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Abstract

Implicit event argument extraction (EAE) is
a crucial document-level information extrac-
tion task that aims to identify event arguments
beyond the sentence level. Despite many ef-
forts for this task, the lack of enough training
data has long impeded the study. In this pa-
per, we take a new perspective to address the
data sparsity issue faced by implicit EAE, by
bridging the task with machine reading com-
prehension (MRC). Particularly, we devise two
data augmentation regimes via MRC, includ-
ing: 1) implicit knowledge transfer, which en-
ables knowledge transfer from other tasks, by
building a unified training framework in the
MRC formulation, and 2) explicit data augmen-
tation, which can explicitly generate new train-
ing examples, by treating MRC models as an
annotator. The extensive experiments have jus-
tified the effectiveness of our approach — it
not only obtains state-of-the-art performance
on two benchmarks, but also demonstrates su-
perior results in a data-low scenario.

1 Introduction

Textual event descriptions may span over multi-
ple sentences. Implicit event argument extraction
(EAE) (Ebner et al., 2020; Zhang et al., 2020), a
crucial task for event information extraction, aims
to identify event arguments beyond the sentence
level. For example, in a document describing an
AirstrikeMissileStrike event (shown in Figure 1),
implicit EAE requires a model to recognize a global
event argument “Syria", fulfilling the semantic role
of PLACE. Note the argument is one-sentence away
from the event trigger bombarding.

One key challenge faced by implicit EAE is data
sparsity — owing to the complex interdependen-
cies between triggers and arguments, it is expen-
sive to label training data for the task. The existing
datasets, which typically contain several dozens
of documents, are too small to train a model for
capturing regularities underlying how event argu-

… This was indeed an IS attack, rather than an accidental 

explosion. New satellite imagery appears to reveal extensive 

damage to [an airbase]Victim in [central Syria]Place. ...

Q1: What is the victim in the attack event?

Question Answer
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Document
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at the Pentagon and the Ministry of Defense in 

London.
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Q1: Who is the attacker in the bombarding event?

A1: Russians

Q2: Where does the bombarding event take place?

A2: Syria

Figure 1: An example of implicit EAE (Above), and the
illustration of framing implicit EAE as MRC (Bottom).

ments appear in texts (Li et al., 2021). For example,
even the state-of-the-art model, trained on the full
corpus of RAMS (Ebner et al., 2020), attains only
5% in F1 when an event argument is two-sentence
away from the trigger (Zhang et al., 2020).

This paper attempts to provide a new perspective
to address the data sparsity issue faced by implicit
EAE. Motivated by previous works handling in-
formation extraction via machine reading compre-
hension (MRC) (Levy et al., 2017; Li et al., 2020;
Du and Cardie, 2020b; Liu et al., 2020), we note
implicit EAE may be more akin to MRC, as both
of them are document-level tasks. For example,
we may use a prompt question Where does the
bombarding event take place? to extract the event
argument “Syria", as shown in Figure 1 (Bottom).
This formulation implies new ways to address im-
plicit EAE, by leveraging resources in the domain
of MRC to boost learning.

We devise two complementary data augmenta-
tion methods based on MRC for implicit EAE. The
first one is implicit knowledge transfer, which aims
to build a unified training framework, in the MRC
formulation, to facilitate training multiple tasks
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together. It has two main advantages. First, by
framing implicit EAE as MRC, we can directly
use the sophisticated models in MRC to handle the
task, which are shown to be excelled at capturing
document-level clues (Devlin et al., 2019). Second,
under this framework, we can leverage datasets
in other tasks to boost learning. For example, we
show it is possible to transfer knowledge from a
wide range of tasks, including SQuAD question
answering, FrameNet semantic role labeling, and
ACE sentence-level event extraction.

Our second method performs data augmenta-
tion in a more explicit way, treating a pre-trained
MRC model as an annotator to label new training
instances. For example, we may use a question
Who is the attacker in the bombarding event? to
query external (unlabeled) documents, and regard
documents with answers as new training exam-
ples annotated with an ATTACKER role. Compared
with implicit knowledge transfer, explicit data aug-
mentation can generate tangible training examples,
which is shown to benefit a wide range of previous
models (e.g., that based on sequence labeling (Shi
and Lin, 2019)) for the task. Moreover, we show
explicit data augmentation demonstrates better per-
formance than implicit knowledge transfer does for
addressing a zero-shot transfer scenario (§ 6.2).

The expensive experiments on two datasets,
RAMS (Ebner et al., 2020) and WikiEvents (Li
et al., 2021), have justified the effectiveness of
our approach. Particularly, our method achieves
substantially improvement over previous methods
(+3% in F1 on the average). It also demonstrates
promising results for capturing long-range depen-
dencies. Moreover, equipped with the two data aug-
mentation strategies, our approach can fit well with
the data-low scenario. For example, on RAMS,
with 1% of training data, our approach obtains over
30% in F1, yet previous methods only achieve an
F1 score less than 10%.

Our contributions are summarized as follows:

• We study a new view to address the data spar-
sity issue faced by implicit EAE, by bridging
it with MRC. Besides being the first work in-
troducing the MRC formulation to implicit
EAE, our work may encourage more studies
investigating data augmentation via MRC.

• We propose two novel data augmentation
regimes for implicit EAE via MRC — im-
plicit knowledge transfer and explication data

augmentation. Their application scopes are
carefully explored with extensive evaluations.

• We set up state-of-the-art performance on
two implicit EAE benchmarks. We have
released our code at https://github.
com/jianliu-ml/DocMRC to facilitate
further exploration.

2 Related Work

2.1 Implicit Event Argument Extraction

Implicit EAE has long been studied under the
MUC-4 paradigm (MUC, 1992), with a core sub-
task to extract all roll fillers of an event template
(Grishman and Sundheim, 1996; Huang and Riloff,
2011; Du and Cardie, 2020a). This line of work
is further extended by studies on implicit semantic
role labeling (Ruppenhofer et al., 2009; Moor et al.,
2013). Despite many advances, the datasets pro-
vided by the above evaluations are relatively small,
which have long impeded the study on the task.
Recently, Ebner et al. (2020) propose a new bench-
mark, annotating over 3, 000 documents for im-
plicit EAE, which has inspired many studies. Fol-
lowing the work, Zhang et al. (2020) devise a head-
to-region approach, demonstrating very promising
results; Gangal and Hovy (2020) investigate to
what extent the pre-trained language model can
benefit learning. Very recently, Li et al. (2021)
investigate a generative perspective on the task,
achieving state-of-the-art performance.

Nevertheless, the currently available datasets are
still too small to train a learning based model to
achieve decent performance. In this work, we pro-
pose a new perspective to address the data sparsity
challenge, by bridging the task with machine read-
ing comprehension (Hermann et al., 2015).

2.2 MRC for Information Extraction

Recently, there is a surge of work investigating
addressing information extraction tasks using ma-
chine reading comprehension. To name a few, Levy
et al. (2017); Li et al. (2019) cast relation extraction
into question answering; Li et al. (2020) address
named entity recognition via MRC; Du and Cardie
(2020b); Liu et al. (2020) formulate sentence-level
event extraction as MRC. But most works focus
on problem reformulation, which rarely consider
the data issue. By comparison, our work fills the
gap by proposing a new perspective leveraging
MRC for data augmentation, which is also the first

https://github.com/jianliu-ml/DocMRC
https://github.com/jianliu-ml/DocMRC
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work extending MRC to implicit EAL. Addition-
ally, we show our approach can also boost learning
for sentence-level event extraction task (§ 6.5).

2.3 Data Augmentation for EAE
Due to the fine-trained annotation of events, data
augmentation for event argument extraction is gen-
erally challenging. The existing methods are based
on distantly supervision (Chen et al., 2017; Yang
et al., 2018), leveraging external knowledge bases
to generate new training data. However, such works
rely on a great deal of expertise limited to do-
main/language. The work of Yang et al. (2019)
combines entity substitution with pre-trained lan-
guage models, achieving improved performance.
But the newly generated examples may be a bit
of rigid as the entities remain the same. Different
from previous works, we study the possibilities
of leveraging MRC for data augmentation. Our
method on the one hand does not rely on complex
domain knowledge and on the other hand can gen-
erate more diversified training data.

3 Implicit EAE in MRC Formulations

We formulate implicit EAE as follows: Assume
a document D contains a set of events E , each
represented by an event trigger (e.g., bombarding
in the previous example). The type of an event e ∈
E can determine a set of roles the arguments may
take, denoted by Re. For each semantic role r ∈
Re, implicit EAE requires a model to find an event
argument a, which is a textual span in D, resulting
in a (r, a) pair1. Different from previous methods
addressing the task via sequence labeling (Shi and
Lin, 2019) or span ranking (Ebner et al., 2020), we
propose a new perspective based on MRC.

Query Generation. To frame implicit EAE as
MRC, we transfer each semantic role r into a ques-
tion qr. We devise a template based method op-
erating in three steps: 1) Role Categorization, in
which we categorize r as person-based, general,
or place-based one to select proper interrogative
words (e.g., Who, What, and When). 2) Trigger
Format Conversion, where we convert verb-based
triggers into their noun formats, using WordNet
(Miller, 1992). 3) Query Realization, in which we
use the templates in Table 1 to realize the final
question. Consider the previous example in Figure
1. Our method can yield two questions Who is the

1We use a = ε to indicate the case where no event argu-
ment fulfills the role of r.

Role Type Query Generation Template

Person-Based Who is the []role in the []trigger event?
General What is the []role of the []trigger event?
Place-Based Where does the []trigger event take place?

Table 1: Templates for query generation. []role and
[]trigger denote the name of a semantic role and the
event trigger (in a format of noun) respectively.

attacker in the bombarding event? and Where does
the bombarding event take place? for the role of
ATTACKER and PLACE respectively.

Trigger-Aware Representation Learning.
Given the document D and a question qr, we build
a BERT encoder (Devlin et al., 2019) to learn
their joint representations. Particularly, we first
construct an extended sequence S = [CLS] qr
[SEP] D [SEP]2 to concatenate qr and D. Then,
considering multiple events may be contained by
D, to indicate which event is currently focused we
also devise trigger-aware embeddings, modifying
BERT’s segmentation embeddings to indicate
the location of an event trigger (the trigger’s
segmentation embeddings are sets as 1 instead
of 0 as in conventional BERT). Finally, we use
BERT encoder to encode S and take the output
of its last hidden layer as the joint representation,
which is denoted by HDqr ∈ RN×d, where N is
the length of the extended sequence and d is the
hidden dimension of BERT.

Argument Extraction as Answer Generation.
Based on HDqr , we compute two normalized vec-
tors, containing the probabilities for the start and
end positions of an event argument a over S:

pstart = softmax(HDqrwstart) (1)

pend = softmax(HDqrwend) (2)

where wstart ∈ Rd and wend ∈ Rd are parameters
to be learned. The predicted locations of a corre-
spond to the positions having the largest values in
pstart and pend. For the case a = ε, i.e., no event
argument corresponds to r, we assume the start/end
position of a is 0. Namely, the leading token [CLS]
in S is treated as a no-answer indicator.

Based on the above formulation, we next detail
our two MRC-based data augmentation regimes.
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Implicit EAE in MRC Formulation

A Unified Training Framework 

In the MRC Formulation

External Datasets:

SQuAD, FrameNet, ...

Q:Who is the attacker in the 

bombarding event? A:Russians

Q:Where does the bombarding 

event take place? A:Syria

On entering [Persepolis]place, Alexander allowed 

his troops to loot ...  During his stay a fire  broke 

out and spread to the rest of the ... 

1) Cross-Task 
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2) In-Domain Fine-Tuning

… 
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MRC Model
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Annotate
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Figure 2: Illustration of two data augmentation regimes via MRC: implicit knowledge transfer (Left), which builds a
unified training framework to connect related tasks, and explicit data augmentation (Right), which uses a pre-trained
MRC model as annotator to label new training examples.

4 Data Augmentation via MRC

Based on the above proxy of implicit EAE and
MRC, we devise two data augmentation regimes:
implicit knowledge transfer (§ 4.1) and explicit data
augmentation (§ 6.2).

4.1 Implicit Knowledge Transfer
As shown in Figure 2 (Left), implicit knowledge
transfer aims to build a unified training framework,
which therefore facilitates knowledge transfer from
other tasks into implicit EAE. We adopt a pre-
training followed by fine-tuning learning paradigm.

Cross-Task Pre-Training. After setting up a
MRC model, we first pre-train it using the training
data in other tasks. In addition to adopting MRC
dataset, i.e., SQuAD 2.0 (Rajpurkar et al., 2018),
we also use corpora in FrameNet semantic role la-
beling (SRL) (Atkins et al., 2003) and ACE event
extraction (EE) for pre-training3, by framing these
tasks as a MRC problem in a similar way. The
following pre-training objective is adopted:

Jcross = −
∑
T

∑
(D̂,q̂,â)

logP (â|D̂, q̂) (3)

where T ranges over each task and (D̂, q̂, â) ranges
over each training example in a MRC formula-
tion. P (â|D̂, q̂) denotes the likelihood of predict-
ing â given D̂ and q̂, which equals to pstart[astart]
+ pend[aend], where astart and aend denote the
golden start and end positions of â in D̂.

2[CLS] and [SEP] are special tokens used in BERT.
3FrameNet SRL and ACE EE use a different event ontol-

ogy from that of implicit EAE, and therefore it is generally
hard to use their datasets for data augmentation.

In-Domain Fine-Tuning. After the pre-training
stage converges, we fine-tune the model using in-
domain data, with the following training objective:

Jin = −
∑
D

∑
e

∑
(r,a)

logP (a|D, e, r) (4)

where D ranges over each document; e ranges over
each event instance in D; (r, a) indicates a role-
argument pair. In this way, the knowledge learned
from other tasks can be implicitly transferred into
the implicit EAE task, which is shown to benefit
learning largely in the data-low scenarios (§ 6.1).

4.2 Explicit Data Augmentation
One drawback of implicit knowledge transfer is
that it cannot generate explicit training data, and
therefore it only supports learning in a MRC for-
mulation. We propose another data augmentation
strategy, which can generate explicit examples and
benefit models in any formulation for implicit EAE.

Automatic Data Annotation. As shown in Fig-
ure 2 (Right), the core idea of explicit data augmen-
tation is to use the pre-trained MRC model as an
annotator, to label new instances from unlabeled
documents. Given a source document D′, the fol-
lowing steps are conducted: 1) Identify all event
triggers in D′, using an event detector pre-trained
on the in-domain data. 2) For each event trigger
e′, enumerate each semantic role r′ determined by
the event type, and convert r′ as a question q′r′ . 3)
Use the pre-trained MRC model to predict answer
a′ by using q′r′ as a prompt. 4) If a′ 6= ε, construct
a new training example (D′, e′, r′, a′). To enhance
the annotation quality, we only consider answers
whose likelihoods are above a threshold λ. Please
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refer to § 5.1 for implementation and the statistics
of the generated training examples.

Joint Training Strategy. The following objec-
tive is devised to combine the original training data
with the automatically generated data for training:

J =−
∑
D

∑
e

∑
(r,a)

logP (a|D, e, r) (5)

− δ
∑
D′

∑
e′

∑
(r′,a′)

logP (a′|D′, e′, r′)

(6)

where δ is a weight balancing their contributions.
The overall process of explicit data augmentation
can be seen as “eliciting” knowledge from a pre-
trained MRC model, and as the training set is ex-
plicitly expanded, it has the potential to benefit any
model (e.g., that based on sequence labeling (Shi
and Lin, 2019) or span prediction (Ebner et al.,
2020)) proposed for implicit EAE.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct our experiments on two
implicit EAE benchmarks RAMS (Ebner et al.,
2020) and WikiEvents (Li et al., 2021). RAMS
provides 3,993 paragraphs in total, annotated with
139 event types and 65 semantic roles; WikiEvents
provides 246 documents, annotated with 50 event
types and 59 semantic roles. Table 2 gives the de-
tailed data statistics. For evaluation, we use Preci-
sion (P), Recall (R), and F1 score (F1) as evaluation
metrics. Our experimental results are based on the
Exact Match (EM) criterion: only when the pre-
dicted argument span matches exactly a gold one,
do we count it a correct prediction.

Implementations. In our MRC model, we use a
BERT-base-uncased encoder (Devlin et al., 2019),
to keep consistent with previous studies (Ebner
et al., 2020; Li et al., 2021). As for implicit knowl-
edge transfer, in the pre-training stage, the MRC
model achieves 83.5%, 72.1%, and 70.1% in F1 on
SQuAD 2.0, FrameNet SRL, and ACE EE respec-
tively, matching the state-of-the-art performance
(Devlin et al., 2019; Shi and Lin, 2019; Liu et al.,
2020); in the fine-tuning state, we tune parameters
on the development set, and finally the batch size
is set as 20, chosen from [1, 5, 10, 20, 30, 40];
the learning rate is set as 2e-5, chosen from [1e-
5, 2e-5, ..., 1e-4]. As for explicit data augmenta-
tion, we adopt a BERT-based event detector (Yang

Dataset Split # Doc. # Event # Argument

Train 3,194 7,329 17,026
RAMS Dev 399 924 2,188

Test 400 871 2,023

Train 206 3,241 4,542
WikiE Dev 20 345 428

Test 20 365 566

Table 2: Data statistics of RAMS (Ebner et al., 2020)
and WikiEvents (WikiE) (Li et al., 2021).

et al., 2018), achieving 77.8% and 75.6% in F1
on RAMS and WikiEvents respectively. We select
500,000 unlabeled documents from the NYT por-
tion of Gigaword4 as source documents, and set the
likelihood threshold λ to 1.95. Finally, our method
generates 37,283 documents annotated with 46,632
events and 55,723 arguments for RAMS, and 7,491
documents annotated with 9,633 events and 13,499
arguments for WikiEvents. δ is set as 0.8 for joint
training, chosen from [0.1, 0.2, ..., 1].

Baseline Models. The following state-of-the-art
methods are treated as baselines for comparison:

• BERT-CRF (Shi and Lin, 2019), which com-
bines BERT with Condition Random Field
(Lafferty et al., 2001), achieving state-of-the-
art performance on sentence-level SRL task.

• SpanSel (Ebner et al., 2020), a method based
on span ranking (Lee et al., 2017), which enu-
merates each possible span in a document to
identify the most likely event arguments.

• Head-Expand (Zhang et al., 2020), which ex-
tends SpanSel, by first identifying an argu-
ment’s head, and then its region. It achieves
state-of-the-art performance on RAMS.

• BART-Gen5 (Li et al., 2021), a concurrent
work to ours, adopts a generative perspective
to address implicit EAE, based on the BART
architecture (Lewis et al., 2020).

Our approach is denoted by DocMRC.

5.2 Experimental Result
Table 3 shows the performance of different models
on RAMS and WikiEvents. Following Ebner et al.

4https://catalog.ldc.upenn.edu/LDC2003T05
5BART-Gen adopts BART-large architecture, which has

much more parameters than BERT-base used in other meth-
ods (Ebner et al., 2020; Zhang et al., 2020). To make a fair
comparison, we modify the configuration to BART-base.
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RAMS WikiEvents WikiEvents (CR)

Setting Method P R F1 P R F1 P R F1

w/o Type Const.

BERT-CRF (Shi and Lin, 2019) 36.7 41.1 38.8 54.4 23.8 33.1 54.1 26.1 35.2
SpanSel (Ebner et al., 2020) 38.0 38.4 38.2 56.2 26.2 35.7 55.6 27.6 36.9
Head-Expand (Zhang et al., 2020) - - 40.1 55.4 25.4 34.8 56.7 27.7 37.2
BART-Gen (Li et al., 2021) 20.7 30.3 24.6 14.2 7.8 10.1 12.6 10.9 11.7
DocMRC w/ In-Domain 40.1 44.5 42.2 58.2 29.6 39.2 58.9 31.1 40.7
DocMRC w/ Impl. DA 41.2 45.2 43.1 58.5 30.5 40.1 56.9 32.3 41.2

w/ Type Const.

BERT-CRF (Shi and Lin, 2019) 39.9 40.7 40.3 57.2 22.5 32.3 57.8 25.8 35.7
SpanSel (Ebner et al., 2020) 38.2 43.6 40.7 57.8 29.2 38.8 57.8 32.9 41.9
Head-Expand (Zhang et al., 2020) - - 41.8 57.8 30.6 40.0 58.1 33.1 42.2
BART-Gen (Li et al., 2021) 41.9 42.5 42.2 60.0 32.0 41.7 61.2 33.1 43.0
DocMRC w/ In-Domain 42.6 46.1 44.3 61.7 32.0 42.1 63.0 33.9 44.2
DocMRC w/ Impl. DA 43.4 48.3 45.7 60.2 33.7 43.3 64.2 36.2 46.3

Table 3: Results on the RAMS and WikiEvents. "w/ Type Constraint" and "w/o Type Constraint" indicate whether
gold event types are known or not. P, R, and F1 denote precision, recall, and F1 respectively. WikiEvents (CR)
indicates the co-reference relation is considered into evaluation (Li et al., 2021).

Trigger-Argument Distance d

Method -2[4%] -1[8%] 0[83%] 1[4%] 2[2%]

BERT-CRF 14.0 14.0 41.2 15.7 4.2
SpanSel 15.0 12.2 44.1 12.6 6.6
Head-Expand 15.6 15.3 43.4 17.8 8.5
BART-Gen 17.7 16.8 44.8 16.6 9.0
DocMRC (IDA) 21.0 20.3 46.6 17.2 12.2

(a) Results on RAMS.

Trigger-Argument Distance d

Method -2[3%] -1[6%] 0[88%] 1[2%] 2[1%]

BERT-CRF 7.7 2.2 41.1 9.9 -
SpanSel 7.2 4.3 42.7 5.6 -
Head-Expand 10.0 4.1 43.2 6.6 -
BART-Gen 8.9 5.6 43.1 10.1 -
DocMRC (IDA) 14.5 7.8 44.1 14.3 1.7

(b) Results on WikiEvents (CR).

Table 4: Results on cases with different trigger-
argument distances. The ratio of each case is given
in the bracket. (IDA) denotes implicit knowledge trans-
fer.

(2020), we adopt two experimental settings, where
"w/ Type Constraint" and "w/o Type Constraint"
indicate considering gold event types or not. In
WikiEvents, the setting of taking co-reference into
consideration is denoted by WikiEvents (CR). We
denote our approaches with only in-domain train-
ing and with implicit knowledge transfer by “w/
In-Domain” and “w/ Impl. DA" respectively.

The experimental results have justified the ef-
fectiveness of our approach. Particularly, our ap-
proach with implicit knowledge transfer attains the
best F1 on the two datasets with different settings,
outperforming previous methods by over 3% on

the average. Moreover, we note the model with
only in-domain training can achieve the state-of-
the-art performance, suggesting the effectiveness of
problem re-formulation. Implicit knowledge trans-
fer can further boost learning, particularly in Re-
call (+1.5% on the average). This implies that the
knowledge transferred from other tasks enhances
the generalization of the model. Additionally, we
note a large performance drop of BART-Gen in the
setting of “w/o Type Constraint", where event types
are known. This suggests it is heavily dependent
on correctly predicting the event types. By contrast,
our approach doesn’t rely on golden event types
that much to extract event arguments.

Table 4 gives the performance of different mod-
els addressing cases with different trigger-argument
distance6. The results suggest that our approach is
excelled at capturing long-range dependencies. For
example, on RAMS, in the case where the event
argument is two-sentence ahead the trigger (d=-2),
our full approach achieves 21.0% in F1, outper-
forming previous methods by 3.3%. Nevertheless,
there are still many rooms for improvement.

6 Discussion

6.1 Impact of Implicit Knowledge Transfer

To better understand the impact of implicit knowl-
edge transfer, we compare the performance of dif-
ferent models in a stimulated data-low scenario,
where we vary the ratio of in-domain training ex-
amples for fine-tuning. This scenario also covers

6The results are based on the development set following
Zhang et al. (2020). We adopt the setting of “w/ Type Con-
strain" with in-domain training to simplify discussion.
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Figure 3: Results in the data-low scenario on RAMS
and WikiEvents (CR). 0% denotes a zero-shot scenario
where no in-domain data is used for fine-tuning.

a zero-shot transfer case with completely no in-
domain training data. Figure 3 gives the results.

The results demonstrate the advantage of our
implicit knowledge transfer method clearly. For ex-
ample, with only 1% of in-domain data, on the
RAMS corpus our method augmented with im-
plicit knowledge transfer achieves about 30% in
F1, while our method with only in-domain training
and other methods achieve less than 10% in F1.
Moreover, we note implicit knowledge transfer can
even support zero-shot scenario — it achieves 5.8%
and 6.9% in F1 on the two datasets without using
any in-domain training data.

Table 5 shows the impact of using different tasks
for pre-training. From the results, each task can
boost learning, and their impacts are complemen-
tary. FrameNet and SQuAD lead to larger improve-
ments than ACE, perhaps because they have large,
diversified, and wide-coverage datasets.

6.2 Impact of Explicit Data augmentation
Explicit data augmentation, compared with implicit
knowledge transfer, has an advantage to generate
tangible training examples. We study its perfor-
mance regarding 1) zero-shot transfer evaluation,
and 2) boosting previous models for learning.

Table 6 gives the results of zero-shot evaluation,
where we only use the automatically generated data
to train a model. From the results, explicit data aug-

Method P R F1

DocMRC (In-Domain) 42.6 46.1 44.3
DocMRC w/ Impl. DA (SQuAD) 42.6 46.9 44.6
DocMRC w/ Impl. DA (FrameNet) 43.1 47.2 45.1
DocMRC w/ Impl. DA (ACE EE) 43.3 46.3 44.6

DocMRC w/ Impl. DA (ALL) 43.4 48.3 45.7

(a) Results on RAMS.

Method P R F1

DocMRC (In-Domain) 63.0 33.9 44.2
DocMRC w/ Impl. DA (SQuAD) 63.8 34.8 45.9
DocMRC w/ Impl. DA (FrameNet) 63.0 35.5 45.4
DocMRC w/ Impl. DA (ACE EE) 63.2 35.1 45.1

DocMRC w/ Impl. DA (ALL) 64.2 36.2 46.3

(b) Results on WikiEvents (CR).

Table 5: Results of implicit knowledge transfer on
RAMS and WikiEvents (CR).

Corpus Method P R F1

RAMS

DocMRC w/ Impl. DA 4.0 10.6 5.8
DocMRC w/ Expl. DA 10.4 11.7 11.0
BERT-CRF w/ Expl. DA 9.8 8.6 9.2
Head-Expand w/ Expl. DA 9.3 9.5 9.4

WikiE

DocMRC w/ Impl. DA 7.9 6.1 6.9
DocMRC w/ Expl. DA 10.1 10.9 10.5
BERT-CRF w/ Expl. DA 8.6 9.2 8.9
Head-Expand w/ Expl. DA 9.1 8.1 8.6

Table 6: Performance of explicit data augmentation for
zero-shot evaluation on RAMS and WikiEvents.

mentation yields better performance than implicit
knowledge transfer for addressing the zero-shot
scenario. A plausible explanation for its effective-
ness is that: by using a MRC model as an annotator,
we can distill specific knowledge fitting to the event
ontology out to boost learning. Moreover, we note
the data generated by explicit data augmentation
can also help other models, e.g., BERT-CRF and
Head-Expand, to address the zero-shot scenario.

Table 7 gives the results of joint training, based
on RAMS. From the results, explicit data augmen-
tation improves the performance of different ap-
proach by 1.0% in F1 on the average, demonstrat-
ing its effectiveness. Nevertheless, we show ex-
plicit data augmentation underperforms implicit
knowledge transfer in joint training (44.4% v.s.
45.7% in F1). This implies that implicit knowl-
edge transfer may be more preferable than the ex-
plicit data generation strategy when we can obtain
relatively abundant in-domain training data.
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Method F1 w/ EDA ∆F1

BERT-CRF (Shi and Lin, 2019) 40.3 41.5 +1.2
SpanSel (Ebner et al., 2020) 40.7 41.5 +0.8
Head-Expand (Zhang et al., 2020) 41.8 42.9 +1.1
BART-Gen (Li et al., 2021) 42.2 43.1 +0.9
DocMRC 43.1 44.4 +1.3

Table 7: Impact of explicit data augmentation (w/ EDA)
on RAMS. ∆F1 denotes the performance gap.

Examples

(1) On entering [Persepolis]place, Alexander allowed his
troops to loot the city for several days. Alexander stayed
for five months. During his stay a firefireexplosion broke out
and spread to the rest of the city.

(2) With the assistance of the god Hermes, Hector’s fa-
ther [Priam]participant goes to [Achilles’ tent]place to plead
with Achilles for the return of Hector’s body so that he can
be buried. Achilles relents and promises a truce for the du-
ration of the funeral, lasting 9 days with a burialfuneralvigil

on the 10th.

(3) Lincoln rarely raised objections; but in an 1859 case,
where he defended a cousin, [Peachy Harrison]defendant,
who was accusedchargeindict of [killing a man]crime, he
angrily protested the judge’s decision to exclude evidence
favorable to his client.

Table 8: Generated examples by explicit data augmenta-
tion on RAME. The identified event triggers are shown
in underline, and the identified event arguments are
shown in the brackets, with their roles in subscripts.

6.3 Case Study

Table 8 gives three examples generated by our ex-
plicit data augmentation method. From the results,
our approach does identify global event arguments.
For example, in (1), our approach finds out that
“Persepolis", which is two-sentence away from the
event trigger fire, is an event argument fulfilling
the role of PLACE. The above examples can server
as perfect training data to boost learning. Never-
theless, we note a skewed distribution of the au-
tomatically labeled data. Particularly, the follow-
ing roles have the most instances: INSTRUMENT:
7456 (20.0%), TARGET: 6365 (17.0%), RECIPI-
ENT: 6108 (16.3%), and PLACE: 4169 (11.2%).
But roles such as INSPECTOR, DAMAGER, JAILER,
and DETAINEE have less than 10 instances. Our ap-
proach fails to identify instances of EXTRADITER

and TERRITORYORFACILITY. The reason of the
skewed distribution is that our approach relies on a
question answering formulation to label examples,
however, it is difficult to design proper questions
for some rules (e.g., TERRITORYORFACILITY).

Method P R F1

QAEE (Du and Cardie, 2020b) 56.9 49.8 53.1

DocMRC 56.9 50.1 53.4
DocMRC w/ Impl. DA 57.2 53.8 55.5

BERT-CRF 53.2 49.2 51.1
BERT-CRF w/ Exp. DA 54.1 53.1 52.8

Table 9: Results on ACE 2005 (sentence-level) EAE.

6.4 Error Analysis

Following Zhang et al. (2020), we conduct an er-
ror analysis, by sampling out 100 error cases from
the development set of RAMS. We identify four
typical errors: 1) Partial Match, which accounts
for 16%. For example, the golden annotation of an
ATTACKER in “the Palestine solidarity", but our ap-
proach predicts “Palestine solidarity". This issue is
partially derived from the inconsistency of human
annotation (Ebner et al., 2020). 2) Spurious Se-
mantic, which accounts for 8%. For example, our
approach incorrectly predicts that “Japan" fulfills
a PLACE role in “... Japan had accepted the terms
...", owing to not fully understanding the sentence
semantic. 3) Commonsense, which accounts for
3%. For example, our approach fails to predict that
"computer network" fulfills the role of GIVER in
acquires given a text: “... into the computer net-
work. Someone acquires the information ...”. How
to master commonsense for reasoning is still an
open challenge in implicit EAE. 4) Co-reference,
which accounts for 4%. Different from RAMS,
the dataset of WikiEvents has noted this issue and
considered co-reference into evaluation, which im-
proves about 2-point in F1 according to Table 3.

6.5 Impact on Sentence-Level EAE

Table 9 gives the result of our approach on the ACE
sentence-level EAE task. We compare our method
with QAEE (Du and Cardie, 2020b), which adopts
a fine-grained query generation strategy (we di-
rectly use the trigger prediction result of QAEE
to ensure comparability). The results have justi-
fied the effectiveness of our approach. Particularity,
with implicit knowledge transfer, our approach out-
performs QAEE by 2.4% in F1. Additionally, we
show explicit data augmentation can also benefit
learning — it leads to +1.7% in F1 for the model
based on sequence labeling (Shi and Lin, 2019).
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7 Conclusion

In this paper we take a new view to handle the data
sparsity challenge faced by implicit EAE. Two data
augmentation regimes based on MRC are devised,
which can implicitly transfer knowledge from re-
lated tasks, or generate new training data explicitly,
to boost learning. The extensive experiments have
justified the effectiveness of our approach. In the
future, we would design better question generation
method and apply our method to other tasks.
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