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Abstract

Taxonomies are symbolic representations of
hierarchical relationships between terms or en-
tities. While taxonomies are useful in broad
applications, manually updating or maintain-
ing them is labor-intensive and difficult to
scale in practice. Conventional supervised
methods for this enrichment task fail to find
optimal parents of new terms in low-resource
settings where only small taxonomies are avail-
able because of overfitting to hierarchical rela-
tionships in the taxonomies.

To tackle the problem of low-resource taxon-
omy enrichment, we propose Musubu, an ef-
ficient framework for taxonomy enrichment in
low-resource settings with pretrained language
models (LMs) as knowledge bases to compen-
sate for the shortage of information. Musubu
leverages an LM-based classifier to determine
whether or not inputted term pairs have hier-
archical relationships. Musubu also utilizes
Hearst patterns to generate queries to leverage
implicit knowledge from the LM efficiently
for more accurate prediction. We empirically
demonstrate the effectiveness of our method
in extensive experiments on taxonomies from
both a SemEval task and real-world retailer
datasets.

1 Introduction

Taxonomies, which represent the hierarchical rela-
tionships between terms, have been widely utilized
in tasks related to information retrieval, recommen-
dation, and classification (Agrawal et al., 2009;
Huang et al., 2019; Babbar et al., 2016). Because
the target domain of a specific taxonomy changes
over time, taxonomies must be kept up to date so
that newly introduced categories and hierarchical
relationships can be properly integrated. However,
manually constructing and maintaining taxonomies
is a costly task due to their labor-intensive and
domain-specific nature (Gao et al., 2018; Shen
et al., 2018).

Figure 1: Enrichment of taxonomy with sufficient re-
sources (top) and low resources (bottom). Conven-
tional supervised methods for taxonomy enrichment
fail to enrich small seed taxonomies because the num-
ber of hierarchical relations of term pairs used as train-
ing samples is limited.

The goal of a taxonomy enrichment task is to
automate this costly maintenance (Jurgens and Pile-
hvar, 2016; Shen et al., 2018), as shown in Fig. 1.
Taxonomy enrichment methods enrich a taxonomy
that may be incomplete, i.e., a seed taxonomy, by
predicting new hierarchical relationships between
terms in the seed taxonomy and new terms. We
focus on low-resource taxonomy enrichment tasks,
in which there are few terms in the seed taxonomy,
specifically less than 10,000. Previous studies on
hypernymy detection used a similar definition for
low-resource settings (Yu et al., 2020). Although
conventional methods for taxonomy enrichment
use large taxonomies (e.g., WordNet taxonomy
(90,000 terms) (Miller, 1995), Microsoft Academic
Graph (355,000 terms) (Sinha et al., 2015), most
of the ones used in realistic situations (as seen in



2748

§4) have around a thousand terms, so they are cate-
gorized as low-resource settings.

Existing supervised methods (Baroni et al., 2012;
Shen et al., 2020; Manzoor et al., 2020) train their
parameters with term pairs in a seed taxonomy
to find the optimal parent of a new term. These
methods do not work in low-resource settings (as
we verify in §4) because they require many term
pairs. Although Mao et al. (2020) partially tackled
the problem of a small seed taxonomy, their pro-
posed method requires additional information such
as user search logs to improve the performance,
which is not always available.

To handle low-resource taxonomy enrichment
tasks, we propose Musubu, an efficient framework
for such situations, with pretrained language mod-
els (LMs) to compensate for the shortage of infor-
mation on hierarchical relationships in a seed tax-
onomy. Musubu leverages a pretrained LM-based
classifier to determine whether term pairs have hi-
erarchical relations for enriching taxonomies. The
classifier can find the relationships accurately even
if the training samples are limited because LMs
contain real-world term relationships in their pa-
rameters (Petroni et al., 2019). Musubu also uti-
lizes Hearst patterns (Hearst, 1992) for generating
queries from term pairs to extract implicit knowl-
edge related to them embedded in LMs efficiently.

We empirically demonstrate the effectiveness
of our approach in the taxonomy enrichment
task through extensive experiments on both the
SemEval-2015 Task 17 (Bordea et al., 2015) tax-
onomies and real-world commerce taxonomies in
Amazon and Walmart.

Our contributions are summarized as follows:

• We propose an approach for taxonomy en-
richment that utilizes a pretrained LM as an
implicit knowledge base and infers new hier-
archical relationships.

• We leverage Hearst patterns to generate
queries from term pairs to extract LM’s knowl-
edge effectively.

• We empirically demonstrate the effectiveness
of our method for low-resource taxonomy en-
richment through extensive experiments on
real-world taxonomies.

2 Problem Statement

In this section, we describe the notations and the
problem definition of this paper.

2.1 Notations

We denote a taxonomy T = (V,E) as a tree-
structured hierarchy with a term set V and a di-
rected edge set E. A term v ∈ V can consist
of either a single word (e.g., “tea”) or multiple
words (e.g., “soy milk”). The edge set E =
{(v, vpar); v ∈ V } ⊂ V × V , where vpar ∈ V
is a parent of v, represents a set of hierarchical
relationships between terms (e.g., “milk tea” →
“tea”).

2.2 Problem Definition

Given a seed taxonomy T = (V,E) and a set of
new terms V ′, taxonomy enrichment estimates an
extended taxonomy T̃ = (Ṽ , Ẽ) with Ṽ = V ∪V ′
and Ẽ = E ∪ E′ (Shen et al., 2018; Mao et al.,
2020). Here, E′ contains new edges (v′, v), v′ ∈
V ′, and v ∈ V , where v is a parent term of v′.
In this paper, we focus on a situation where the
taxonomy |V | is small such as |V | < 10, 000 as
mentioned in §1, hereafter referred to as a low-
resource taxonomy enrichment problem.

3 Method

The goal of low-resource taxonomy enrichment is
to find the optimal parent v? ∈ V of each new term
v′ ∈ V ′ in low-resource settings. We introduce a
formulation of the taxonomy enrichment problem
based on our probabilistic taxonomy model, then
elaborate on our classification approach based on
pretrained LMs and Hearst patterns.

3.1 Probabilistic Model on Taxonomy

To formulate the taxonomy enrichment problem,
we model the entire taxonomy using the graphical
model formulation by Bansal et al. (2014)1. Specif-
ically, we define the likelihood of a taxonomy using
a graphical model with a factor for each edge in the
taxonomy:

p(T |Θ) ∝
∏

(v1,v2)∈E

φE(v1, v2|Θ), (1)

where Θ is a set of model parameters, v2 denotes
the parent of a term v1 in taxonomy T , and φE
is an associated scoring function of the term pair.
By using the probabilistic model, we formulate the
taxonomy enrichment problem to find the optimal

1While their study considered multiple types of factors, we
only use edge factors.
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enriched taxonomy T̃ ? as the following optimiza-
tion problem:

T̃ ? = arg max
T̃

p(T̃ |Θ)

= arg max
T̃

∏
(v1,v2)∈Ẽ

φE(v1, v2|Θ) (2)

= arg max
T̃

∏
(v′,v)∈E′

φE(v′, v|Θ). (3)

Following the conventions of taxonomy enrich-
ment, the low-resource taxonomy enrichment prob-
lem (§2.2) assumes that a seed taxonomy T never
changes and a new term v′ is always attached under
the terms in a seed taxonomy T (in other words, it
will not be attached under previously added terms).
The assumptions allow us to ignore the scores of
edges E in a seed taxonomy and the factors be-
tween new terms (Eq. (2)→ Eq. (3)). Thus, we
can cast the problem of finding the optimal parent
term v?(∈ V ) of a new term v′ as the following
optimization problem for each term v′ ∈ V ′:

v? = arg max
v∈V

φE(v′, v|Θ). (4)

The optimization problem Eq. (4) can be re-
garded as a multiclass classification problem, the
classes of which are V . However, each class,
v ∈ V , has only a few or no positive training ex-
amples i.e., children of v. Thus, instead of directly
solving this kind of problem, we treat it as a binary
classification problem that classifies whether a term
(v′, v) has a hierarchical relationship.

3.2 Classifier Leveraging Pretrained
Language Model and Hearst Patterns

To mitigate the shortage of information in low-
resource taxonomy enrichment, our Musubu frame-
work, a novel approach to taxonomy enrichment,
leverages pretrained language models (LMs) as al-
ternative information resources. Musubu consists
of two main modules: an LM-based classifier pLM
and a query generator q, as shown in Fig. 2. The
query generator generates a query text q(v′, v) from
a given term pair (v′, v). Then, given the query text
q(v′, v), the LM-based classifier fLM is used to
classify whether the term pair has a hierarchical
relationship. The LM-based classifier uses implicit
knowledge embedded in the LM and the query
generator utilizes Hearst patterns (Hearst, 1992) to
generate queries to use the LM’s knowledge effi-
ciently for taxonomy enrichment. In addition, we

fine-tune the LM-based classifier with hierarchical
relationships in a seed taxonomy to adapt it to the
taxonomy.

Language Models as Knowledge Bases.
Musubu leverages a pretrained LM as an exter-
nal knowledge base for enriching taxonomies. Ac-
cording to Petroni et al. (2019), large LMs (e.g.,
BERT (Devlin et al., 2019)) acquire term mean-
ings and relationships as their weights by train-
ing on many documents. In low-resource settings,
LMs can potentially improve the performance of
taxonomy enrichment because relational knowl-
edge learned in LMs can augment a limited num-
ber of available hierarchical relationships in seed
taxonomies for training.

Classifier with Language Models. To leverage
LMs in the taxonomy enrichment task, we take
an LM-based text classification approach that uses
an LM and a fully connected (FC) layer to clas-
sify texts2. LM-based text classifiers are more of-
ten used in few-shot classification than classifiers
with word2vec/fasttext (Gupta et al., 2020). We
input a query to the LM-based classifier, and then
the classifier detects whether or not the term pair
corresponding to the query has a hierarchical rela-
tionship. The classifier is fine-tuned with a seed
taxonomy to adapt to the hierarchical relationships
(see §3.3 for details).

Query Generation. To use pretrained LMs ef-
ficiently for taxonomy enrichment, Musubu gen-
erate queries from term pairs by using Hearst
patterns (Hearst, 1992) and then input them into
the LM-based classifier. These patterns are well-
known lexical patterns used to represent hypernym-
hyponym relationships (e.g., “Y such as X”) as
shown in Table 2. Normally, Hearst patterns are
used for hypernymy detection from text corpora.
We use Hearst patterns in a way that is different
from the original approach to generate a query from
a term pair for LMs, as shown in Fig. 2 (a). For
instance, when we have a term pair “oranges” and
“fruits” and choose a pattern “Y such as X,” we
generate the query “fruits such as oranges.” We
then input the generated query to the LM-based
classifier to classify whether or not the correspond-
ing term pair has a hierarchical relationship. While
the conventional pattern-based approaches find hi-

2Although the masked language model scoring (Salazar
et al., 2020) can be used for taxonomy enrichment by scoring
queries of term pairs, this approach is ineffective because
hierarchical relations in seed taxonomies are ignored as shown
in the Musubu-noFT row in Table 3.
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Figure 2: (a) Musubu architecture, (b) training, and (c) inference. Musubu transforms each term pair (v′, v) into a
Hearst pattern-based query “v such as v′,” encodes the query, and then determines whether or not the term pair has
a hierarchical relationship.

erarchical relationships from the text corpus by
matching the patterns, our approach utilizes the
LM’s implicit knowledge using generated queries
with patterns.

How does the query generator take advantage of
Hearst patterns in generating queries in Musubu?
Output sentences from the query generator are fed
into LMs trained on a natural language corpus, so
sentences from the generator should be naturally
written. We found that Hearst patterns were used in
the past to extract a hierarchical relationship of two
terms from a natural language corpus, and the pat-
terns were then used to generate naturally written
sentences which imply hierarchies. We verified that
the naturally written queries outperform awkward
queries such as space-delimited terms as shown in
§4.

3.3 Self-supervised Training and Inference
We create training data to enumerate all term pairs
in a seed taxonomy V × V and fine-tune the LM-
based classifier. As shown in Fig. 2(b), we add
positive labels when term pairs have hierarchical
relationships in the seed taxonomy; otherwise, we

add negative labels. We fine-tune the model pa-
rameters Θ including the LM’s parameters with
the training data. We use a binary cross-entropy
loss as the objective function and minimize it to
find the optimal parameters Θ? = minΘ L(Θ). We
minimize the objective function for fine-tuning our
model:

L(Θ) =−
∑

(v+1 ,v+2 )∈E

log(fLM(q(v+
1 , v

+
2 ),Θ))

−
∑

(v−1 ,v−2 )∈V×V \E

log(1− fLM(q(v−1 , v
−
2 ),Θ)).

(5)
To infer the optimal parent of each new term

v′ ∈ V ′, we take every term in a seed tax-
onomy v ∈ V , and input a term pair (v′, v)
to the LM-based classifier to obtain a score
fLM(q(v′, v),Θ?) as shown in Fig 2 (c). Then,
we output the term v?, which is the highest score,
v? = arg maxv∈V fLM(q(v′, v),Θ?).

4 Experiments

In this section, we describe how we studied the
performance of Musubu on seven real-world tax-
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Table 1: Statistics of taxonomies used in experiments.
|V | denotes the number of terms in the seed taxonomy
and Vnl denotes its non-leaf terms. Vtr, Vdev , and V ′

denote the leaf terms used for training, development,
and testing, respectively.

Dataset Taxonomy |V | |Vnl| |Vtr| |Vdev| |V ′|
Chemical 1146 294 682 170 273

SemEval-2015 Equipment 406 122 226 57 71
Task 17 Food 1254 275 783 196 245

Science 368 107 209 52 66
Amazon Food 860 159 534 167 134

Commerce Amazon Kitchen 1019 229 632 158 198
Walmart 1085 376 567 142 178

Table 2: List of Hearst patterns used in experiments. Y
denotes a parent term of a term X.

Name Pattern
Such-as Y such as X
One-of X is one of Y

Especially Y, especially X
Is-a X is a Y

Including Y including X

onomies.

4.1 Experimental Setup

Datasets. We used four SemEval taxonomies and
three commerce taxonomies including various do-
mains as shown in Table 1. SemEval-2015 Task
17 (Bordea et al., 2015) is a taxonomy extraction
task, which contains four domains, chemical, equip-
ment, food, and science. Each taxonomy is rel-
atively small compared with the taxonomy used
in SemEval-2016 Task 14 (Jurgens and Pilehvar,
2016), which has over 90,000 nodes3. We also
used real commerce taxonomies from Amazon re-
view data (Ni et al., 2019), Grocery & Gourmet
Foods (Amazon Food), Home & Kitchen (Ama-
zon Kitchen), and the Walmart taxonomy4. The
commerce taxonomies contain more named enti-
ties than the SemEval taxonomies. For instance,
the term “IPA & Pale Ale” appears in the Ama-
zon Food taxonomy, but does not appear in the
SemEval food taxonomy.

Considering a realistic situation, we held out
20% of leaf nodes as the new terms V ′. Detailed
statistics of the taxonomies are listed in Table 1.

Evaluation Metrics. We used two evaluation
metrics, hierarchical-F1 (H-F1) and edge-F1 (E-

3The task aims to enrich the WordNet taxonomy using new
terms and their word sense. The number of nodes in the seed
taxonomy is out of the scope of this paper due to its size.

4https://www.kaggle.com/promptcloud/
walmart-product-data-2019

F1) (Mao et al., 2020). Hierarchical-F1 is a com-
monly used measure for hierarchical classification
tasks that compares the true path from the true par-
ent to the root with the predicted path (Kiritchenko
et al., 2005). Edge-F1 is the top-1 hit ratio of the
predicted hypernyms, and is a more strict metric
than H-F1.

Compared Methods. We compared Musubu
with five baseline approaches:

1. Random: A simple baseline which randomly
selects a parent term from V .

2. Microsoft Concept Graph (MCG): Mi-
crosoft Concept Graph5 (Wu et al., 2012;
Wang et al., 2015) is an existing large-scale hy-
pernymy knowledge base which is extracted
from billions of web pages and consists of
triplets (parent term, child term, frequency)
which represent hierarchical relationships. We
attach a given new term v′ ∈ V ′ to a term
v ∈ V if a hierarchical relation between v′

and v exists in the knowledge base.6

3. TaxoExpan7(Shen et al., 2020): A self-
supervised method which leverages a position-
enhanced graph neural network encoding the
local structure in a seed taxonomy, and it uses
a noise-robust training objective to learn the
model.

4. MSejrKu (Schlichtkrull and
Martínez Alonso, 2016): The winning
method in SemEval-2016 Task 14 (Semantic
Taxonomy Enrichment) (Jurgens and Pilehvar,
2016) which extracts semantic and lexical
features and classifies them with support
vector machines.

5. Octet (Mao et al., 2020): A self-supervised
method which extracts semantic, lexical, and
graph-based features and classifies hierarchi-
cal relationships between term pairs using a
two-layer feed-forward neural network with
dropout layers. In the original method, the
graph-based features are extracted from e-
commerce user queries. In our experiments,

5https://concept.research.microsoft.
com.

6If there is more than one such relation, we select the one
with the highest frequency. If no such relation exists, we
attach v′ to a random term from V . We match terms by simple
string-matching after lower-casing.

7https://github.com/mickeystroller/
TaxoExpan

https://www.kaggle.com/promptcloud/walmart-product-data-2019
https://www.kaggle.com/promptcloud/walmart-product-data-2019
https://concept.research.microsoft.com
https://concept.research.microsoft.com
https://github.com/mickeystroller/TaxoExpan
https://github.com/mickeystroller/TaxoExpan


2752

Table 3: Overall results for taxonomy enrichment on the SemEval and commerce taxonomies. Musubu-noFT
denotes Musubu without fine-tuning on the seed taxonomy. The best scores in the columns are in bold.

SemEval-2015 Taxonomies Commerce Taxonomies
Chemical Equipment Food Science Amazon Food Amazon Kitchen Walmart

Method E-F1 H-F1 E-F1 H-F1 E-F1 H-F1 E-F1 H-F1 E-F1 H-F1 E-F1 H-F1 E-F1 H-F1
Random 0.00 0.62 0.01 0.53 0.00 0.44 0.01 0.49 0.01 0.34 0.01 0.35 0.00 0.34

MCG 0.21 0.68 0.06 0.50 0.18 0.55 0.08 0.40 0.06 0.37 0.00 0.33 0.01 0.33
TaxoExpan 0.00 0.52 0.03 0.46 0.01 0.39 0.01 0.42 0.00 0.36 0.01 0.35 0.00 0.30
MSejrKu 0.26 0.77 0.13 0.63 0.20 0.62 0.24 0.66 0.18 0.55 0.21 0.53 0.15 0.51

Octet 0.31 0.76 0.33 0.71 0.24 0.60 0.36 0.70 0.36 0.64 0.28 0.61 0.24 0.60
Musubu-noFT 0.00 0.60 0.00 0.60 0.00 0.45 0.00 0.44 0.00 0.52 0.00 0.55 0.00 0.56

Musubu 0.37 0.79 0.45 0.73 0.37 0.68 0.44 0.77 0.40 0.66 0.44 0.71 0.53 0.80

we did not use the graph-based features be-
cause we had no user queries related to the
seed taxonomies.

6. Musubu: Our method which leverages
BERT (Devlin et al., 2019) as a pretrained
LM, and fine-tunes a LM-based classifier with
queries generated from the Such-as pattern.
To analyze the effects of fine-tuning, we test
a masked LM scoring method (Salazar et al.,
2020) on the same queries without fine-tuning
(Musubu-noFT).

Implementation Details. In our experiments,
we used the public fasttext model (Bojanowski
et al., 2017) trained on the Common Crawl cor-
pus8 to extract semantic features from term pairs in
TaxoExpan, MSejrKu, and Octet. We also used the
lexical features proposed by Bansal et al. (2014).
During training, we randomly sampled nine neg-
ative term pairs for each positive pair. We imple-
mented MSejrKu, Octet, and Musubu using Py-
Torch (Paszke et al., 2019), Transformers (Wolf
et al., 2020), and Scikit-learn (Pedregosa et al.,
2011). For both Musubu and the baseline meth-
ods, we tuned the hyperparameters including the
optimizer, initial learning rate, dropout rate, and
batch size, on the basis of the average performance
of 20 random trials on the development set of the
Amazon Food taxonomy. We used the Adam op-
timizer with a tuned learning rate of 8.8 × 10−4,
and a Tesla V100 GPU for training and inference.
We used bert-base-uncased as a pretrained
model in Musubu and limited the maximum length
of tokens to 64, and longer queries were truncated.
In addition, unless otherwise noted, we used the
Such-as pattern to generate queries. Table 2 shows
the patterns used in the experiments.

8https://fasttext.cc/docs/en/
english-vectors.html

4.2 Evaluation Results

SemEval and Commerce Taxonomies. We eval-
uated the baselines and our method (Musubu) on
the SemEval-2015 Task 17 and real commerce tax-
onomies shown in Table 3. The method of select-
ing parents randomly (Random) yielded edge-F1
scores of almost zero, which indicates the task’s
difficulty. TaxoExpan was not suitable for any tax-
onomy because the method assumes that the num-
ber of terms in a seed taxonomy is sufficiently large
for extracting graph-based features with graph neu-
ral networks. Overall, Musubu performed most
effectively across both metrics in various domains.
The results show that our BERT-based approach
outperformed Octet, which uses fasttext to extract
semantic features. MCG was not effective on the
SemEval and commerce taxonomies because the
hierarchical relationships in the taxonomies were
not always the same relations stored in the general
is-a database. Finally, Musubu fine-tuned on the
seed taxonomy was more effective than without
that fine-tuning (Musubu-noFT). Although LMs
generally have term relationships, the LM-based
classifier needs to be fine-tuned to adapting to term
relationships in the seed taxonomy.

Low-resource Settings. We evaluated the per-
formance in more low-resource settings than that of
the above experiments, as shown in Fig. 3. Because
TaxoExpan was ineffective in the above settings,
we used Octet and MSejrKu as baselines for com-
parison with Musubu in low-resource settings. The
results show Musubu was more effective than the
baselines, although the overall performance was
declined when there was an insufficient number of
training terms. Compared Musubu with Octet, the
pretrained LM used in Musubu helped to estimate
hierarchical relations accurately. The results of
the experiment supported our hypothesis that pre-
trained LMs are useful for low-resource taxonomy
enrichment.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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Figure 3: Performance comparison on edge-F1 for low-
resource taxonomy enrichment on Amazon Kitchen
taxonomy. Musubu outperformed the baselines, espe-
cially when the seed taxonomy was small.

Figure 4: Pattern analysis of Musubu on SemEval tax-
onomies.

Pattern Analysis. We compared the perfor-
mance of Musubu with several different Hearst
patterns (Table 2) for generating queries. As a base-
line pattern, we tested the None pattern, in which
two terms are concatenated with a single space
(e.g., “fruits oranges” for a term pair (“oranges”,
“fruits”)). As shown in Fig. 4, the Such-as pattern
obtained the highest score among the experimented
patterns on two taxonomies. Using a Hearst pat-
tern contributes to the performance of taxonomy
enrichment, as shown in the compared results be-
tween the None pattern and the others. However,
the scores on the chemical taxonomy show that the
Including pattern is more effective than the Such-as
pattern. The results indicate that we should choose
the optimal pattern for each domain, although the
Such-as pattern can be considered the first choice
for a general case.

Case Studies. We analyzed the predictions to
understand the model behavior of Musubu by com-
paring it and Octet on the Walmart taxonomy. As
shown in Table 4, both methods predicted “food”
correctly as the parent of “gluten-free foods,” and

Musubu also captured the lexical features. The
“men’s socks” row shows that both methods cap-
tured the semantic features for taxonomy enrich-
ment. The “hair care” row exemplifies the differ-
ence between Musubu and Octet. Musubu pre-
dicted “hair care” as the parent of “dry shampoo”
by extracting hierarchical relationships from the
LM, while Octet predicted “skin care” because of
the lack of training samples on the term “hair care.”

5 Related Work

5.1 Hypernymy Detection

Hypernymy detection is a core natural language
processing (NLP) task for estimating which hy-
pernym term a query term corresponds to, which
is a subtask of taxonomy construction or extrac-
tion (Wang et al., 2017). Both unsupervised and
supervised methods have been proposed for this
task. Unsupervised methods are categorized into
pattern-based or distributional. Pattern-based ap-
proaches predict that the term pair (x, y) has an is-a
relation if x and y satisfy syntactic patterns in given
documents, for instance, Hearst patterns (Hearst,
1992) are as shown in Table 2. Distributional ap-
proaches use the distributional representations of
term pairs to measure the strength of their Is-A
relationships (Geffet and Dagan, 2005). These ap-
proaches cannot adapt to the domain-specific hier-
archical relationships in the seed taxonomy. In con-
trast, the supervised methods follow a classification
paradigm. In most of the supervised methods, each
term pair transforms feature vectors constructed
from word embeddings and identifies whether or
not they have hypernymy relationships (Baroni
et al., 2012; Roller et al., 2014; Shwartz et al.,
2016). The methods fail to work in low-resource
taxonomy enrichment because there are not enough
training term pairs for learning models.

5.2 Taxonomy Construction and Enrichment

Taxonomy construction (taxonomy extraction) is
an automatic task in which we obtain terms from
a given corpus, construct a graph containing edges
that represent hierarchical relationships, and reform
the graph into a tree or directed acyclic graph (Wu
et al., 2012; Bansal et al., 2014; Bordea et al., 2016).
The second step, constructing a graph, is for finding
a term pair’s relationships from the given informa-
tion, similarly to hypernymy detection.

Unlike taxonomy construction, taxonomy enrich-
ment (Jurgens and Pilehvar, 2016; Shen et al., 2018)
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Table 4: Case studies of taxonomy enrichment in Walmart taxonomy. Top-3 predicted terms of methods for an
input term. The predicted terms in bold are the true parents.

New term Method Top 3 predictions
gluten-free foods Octet food; fresh food; baby food

Musubu food; snacks, cookies & chips; medical & dental
men’s socks Octet men’s clothing; women’s socks, hosiery & tights; men’s shoes

Musubu men’s shoes; men’s clothing; men’s bags & accessories
dry shampoo Octet skin care; camping gear; shop by brand

Musubu hair care; medical & dental; bath safety

augments a seed taxonomy with new terms by find-
ing the optimal hypernym term corresponding to a
new term from the taxonomy. The main difference
between taxonomy enrichment and hypernymy de-
tection is whether or not the hierarchy of taxon-
omy can be used. While hypernymy detection
is a task for extracting the aforementioned gen-
eral hypernym-hyponym relations regardless of the
domain, taxonomy enrichment strongly depends
on the domain in that it is extended with refer-
ence to the hierarchical relationships of a given
taxonomy. For instance, the SemEval-2016 Task
14 (Jurgens and Pilehvar, 2016) presents a semantic
taxonomy enrichment task that extends the Word-
Net taxonomy with new terms and their definitions.
The winning method in the task (Schlichtkrull and
Martínez Alonso, 2016) used both the hand-crafted
semantic and lexical features of term pairs to find
hierarchical relationships.

More complicated approaches have been pro-
posed for improving the performance of finding
hierarchical relationships. Shen et al. (2018) de-
vised an end-to-end pipeline for extracting new
terms from documents and taxonomy enrichment,
which integrates AutoPhrase (Shang et al., 2018)
for term extraction and a distributional approach
for finding siblings and hypernyms of terms. Other
methods utilize self-supervision to enrich a seed
taxonomy, but they require either large seed tax-
onomies and/or additional information about hi-
erarchical relationships. TaxoExpan (Shen et al.,
2020) is the first attempt to use a graph neural net-
work to accurately predict hypernyms with self-
supervision. Octet (Mao et al., 2020) utilizes
the feature extractors proposed in (Schlichtkrull
and Martínez Alonso, 2016) and user queries
as additional information for taxonomy enrich-
ment by means of graph neural networks and self-
supervision. In contrast to these methods, including
the winning method in the SemEval-2016 task, our
method focuses on low-resource taxonomy enrich-

ment, in which small taxonomies and no text corpus
are available. The previous methods do not work
on low-resource settings because conventional self-
supervised approaches utilize the graph-based fea-
tures of a large seed taxonomy.

5.3 Language Models as Knowledge

Pretrained LMs on large text corpora improve the
performance on downstream NLP tasks such as
text classification and question answering (Gupta
et al., 2020; Su et al., 2019). However, an impor-
tant question was raised about pretrained LMs: do
the pretrained LMs have information about enti-
ties and the relationships between them? Petroni
et al. (2019) showed that BERT contains relational
knowledge as well as knowledge bases. The results
indicate the weights of pretrained LMs containing
relationships between terms, which also include
hierarchical relationships. The fact that pretrained
LMs contain the term relationships is used in entity
set expansion (Zhang et al., 2020). The method
utilizes the masked LMs to estimate similar entities
using formatted queries. Although the method fo-
cuses on the entity set expansion task, our method
tackles low-resource taxonomy enrichment tasks.
The aforementioned papers suggest that our ap-
proach for taxonomy enrichment is reasonable.

6 Conclusion

We proposed an efficient self-supervised approach,
Musubu, for low-resource taxonomy enrichment
tasks. Musubu utilizes a novel classifier based on
pretrained LMs and Hearst patterns for generating
queries. Extensive experiments on taxonomy en-
richment showed the effectiveness of Musubu over
the conventional approaches on the SemEval and
commerce taxonomies, especially in low-resource
settings.
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A Detailed Experimental Settings

A.1 Data Preparation

To filter out noisy terms in the original commerce
taxonomies, we removed infrequent terms that ap-
peared fewer than five (Amazon Food) or 20 times
(Amazon Kitchen and Walmart) in item categories
of items and were shorter than ten words. We
did not remove any terms from the SemEval tax-
onomies. We split the leaf terms into the training
set and V ′ with a ratio of 80% / 20% and then split
the training set into Vtr and Vdev at the same ratio.
We set the non-leaf terms in the taxonomy as Vnl.
The numbers of terms are listed in Table 1. The
evaluation scores were the averages over the scores
on three trials.

A.2 Models

Musubu. We used
BertForSequentialClassification9

as our LM-based classifier and initialized its
parameters with bert-base-uncased. We
fine-tuned the last layer in the BERT model and
the classification layer (fully connected layer) and
froze the parameters in the other layers to avoid
overfitting the model. The number of parameters
in Musubu is about 109M, and the number of
trainable parameters is about 7M.

Musubu-noFT (Musubu without Fine-tuning).
We also used bert-base-uncased as a pre-
trained LM to calculate the likelihood of queries

9https://huggingface.co/
transformers/model_doc/bert.html#
bertforsequenceclassification

without fine-tuning on a seed taxonomy. Musubu-
noFT generates Hearst pattern-based queries from
term pairs, calculates the likelihoods of the queries,
and then finds the optimal parent of each new term
while maximizing the likelihood. To calculate the
likelihood, we used the masked language model
scoring (Salazar et al., 2020) with the public imple-
mentation provided by the authors10. There are no
trainable parameters in the approach.

TaxoExpan (Shen et al., 2020). We used the
authors’ public implementation and set the hyper-
parameters by default in the original source code.
To extract semantic features, we used fasttext as
same as Octet and MSejrKu. The number of train-
able parameters in TaxoExpan is 1.9M.

Octet (Mao et al., 2020). We extracted seman-
tic and lexical features, input them into a two-
layer feed-forward network with dropout layers,
and used the output as the probability of terms.
While the original method used graph-based fea-
tures generated from user queries and the taxonomy
in addition to the above features, we did not use
them because we did not have any user queries. We
constructed the lexical features following (Bansal
et al., 2014) and the semantic features with fast-
text (Bojanowski et al., 2017) trained by the Com-
mon Crawl dataset. To tune the model parameters,
we used the same optimizer and the number of neg-
ative samples as that of our proposed method. The
number of parameters in Octet is 503K.

MSejrKu (Schlichtkrull and Martínez Alonso,
2016). Although this method was the winner of
the SemEval-2016 Task 14, the implementation is
not public. According to (Mao et al., 2020), the
features used in Octet are similar to those used in
MSejrKu. We extracted the semantic and lexical
features in Octet, and then input a support vector
machine.

A.3 Hyperparameter tuning

We tuned the hyperparameters of our and that of
the baselines for taxonomy enrichment using their
H-F1 on the Amazon Food development dataset11

by Optuna (Akiba et al., 2019). See Table 5 for the
detailed ranges of tuned hyperparameters and the
optimal values for our method and the baselines.
We conducted 20 trials for each method to tune the
hyperparameters.

10https://github.com/awslabs/
mlm-scoring

11We used the optimal hyperparameter settings for the other
dataset.
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Table 5: Ranges of tuned hyperparameters and hyper-
parameter configurations of Musubu and Octet.

Method Hyperparameter Range Best value(s)
Musubu batch size {128, 256, 512, 1024, 2048} 2048
Musubu learning rate [10−5, 10−3] 8.8× 10−4

Octet batch size {128, 256, 512, 1024, 2048} 128
Octet learning rate [10−5, 10−3] 4.5× 10−4

Octet dropout rates (0, 0.2) (9.5× 10−3, 0.5× 10−2, 0.20)

Octet
dimension sizes of

hidden layers
[256, 1024] [366, 753]

Table 6: Pattern analysis of Musubu on the SemEval
taxonomies. Optimal scores in the columns are in bold.

Chemical Equipment Food Science
Pattern E-F1 H-F1 E-F1 H-F1 E-F1 H-F1 E-F1 H-F1
None 0.37 0.78 0.41 0.73 0.32 0.65 0.38 0.74

Such-as 0.37 0.79 0.45 0.73 0.37 0.68 0.44 0.77
One-of 0.40 0.79 0.40 0.75 0.35 0.65 0.38 0.76

Especially 0.37 0.78 0.44 0.75 0.36 0.67 0.44 0.75
Is-a 0.38 0.79 0.44 0.77 0.39 0.68 0.38 0.75

Including 0.45 0.78 0.44 0.75 0.37 0.68 0.40 0.76

A.4 Computing Environment and Runtime
We used an Amazon EC2 instance “p3.2xlarge" as a
computing infrastructure for training and inference.
Musubu and TaxoExpan took about an hour and a
half to learn the parameters, and Octet took about
ten to 20 minutes, excluding feature extraction. The
other methods took less than ten minutes.

B Experimental Results

We evaluated the performance of Musubu with sev-
eral different Hearst patterns (Table 2) for gener-
ating queries. Table 6 shows the detailed data of
Fig. 4.


