach.

ies (Karpukhin et al., 2020; Xiong et al., 2020a;
Qu et al., 2021), the retriever and re-ranker are
usually learned in different ways, and the param-
eters of the re-ranker are frozen, which cannot
jointly optimize the two components for mutual
improvement. Considering this issue, we design a
unified listwise training approach to learn both the
retriever and the re-ranker, and dynamically up-
date both the parameters of the re-ranker and the
retriever during distillation. In this way, the two
components can adaptively improve each other.
We call this approach as dynamic listwise distilla-
tion. Next, we will describe the details of dynamic
listwise distillation.

Formally, given a query q in a query set Q and
the corresponding list of candidate passages (in-
stance list) Pq = {pq,i}1≤i≤m related to query
q, we can obtain the relevance scores Sde(q) =
{sde(q, p)}p∈Pq and Sce(q) = {sce(q, p)}p∈Pq of a
query q and passages in Pq from the dual-encoder-
based retriever and the cross-encoder-based re-
ranker, respectively. Then, we normalize them in a
listwise way to obtain the corresponding relevance
distributions over candidate passages:

s̃de(q, p) =
esde(q,p)∑

p′∈Pq
esde(q,p′)

, (2)

s̃ce(q, p) =
esce(q,p)∑

p′∈Pq
esce(q,p′)

. (3)

The main idea is to adaptively reduce the dif-
ference between the two distributions from the re-
triever and the re-ranker so as to mutually improve
each other. To achieve the adaptively mutual im-
provement, we minimize the KL-divergence be-
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Figure 2: The illustration of hybrid data augmentation.

tween the two relevance distributions {s̃de(q, p)}
and {s̃ce(q, p)} from the two modules:

LKL =
∑

q∈Q,p∈Pq

s̃de(q, p) · log
s̃de(q, p)

s̃ce(q, p)
. (4)

Additionally, we provide ground-truth guidance
for the joint training. Specifically, we also adopt a
cross-entropy loss for the re-ranker based on pas-
sages in Pq with supervised information:

Lsup = − 1

N

∑
q∈Q,p+

log
esce(q,p+)

esce(q,p+) +
∑

p− esce(q,p−)
,

(5)

where N is the number of training instances, and
p+ and p− denote the positive passage and neg-
ative passage in Pq, respectively. We combine
the KL-divergence loss and the supervised cross-
entropy loss defined in Eq. (4) and Eq. (5) to obtain
the final loss function:

Lfinal = LKL + Lsup. (6)

Figure 1 presents the illustration of the dynamic
listwise distillation. The re-ranker is optimized
with labeled lists (Eq. (5)), and it produces rele-
vance distributions to train the retriever (Eq. (4)).
Unlike RocketQA that conducts hard pseudo la-
beled data (Qu et al., 2021), we utilize soft labels
(i.e., estimated relevance distributions) for rele-
vance distillation. Besides, we dynamically up-
date the parameters of the re-ranker in order to
adaptively synchronize the two modules for mu-
tual improvement. To discriminate from the pre-
vious static distillation based on pseudo labels, we
call our method as dynamic listwise distillation.

3.3 Hybrid Data Augmentation
To perform dynamic listwise distillation, we need
to generate the candidate passage list Pq for query
q. Since our approach relies on listwise train-
ing, we expect the candidate passage list in-

cludes diverse and high-quality candidate pas-
sages, which may better represent the distribu-
tion of all the passages in the whole collection.
Prior works (Xiong et al., 2020a; Qu et al., 2021;
Karpukhin et al., 2020) demonstrate that it is im-
portant to include hard negatives in the candi-
date passage list. Basically, ANCE (Xiong et al.,
2020a) and DRP (Karpukhin et al., 2020) intro-
duces the randomly sampled hard negatives, while
RocketQA (Qu et al., 2021) incorporates denoised
hard negatives. Inspired by prior works, we design
a hybird data augmentation way to construct di-
verse training instances by incorporating both ran-
dom sampling and denoised sampling.

As shown in Figure 2, our proposed hybrid data
augmentation includes both undenoised and de-
noised instances. First, we utilize the RocketQA
retriever to retrieve top-n passages from the cor-
pus. For undenoised instances, we randomly sam-
ple the undenoised hard negatives from retrieved
passages and include ground-truth positives. For
denoised instances, we utilize the RocketQA re-
ranker to remove the predicted negatives with low
confidence scores. We also include denoised pos-
itives that are predicted as positives by the Rock-
etQA re-ranker with high confidence scores.

Compared with previous methods, our data aug-
mentation method utilizes more ways (undenoised
or denoised) to generate both positives and nega-
tives to improve the diversity of instances list Pq.
Specially, we mainly focus on including hard neg-
atives. This is particularly important to dynamic
listwise distillation, since weak negatives are easy
to be identified, which cannot increase additional
gain for both modules.

3.4 Training Procedure

In this section, we present the training procedure
of our approach.

Figure 3 presents the illustration of the train-
ing procedure for our approach. We first initialize
the retriever and re-ranker with the learned dual-
encoder and cross-encoder of RocketQA 2. Then,
we utilize the retriever and re-ranker in RocketQA

2Note that in this paper, RocketQA retriever is the model
in the first step of RocketQA and the RocketQA re-ranker is
the model in the second step of RocketQA. The two mod-
els can also be replaced with other trained retriever and re-
ranker. We found that using the trained model to initialize
retriever and reranker can help achieve slightly better results.
This is due to the fact that the retriever and re-ranker have a
mutual influence during training, the initialized retriever and
re-ranker can facilitate the initial optimization stage.
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Dataset #query in train #query in dev #query in test #passage

MSMARCO 502,939 6,980 6.837 8,841,823
Natural Questions 58,812 6,515 3,610 21,015,324

Table 1: The detailed statistics of MSMARCO and Natural Questions.
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Re-ranker
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Initialize

RocketQA
Retriever
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Re-ranker

Hybrid 
Training Data
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Figure 3: The overall joint training architecture of
RocketQAv2.

to generate the training data via hybrid data aug-
mentation in Section 3.3. Finally, we preform dy-
namic listwise distillation to jointly optimize the
retriever and re-ranker following Section 3.2. Dur-
ing distillation, the retriever and re-ranker are mu-
tually optimized according to the final retrieval
performance. After the training stage, we can ap-
ply the retriever and re-ranker for inference in a
pipeline.

3.5 Discussion

In this section, we discuss the comparison with
RocketQA.

This work presents an extended contribution
to RocketQA (Qu et al., 2021), called Rock-
etQAv2. As seen from above, RocketQAv2 reuse
the network architecture and important training
tricks in RocketQA. A significant improvement is
that RocketQAv2 incorporates a joint training ap-
proach for both the retriever and the re-ranker via
dynamic listwise distillation. For dynamic listwise
distillation, RocketQAv2 designs a unified listwise
training approach, and utilizes soft relevance la-
bels for mutual improvement. Such a distillation
mechanism is able to simplify the training pro-
cess, and also provides the possibility for end-to-
end training the entire dense retrieval architecture.

4 Experiments

In this section, we first describe the experimental
settings, then report the main experimental results,

ablation study, and detailed analysis.

4.1 Experimental Setup

Datasets We adopt two public datasets on dense
passage retrieval and passage re-ranking, includ-
ing MSMARCO (Nguyen et al., 2016) and Natu-
ral Questions (Kwiatkowski et al., 2019). Table 1
lists the statistics of the datasets. MSMARCO was
originally designed for multiple passage machine
reading comprehension, and its queries were sam-
pled from Bing search logs. Based on the queries
and passages in MSMARCO Question Answer-
ing, MSMARCO Passage Ranking for passage re-
trieval and ranking was created. Natural Ques-
tions (NQ) was originally introduced for open-
domain QA. This corpus consists of real queries
from the Google search engine along with their
long and short answer annotations from the top-
ranked Wikipedia pages. DPR (Karpukhin et al.,
2020) selected the queries that had short answers
and processed all the Wikipedia articles as the col-
lection of passages. In our experiments, we reuse
the NQ version created by DPR.

Evaluation Metrics Following previous work,
we adopt Mean Reciprocal Rank (MRR) and Re-
call at top k ranks (Recall@k) to evaluate the per-
formance of passage retrieval. MRR calculates the
averaged reciprocal of the rank at which the first
positive passage is retrieved. Recall@k calculates
the proportion of questions to which the top k re-
trieved passages contain positives.

Model Specifications Our retriever and re-
ranker largely follow ERNIE-2.0 base (Sun et al.,
2020), which is a BERT-like (Devlin et al., 2019)
model with 12-layer transformers and introduces a
continual pre-training framework on multiple pre-
trained tasks. As described in previous section, the
retriever is initialized with the parameters of the
dual-encoder in the first step of RocketQA, and the
re-ranker is initialized with the parameters of the
cross-encoder in the second step of RocketQA.

Implementation Details We conduct experi-
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Methods PLM MSMARCO Dev Natural Questions Test
MRR@10 R@50 R@1000 R@5 R@20 R@100

BM25 (anserini) (Yang et al., 2017) - 18.7 59.2 85.7 - 59.1 73.7

doc2query (Nogueira et al., 2019c) - 21.5 64.4 89.1 - - -
DeepCT (Dai and Callan, 2019) - 24.3 69.0 91.0 - - -
docTTTTTquery (Nogueira et al., 2019a) - 27.7 75.6 94.7 - - -
GAR (Mao et al., 2020) - - - - - 74.4 85.3
UHD-BERT (Jang et al., 2021) - 29.6 77.7 96.1 - - -
COIL (Gao et al., 2021a) - 35.5 - 96.3 - - -

DPR (single) (Karpukhin et al., 2020) BERTbase - - - - 78.4 85.4
DPR-E ERNIEbase 32.5 82.2 97.3 68.4 80.7 87.3
ANCE (single) (Xiong et al., 2020a) RoBERTabase 33.0 - 95.9 - 81.9 87.5
TAS-Balanced (Hofstätter et al., 2021) BERTbase 34.0 - 97.5 - - -
ME-BERT (Luan et al., 2021) BERTlarge 34.3 - - - - -
ColBERT (Khattab and Zaharia, 2020) BERTbase 36.0 82.9 96.8 - - -
NPRINC (Lu et al., 2020) BERTbase 31.1 - 97.7 73.3 82.8 88.4
ADORE+STAR (Zhan et al., 2021) RoBERTabase 34.7 - - - - -
RocketQA (Qu et al., 2021) ERNIEbase 37.0 85.5 97.9 74.0 82.7 88.5
PAIR (Ren et al., 2021) ERNIEbase 37.9 86.4 98.2 74.9 83.5 89.1

RocketQAv2 (retriever) ERNIEbase 38.8 86.2 98.1 75.1 83.7 89.0

Table 2: Passage retrieval results on MSMARCO and Natural Questions datasets. PLM is the abbreviation of
Pre-trained Language Model. We copy the results from original papers and we leave it blank if the original paper
does not report the result. The best and second-best results are in bold and underlined fonts respectively.

ments with the deep learning framework Pad-
dlePaddle (Ma et al., 2019) on up to 32 NVIDIA
Tesla V100 GPUs (with 32G RAM). For both two
datasets, we used the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 1e-5. The
model is trained up to 3 epochs with a batch size
of 96. The dropout rates are set to 0.1 on the cross-
encoder. The ratio of the positive to the hard neg-
ative is set to 1:127 on MSMARCO and 1:31 on
NQ.

4.2 Results on Passage Retrieval

In this part, we first describe the comparing base-
lines, then report the results on passage retrieval.

4.2.1 Baselines
To have comprehensive comparison, we choose as
baselines the state-of-the-art approaches that con-
sider both sparse and dense passage retrievers.

The sparse retrievers include the traditional re-
triever BM25 (Yang et al., 2017) and five tra-
ditional retrievers enhanced by neural networks,
including doc2query (Nogueira et al., 2019c),
DeepCT (Dai and Callan, 2019), docTTTTT-
query (Nogueira et al., 2019a), GAR (Mao
et al., 2020), UHD-BERT (Jang et al., 2021) and
COIL (Gao et al., 2021a). Both doc2query and
docTTTTTquery employ neural query generation
to expand documents. In contrast, GAR employs
neural generation models to expand queries and

UHD-BERT is empowered by extremely high di-
mensionality and controllable sparsity. Different
from them, DeepCT and COIL utilizes BERT to
learn the term weight or inverted list.

The dense retrievers include DPR (Karpukhin
et al., 2020), DPR-E, ANCE (Xiong et al., 2020a),
ME-BERT (Luan et al., 2021), NPRINC (Lu et al.,
2020), ColBERT (Khattab and Zaharia, 2020)
RocketQA (Qu et al., 2021), TAS-Balanced (Hof-
stätter et al., 2021), ADORE+STAR (Zhan et al.,
2021) and PAIR (Ren et al., 2021). DPR-E is our
implementation of DPR using ERNIE (Sun et al.,
2020) instead of BERT, which is to examine the
effects of pre-trained language models.

4.2.2 Results
The results of different passage retrieval methods
are presented in Table 2. It can be observed that:

(1) Among all methods, we can see the Rock-
etQAv2 retriever and PAIR outperform other base-
lines by a large margin. PAIR is a contempora-
neous work with RocketQAv2, which obtains im-
provement by pre-training on out-of-domain data.
We observe that RocketQAv2 outperforms PAIR
in the metrics of MRR@10 and Recall@5, we
consider that dynamic listwise distillation enables
the retriever to capture the re-ranker ability of pas-
sage ranking at top ranks. Our model is trained
with complete in-domain training data. Different
from the baselines, we adopt a listwise training ap-
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Methods PLM #candidate Retriever MRR@10

BM25 (anserini) (Yang et al., 2017) - - - 18.7
ColBERT (Khattab and Zaharia, 2020) BERTbase 1000 BM25 34.9
BERTlarge (Nogueira and Cho, 2019) BERTlarge 1000 BM25 36.5
RepBERT (Zhan et al., 2020) BERTlarge 1000 RepBERT 37.7
Multi-stage (Nogueira et al., 2019b) BERTbase 1000 BM25 39.0
CAKD (Hofstätter et al., 2020) DistilBERT 1000 BM25 39.0
ME-BERT (Luan et al., 2021) BERTlarge 1000 ME-BERT 39.5
ME-HYBIRD (Luan et al., 2021) BERTlarge 1000 ME-HYBIRD 39.4
TFR-BERT (Han et al., 2020) BERTlarge 1000 BM25 40.5
RocketQA (Qu et al., 2021) ERNIEbase 50 RocketQA 40.9

RocketQAv2 (re-ranker)
ERNIEbase 1000 BM25 40.1
ERNIEbase 50 RocketQA 41.8
ERNIEbase 50 RocketQAv2 (retriever) 41.9

Table 3: The MRR@10 results of different methods for passage re-ranking on MSMARCO dataset. We copy the
baseline results from original papers and report the PLM, candidate number and retriever for each method.

proach to jointly train both retriever and re-ranker
and couple the two models by dynamic listwise
distillation with hybrid data augmentation.

(2) We notice that different PLMs are used in
different approaches, as shown in the second col-
umn of Table 2. In our approach, we use ERNIE
base as the backbone model. We replacing BERT
base used in DPR with ERNIE base to examine
the effect of the backbone model, namely DPR-E.
we observe that although both two methods em-
ploy the same backbone PLM, our method signifi-
cantly outperforms DPR-E, indicating that PLM is
not the factor for improvement.

(3) Among sparse retrievers, we find that COIL
outperforms other methods, which seems to be a
robust sparse baseline that gives substantial per-
formance on the two datasets. We also observed
that sparse retrievers overall perform worse than
dense retrievers, such a finding has also been re-
ported in prior studies (Xiong et al., 2020a; Luan
et al., 2021; Qu et al., 2021), which indicates the
effectiveness of the dense retrieval approach.

4.3 Results on Passage Re-ranking

In this part, we first describe the comparing base-
lines, then report the results on passage re-ranking.

4.3.1 Baselines
We report the results of the following baselines:
BM25 (Yang et al., 2017), ColBERT (Khattab
and Zaharia, 2020), BERTlarge (Nogueira and Cho,
2019), RepBERT (Zhan et al., 2020), Multi-
stage (Nogueira et al., 2019b), CAKD (Hofstätter
et al., 2020), ME-BERT (Luan et al., 2021), ME-
HYBIRD (Luan et al., 2021), TFR-BERT (Han
et al., 2020) and RocketQA (Qu et al., 2021).

Among these methods, BM25 is a term-based
method, and the rest are BERT-based methods
based on neural networks. Since RocketQA does
not report re-ranking results, we use the open-
source re-ranker in RocketQA repository for eval-
uation. We report the results of RocketQAv2 re-
ranker based on BM25 retriever with 1000 candi-
dates, RocketQA retriever with 50 candidates and
RocketQAv2 retriever with 50 candidates for com-
paring.

The prior works follow the two-stage approach
(i.e., retrieve-then-rerank), where a passage re-
triever retrieves a (usually large) list of candidates
from the passage collection in the first stage. In
the second stage, a more expensive model (e.g.,
BERT-based cross-encoder) re-ranks the candi-
dates. Note that the retrievers in baseline models
may be differently designed.

4.3.2 Results
Table 3 summarizes the passage re-ranking perfor-
mance of RocketQAv2 re-ranker and all baselines
on MSMARCO dataset.

As we can see, the RocketQAv2 re-ranker sig-
nificantly outperforms all the competitive meth-
ods, demonstrating that the re-ranker benefits from
our joint learning process, which is optimized to
fit the relevance distribution of the retriever with
dynamic listwise distillation. Morever, if we use
RocketQAv2 re-ranker to replace RocketQA re-
ranker and apply it on the retrieval results by
RocketQA retriever, we can see that RocketQAv2
re-ranker brings 0.9 percentage point improve-
ment comparing to RocketQA re-ranker. This also
demonstrates the effectiveness of RocketQAv2 re-
ranker. Additionally, if we apply RocketQAv2 re-
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Methods MRR@10 R@50

RocketQAv2 (retriever) 37.4 84.9

w/ Static Distillation 36.0 84.5
w/ Pointwise 36.3 83.9

w/o Denoised Instances 36.3 84.9

Table 4: The results of different variants of Rock-
etQAv2 retriever with eight training instances per query
on MSMARCO dataset. Note that the results on NQ are
similar and omitted here due to limited space.

ranker on the top 1000 candidates by BM25, the
performance is significantly better than other base
models, and comparable to other large models.

4.4 Detailed Analysis

Apart from the above illustration, we also imple-
ment detailed analysis on both dynamic listwise
distillation and hybrid data augmentation.

4.4.1 Analysis on Distillation
In this section, we analyze the results of retriever
by replacing the optimization form in dynamic
listwise distillation.

Dynamic or Static? To examine the effect of
dynamic optimization in distillation, we utilize a
well-trained cross-encoder based re-ranker as a
teacher model to perform static distillation com-
paring with dynamic listwise distillation. Dur-
ing static distillation, the parameters of re-ranker
model are not updated and the retriever captures
the relevance knowledge from the re-ranker in
a traditional knowledge distillation manner. As
shown in Table 4, training with static distilla-
tion brings a performance drop. It demonstrates
that dynamic optimization of both retriever and
re-ranker enables to share relevance distributions
with each other and brings a significant perfor-
mance improvement.

Listwise or Pointwise? To study the effect of
the listwise training approach, we replace it with
the pointwise training approach for the re-ranker
during joint training. In such case, the training
approaches of the retriever and the re-ranker are
actually different. The re-ranker mainly optimized
by the pointwise relevance scores of instances in
Pq, while the retriever has to learn the relevance
3 from the re-ranker in a listwise way. Table 4

3To enable learning the retriever, the pointwise relevance
score from the re-ranker should be normalized in a listwise
way.
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Figure 4: MRR@10 results of passage retrieval and
passage re-ranking with different numbers of instances
per query on MSMARCO. Note that instances per
query contain one positive instance, and the rest are
hard negatives.

shows that the pointwise training approach brings
performance drop, and the listwise training ap-
proach performs better in our joint training arch-
tecture. It demonstrates that the listwise training
approach is more suitable in our joint training ar-
chitecture than pointwise, since it can better simu-
late the relevance distribution in dynamic listwise
distillation.

4.4.2 Analysis on Hybrid Data Augmentation

In this section, we conduct a detailed analysis for
the hybrid data augmentation.

The Effect of Denoised Instances In order to
examine the effect of hybrid training data, we re-
move the denoised instances in training data and
only use the undenoised data for joint training.
Table 4 shows the performance drop in terms of
MRR@10 without denoised instances, which in-
dicates that training data generated from differ-
ent ways better represent the distribution of all the
passages in the whole collection, and improve the
performance especially on the metrics at top ranks.

The Number of Hard Negatives In hybrid data
augmentation, we focus on obtaining diverse hard
negatives. In our experiments, we find that the
number of hard negatives significantly affects the
performance of our joint training approach. As
we described in previous section, for each query,
we sample one positive instance and the rest of in-
stances in the instance list Pq are hard negatives.
Thus, the effect of the number of hard negatives
should be equivalent to the effect of the number of
instances. Figure 4 shows the effect of the num-
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ber of instances on both the passage retrieval and
the passage re-ranking. From Figure 4, we can ob-
serve that a larger number of instances (i.e., num-
ber of hard negatives) improves the performance.
The result demonstrates that instance list Pq with
more instances can better represent the distribution
of all the passages in the whole collection.

Incorporation of In-batch Negatives For fur-
ther study, we examine the effect of in-batch neg-
atives in joint training process. Besides the hard
negatives, we incorporate in-batch sampling dur-
ing the joint training process, which can increase
the amount of negatives for each query. Although
the queries have additional in-batch negatives, we
did not observe the performance improvements.

5 Conclusion

This paper has presented a novel joint training
approach for dense passage retrieval and passage
re-ranking. To implement the joint training, we
have made two important technical contributions,
namely dynamic listwise distillation and hybrid
data augmentation. Such an approach is able
to enhance the mutual improvement between the
retriever and the re-ranker, which can also sim-
plify the training process. Extensive results have
demonstrated the effectiveness of our approach.
To our knowledge, it is the first time that the re-
triever and re-ranker are jointly trained in a uni-
fied architecture, which provides the possibility of
training the entire retrieval architecture in an end-
to-end way.
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