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Abstract

In natural language processing (NLP), state-

of-the-art (SOTA) semi-supervised learning

(SSL) frameworks have shown great perfor-

mance on deep pre-trained language models

such as BERT, and are expected to signifi-

cantly reduce the demand for manual label-

ing. However, our empirical studies indi-

cate that these frameworks are not suitable for

lightweight models such as TextCNN, LSTM

and etc. In this work, we develop a new SSL

framework called FLiText, which stands for

Faster and Lighter semi-supervised Text clas-

sification. FLiText introduces an inspirer net-

work together with the consistency regulariza-

tion framework, which leverages a generalized

regular constraint on the lightweight models

for efficient SSL. As a result, FLiText obtains

new SOTA performance for lightweight mod-

els across multiple SSL benchmarks on text

classification. Compared with existing SOTA

SSL methods on TextCNN, FLiText improves

the accuracy of lightweight model TextCNN

from 51.00% to 90.49% on IMDb, 39.8% to

58.06% on Yelp-5, and from 55.3% to 65.08%

on Yahoo. In addition, compared with the fully

supervised method on the full dataset, FLi-

Text just uses less than 1% of labeled data to

improve the accuracy by 6.59%, 3.94%, and

3.22% on the datasets of IMDb, Yelp-5, and

Yahoo respectively.

1 Introduction

Developments in deep learning technology have

great breakthroughs in most natural language pro-

cessing (NLP) tasks, such as machine transla-

tion, sentiment analysis, and reading comprehen-

sion. (Devlin et al., 2019; Yang et al., 2019; Li

et al., 2020; Ji et al., 2020; Zhong et al., 2020;

Tao et al., 2019; Zhang et al., 2019; Wang et al.,

2019; Tian et al., 2020a,b) The success of these

advancements is highly dependent on large-scale
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and high-quality manual labeled data. However,

obtaining vast amounts of high-quality labeled data

is expensive. Especially in certain fields, such as fi-

nance, medicine, law, and so on, text labeling relies

on the in-depth participation of field experts. The

rapid development of SSL technology is expected

to significantly reduce the demand for labeled data.

The core goal of this technology is to use a small

number of labeled data and vast amounts of unla-

beled data to train a model with good generaliza-

tion performance to solve machine-learning prob-

lems. (Lee, 2013; Laine and Aila, 2016; Miyato

et al., 2018; Tarvainen and Valpola, 2017; Berth-

elot et al., 2019b; Xie et al., 2020; Sohn et al.,

2020; Berthelot et al., 2019a) Unsupervised data

Figure 1: Comparison of the scale of parameters be-

tween FLiText and pre-trained language models in re-

cent years.

augmentation (UDA) (Xie et al., 2020) and Mix-

Text (Chen et al., 2020) are SOTA SSL methods for

text classification, and have been used to various

tasks with notable success. In NLP, applying the

SSL framework to deep pre-trained language mod-

els (e.g., BERT, GPT, and XLNet) has been demon-

strated effective. However, the good performance

of these SSL methods depends on a bulky “large

model”. In most practical situations, due to the

large-scale parameters and slow inference speed,
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it is difficult to implement these models with lim-

ited resources, such as mobile devices (Sun et al.),

online search engines (Lu et al., 2020), and edge

platforms (Tambe et al., 2020). An intuitive idea

to address the problem is to apply the SSL method

on a small model, such as TextCNN, of which the

parameter scale is about one or two orders of mag-

nitude lower than that of BERT, as shown in Figure

1. However, many applications show that the ex-

isting SOTA SSL framework performs poorly on

lightweight models. Furthermore, there is a lack of

relevant research on the implementation of SSL on

lightweight models.

This paper develops an SSL framework on

lightweight models, for faster and lighter semi-

supervised text classification (FLiText). We use

a deep pre-trained inspirer network to learn the

distribution relationship and the task-specific fea-

tures of the data. Next, the inspirer network pro-

vides two types of regularization constraints on a

lightweight model. The intuitive explanation is as

follows: “Teachers not only teach results but also

teach experiences in the learning process so that

students can learn more effectively.” To evaluate

FLiText, we compare FLiText and SOTA methods

on three benchmark text classification datasets. We

also conduct an ablation study to verify the perfor-

mance of each part of FLiText. The results show

that FLiText can significantly improve the infer-

ence speed while maintaining or exceeding SOTA

performance. Compared with UDA on TextCNN,

FLiText improves the accuracy from 51.00% to

90.32% on the IMDb dataset, from 39.80% to

58.06% on the Yelp-5 dataset, and from 55.30%

to 65.08% on the Yahoo dataset. Compared with

the supervised learning on complete datasets, the

performance is improved by 6.28%, 4.08%, and

3.81% on the three datasets respectively, by just

using less than 1% labeled data. Our contributions

can be summarized as follows:

• To our best of knowledge, in NLP, FLi-

Text is the first SSL framework proposed for

lightweight models, which can achieve new

SOTA SSL performance on multiple datasets.

• We experimentally demonstrate that FLi-

Text using less than 1% labeled data outper-

forms the supervised method using complete

datasets on a lightweight model.

• We propose a new semi-supervised distillation

method for knowledge distilling from BERT

to TextCNN, which outperforms output-based

knowledge distillation (KD) significantly.

• We experimentally demonstrate introduc-

ing a consistent regularization framework

in KD improves the performance of the

student model. Our source code can be

obtained from: https://github.com/
valuesimplex/FLiText.

2 Related Work

Semi-Supervised Learning: (Lee, 2013) uses

the pseudo labels and the unlabeled data for su-

pervised learning. (Rasmus et al., 2015) obtains

the learning signal by autoencoder. (Laine and

Aila, 2016) calculates the mean square error be-

tween the prediction of the current model and the

average of the historical prediction to construct

the consistency regularization. (Miyato et al.,

2018) adopts the method of adversarial learning

to generate noise. (Berthelot et al., 2019b) uses

the average of the prediction of K types of data

augmentation on unlabeled data to achieve con-

sistency regularization. (Berthelot et al., 2019a)

aligns the predicted distribution with the ground-

truth distribution. UDA (Xie et al., 2020) achieves

consistency regularization on unlabeled data after

back translation and tf-idf representation. (Chen

et al., 2020) proposes “TMix” data augmentation.

(Ren et al., 2020) adds weights for each unlabeled

sample. However, these SOTA methods all rely on

the deep pre-trained language model such as BERT,

and so far no research on the SSL on lightweight

models has been shown.

Knowledge Distillation: (Hinton et al., 2015)

uses student model to mimic teacher’s prediction

by soft target. (Tang et al., 2019) distills BERT

into a single layer of BILSTM. For the first time,

the knowledge of the Transformer-based model

was distilled into the non Transformer-based model.

(Sun et al., 2019) extracts knowledge from the in-

termediate layer of the BERT; (Sanh et al., 2019)

distills knowledge during the model’s pre-trained

stage; (Jiao et al., 2020) combines the above

various methods and propose a two-stage distil-

lation method. Although all of these methods have

achieved excellent results, the transformer has the

problem of a huge amount of parameters and high

computational complexity.
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3 Method

3.1 Framework

As shown in Figure 2, the biggest difference be-

tween FLiText and the previous SSL model is the

introduction of an inspirer network outside the

lightweight target network. The inspirer network

utilizes consistency regularization and data aug-

mentation technology to sufficiently mine infor-

mation and features from the unlabeled data and

limited labeled data. Then it provides a regularized

constraint on two levels (i.e., output and hidden

spaces) to lead the lightweight target network to

realize efficient SSL using only a few labeled data.

The entire framework comes from two types of in-

sights. First, (Ba and Caruana, 2014) mentions

that training a lightweight model based on the out-

put of a larger model would be better than on the

original data. Additionally, the general approxima-

tion theorem (Nguyen et al., 2016) identifies that

most functional spaces contained in lightweight

models could cover the target function required by

the downstream task. Therefore, as a supplement

to the current optimizer, the inspirer network can

provide a well-qualified regularized constraint for

the training of the lightweight model.

We define X = (xi, yi), i ∈ (1, ..., n) as the la-

beled dataset, U = (uj), j ∈ (1, ...,m) as the un-

labeled dataset, where n is the number of labeled

samples, m is the number of unlabeled samples.

3.1.1 Inspirer Network
The inspirer network comprises three parts: text

encoder, text classifier, and feature projection.

The text encoder is a pre-trained language model

stacked with multiple transformer structures, such

as BERT. Given an input sentence xi, we can ob-

tain a representation of the feature vector of “[CLS]”

from BERT, where hi ∈ R
d

hi = BERT (xi) (1)

where d is the dimension of hidden vector.

We use hi and a two-layer multi-layer percep-

tron (MLP) to construct the text classifier and fine-

tuning the downstream classification task. We de-

note the result obtained by the MLP as z
(T )
i :

z
(T )
i = MLP (hi) (2)

To align the dimensions of BERT and TextCNN,

we feed hidden state into the feature projection,

Ig(·), which compose of a single MLP and a non-

linear activation function. The output can be de-

noted as If l
i , where l ∈ L represents the number

of transformer layers.

Ig(·) = Tanh(MLP (·)) (3)

If l
i = Ig(Transformer(xi)) (4)

3.1.2 Target Network
The target network comprises a text encoder, a

text classifier, and a feature projection. We use

TextCNN (Kim, 2014) as the text encoder.

Because of its lightweight and parallelism, it has

been broadly applied to all types of text-treatment

systems (Tao et al., 2019; Zhang et al., 2019; Wang

et al., 2019; Tian et al., 2020a,b). Given an input

sentence xi, we use TextCNN to extract its infor-

mation and the max-pooling operation to obtain its

vector representation, ci ∈ R
d

ci = MaxPool(CNN(xi)) (5)

where d represents the dimension of hidden vector

output by TextCNN.

We use ci and an MLP to construct a text classi-

fier for the downstream text classification task. We

denote the result obtained by the MLP as z
(s)
i

z
(s)
i = MLP (ci) (6)

The structure of the feature projection is the

same as that of the inspirer. The difference is that

we use the feature map to replace the output of the

transformer layer in the inspirer:

Tg(·) = Tanh(MLP (·)) (7)

Tfk
i = Tg(CNN(xi)) (8)

Tg(·) is the feature projection of the target network,

and Tfk
i is the projection representations of thk

CNN filter.

3.2 Two-stage Learning

FLiText consists of two training stages: Inspirer

pre-training and Target network training. In the

first stage, we introduce a variety of advanced

semi-supervised ideas to complete the inspirer’s

training at downstream tasks. During the second

stage, FLiText maintains the inspirer’s parameters

unchanged and guides the training of the target net-

work in the downstream tasks via multi-level reg-

ular constraints provided by the inspirer network,



2484

CN
N

 K
ernel 6

CN
N

 K
ernel 6

CN
N

 K
ernel 5

CN
N

 K
ernel 5

CN
N

 K
ernel 4

CN
N

 K
ernel 4

CN
N

 K
ernel 3

CN
N

 K
ernel 3

CN
N

 K
ernel 2

CN
N

 K
ernel 2

CN
N

 K
ernel 1

CN
N

 K
ernel 1

Linear
Linear

CN
N

 K
ernel 6

CN
N

 K
ernel 5

CN
N

 K
ernel 4

CN
N

 K
ernel 3

CN
N

 K
ernel 2

CN
N

 K
ernel 1

Linear

CN
N

 K
ernel 6

CN
N

 K
ernel 5

CN
N

 K
ernel 4

CN
N

 K
ernel 3

CN
N

 K
ernel 2

CN
N

 K
ernel 1

Linear

I came here at 
Ugg the service 

Je suis venu ici à 
Ugg le service 

Waited over two hours 
Horrible! Had to 

I came here at 
Ugg the service 

Je suis venu ici à 
Ugg le service 

Waited over two hours 
Horrible! Had to 

Transform
er 12

Transform
er 12

Transform
er 3

Transform
er 3

Transform
er 2

Transform
er 2

Transform
er 1

Transform
er 1

Transform
er 3

Transform
er 3

Linear
Linear

K
L Loss

K
L LossI came here at 

Ugg the service 

Je suis venu ici à 
Ugg le service 

Waited over two hours 
Horrible! Had to 

Waited over two hours 
Horrible! Had to 

I came here at 
Ugg the service 

Je suis venu ici à 
Ugg le service 

Waited over two hours 
Horrible! Had to 

OD

LinearLinear LinearLinear LinearLinear

LinearLinear LinearLinear LinearLinear

FD FD FD

EN-SUP

EN-UNSUP

FR-UNSUP

EN-SUP

EN-UNSUP

FR-UNSUP

Inspirer NetworkInspirer Network

Target NetworkTarget Network

CE Loss

CE Loss

Figure 2: The architecture of FLiText. EN-SUP is labeled data of which the language is English; The red and green

circles denote the different category of the text; EN-UNSU is unlabeled data of which the language is English and

FR-UNSUP is noise version of the unlabeled data of which the language is French; FD represents the feature-based

distillation loss designed by FLiText; OD represents the output-based distillation loss.

ultimately achieving efficient semi-supervised dis-

tillation learning. By means of the two-stage train-

ing operation, FLiText finally completes the SSL

on the lightweight target network.

3.2.1 Inspirer Network Training
The training method is inspired by a consistency

regularization framework. The loss function con-

sists of two parts: the cross-entropy loss applied to

labeled data and the consistent regularization loss

on the unlabeled data. Similar to (Xie et al., 2020),

to restrain over-fitting, we also use training-signal

annealing technology to balance the participation

of labeled data in the training process. Given un-

labeled data ui and its noise version ai ∈ Xa, we

calculate the inspirer training loss:

LCE =
∑

i∈N

∑

c∈C

y, log(p(xi, θ))) (9)

L(T ) = LCE +KL(p(ui, θ)
(T ), p(ai, θ)

(T )) (10)

where the superscript u is the unlabeled data identi-

fier, a is the noise data identifier, (T ) is the inspirer

identifier, N is the number of labeled samples, and

C is the total number of labeled categories. p(·)
is the predicted probability distribution produced

by the model for input x and parameter θ. LCE is

the standard cross-entropy loss applied to labeled

samples and L(T ) is the objective function of the

inspirer. Other symbols are the same as before.

3.2.2 Target Network Distillation
In FLiText, we use two types of distillation meth-

ods together with the consistency regularization

framework to complete the guidance of the inspirer

network to the target network, by applying a regu-

larized constraint to the objective function of the

target network.

Output-based Distillation. Like (Mukherjee

and Hassan Awadallah, 2020) , we also use hard

label or soft label for output-based KD method:

Lsoft =
∥
∥
∥z

(T )
i − z

(S)
i

∥
∥
∥

2

2
(11)

yTi = argmax(p(xi, θ)
(T )) (12)

Lhard = CE(p(xi, θ)
(S), y

(T )
i ) (13)

where y
(T )
i is the predicted label.
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Feature-based Distillation. Due to the output-

based KD method does not account for the inter-

mediate learning process, we next introduce an-

other KD method: feature-based KD. (Jawahar

et al., 2019) shows that BERT can capture surface,

syntactic and semantic representations from low-

level layer to high-level layer. Inspired by this,

considering that the text features extracted by the

CNN filters with different sizes are different, FLi-

Text assumes that the linguistic level of features
captured by the CNN filters increases with their
size. For example, a convolution having a window

size of 4 is mainly focus on word-level features,

whereas filters having a window size of 15 can cap-

ture semantic-level features. As shown in Figure

3, the proposed hidden-space feature-based distilla-

tion scheme can achieve knowledge transfer from

BERT to TextCNN. In this scheme, we align the

small-size filters with the lower layers of the BERT

and the large-size ones with the higher layers. This

is equivalent to imposing an a priori constraint on

TextCNN. Namely, small filters are required to cap-

ture word-level features, medium filters capture

syntactic features, and large ones capture semantic

features. We use the feature projection to match the

MHA
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CNN

MaxPool

Linear Linear

Feature Distill

Hidden state Feature map

MHA
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FFN

ADD&Norm
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Figure 3: Architecture of Feature Distillation.

transformer’s hidden states and feature maps. We

complete the knowledge extraction by minimizing

the mean-squared error between the two feature

projections, which is recorded as the feature distil-

lation loss, Lfeature_distill.

Lfeature_distill = MSE(If l
i , T f

k
i ) (14)

Consistency Regularization. Owing to the dif-

ferences in the parameter space and the network

structure between the target and inspirer networks,

there is a problem of knowledge loss during the

learning process. If only the KD methods are

adopted, the target network would not be able to

learn some of the functional characteristics of the

inspirer network. Therefore, we introduce consis-

tency regularization to constrain the target network,

which keeps it smooth enough in the function space.

Thus, the network should be flat around the input

data. Even if the input data change slightly or

their forms change while remaining semantically

unchanged, the output of the model can remain ba-

sically the same. This is consistent with the training

of the inspirer network:

L
(S)
consist = KL(p(ui, θ)

(S), p(ai, θ)
(S)) (15)

Finally, the loss function of the target network is

Ltotal = LCE + L
(sup)
distill + L

(sup)
feature_distill

+L
(unsup)
distill + L

(unsup)
feature_distill + L

(S)
consist

(16)

where the superscript (sup) is the labeled sample

identifier, (unsup) is the unlabled sample identi-

fier. LCE represents the classification loss calcu-

lated on labeled data. L
(sup)
distill is the output-based

distillation loss on the labeled data; L
(sup)
feature_distill

is the feature-based distillation loss on the labeled

data; and L
(S)
consist is the consistency regularity loss

of TextCNN.

4 Experiments

4.1 Dataset
We verify the performance of FLiText on three

publicly available English text classification bench-

mark datasets: IMDb (Maas et al., 2011), Ya-

hoo (Zhang et al., 2015) and Yelp-5 (Xie et al.,

2020). From Yahoo and Yelp-5, we randomly sam-

ple 70,000 sentences of unlabeled data, and 5,000

sentences as test data to verify the SSL method. We

also randomly select 70,000 sentences of labeled

data as a full dataset for the supervision method.

For all datasets, we use French as an intermediate

language for back translation. Table 1 shows the

statistical information.

4.2 Implementation Details
In all experiments, we set the max sentence length

to be 256. The dropout rate is 0.5. We use Adam to

optimize the parameters of each model. It is found
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Dataset Class Labeled Dev Test
IMDb 2 25000 25000 25000

Yelp-5 5 70000 5000 5000

Yahoo 10 70000 5000 5000

Table 1: Statistics of the IMDb, Yahoo and Yelp-5.

that all of the methods including the proposed work

in this paper and other methods for comparison can

achieve the best performance within 10 epochs. In

order to ensure the consistency of the experimental

conditions, 10 epochs are uniformly used. For the

inspirer network, we use BERT-based-uncased1 as

the encoder, a two-layer MLP with 768 hidden

states, and tanh as the activation function. The

learning rate is 2e-5 for the BERT encoder and 1e-

3 for the MLP model. For the target network, we

use the Glove2 300d vector as the embedding layer

initialization parameter, TextCNN as the encoder.

We use filters with sizes of 2, 3, 5, 7, 9 and 11

respectively. The number of output channels is 200,

and the max-pooling operation is used to extract

key information. For the project layer, we use a

single layer MLP with a hidden size of 256 and a

Relu as the activation function. Most of the reports

(Chen et al., 2020; Xie et al., 2020; Sohn et al.,

2020; Berthelot et al., 2019a) about SSL only report

accuracy or error rate. Hence, we also use accuracy

for comparison with other works in this paper.

4.3 Result

We evaluate FLiText and baselines under different

numbers of labeled data. The amount of labeled

data is 20, 500, and 2500 respectively for IMDb,

500, 1000, and 2500 respectively for Yelp-5 and

Yahoo. All of the amounts of unlabeled data is

70000. The experimental results are shown in Table

2.

Compared with the supervised learn-
ing method. The results of FLiText and

TextCNN(fully) in Table 2 show that, with only

500 labeled data, FLiText greatly exceeds the fully

supervised method on the performance by 6.59%,

3.94%, and 3.22% for each dataset respectively.

Also, as the size of the labeled data increases

to 2500, the performance is further improved to

1https://github.com/google-research/
bert

2https://apache-mxnet.s3.cn-north-1.
amazonaws.com.cn/gluon/embeddings/glove/
glove.6B.zip

be 7.06%, 6.28%, and 6.18%. This shows that

FLiText is an effective SSL method for lightweight

models.

Comparison with existing SOTA SSL methods
on TextCNN. Since the TMix method proposed

by MixText cannot be directly applied to TextCNN,

we apply the UDA framework to TextCNN.

Among the results of FLiText, UDA(TextCNN)

and TextCNN, there are two major findings. Firstly,

when using 500 labeled data, FLiText achieves

an accuracy improvement of 11.8%, 18.26%, and

9.78%, compared to UDA(TextCNN) on the three

datasets respectively. Secondly, in contrast, when

using 2500 labeled data (5 times of FLiText), the ac-

curacy of UDA(TextCNN) on the IMDb and YELP-

5 is 3.16% and 6% lower than TextCNN(fully)

respectively. This shows that, due to the limited

feature extraction capabilities of the model, the

application of UDA to TextCNN does not work.

These two results show that FLiText is a SOTA

semi-supervised text classification framework for

lightweight models.

Comparison with existing SOTA SSL methods.
In this part, we compare the performance of FLi-

Text, UDA, and MixText on the three datasets.

Three conclusions are drawn from Table 2. Firstly,

FLiText performs better on the IMDb and Yelp-

5 datasets. For example, with 500 labeled data,

the accuracy of FLiText on Yelp-5 is 1.53% and

3.72% higher than UDA and MixText, respectively.

Secondly, on the IMDb dataset, as the number of

labeled data decreases, FLiText has a more obvious

advantage in performance compared with the other

two methods. The same phenomenon can be ob-

served on the Yelp-5 dataset. This shows that FLi-

Text has a stronger ability to capture text features

in scenarios with a few labeled data. Third, we also

find that due to the relatively high difficulty for text

classification of the Yahoo dataset with multiple

10 categories, the performance of FLiText is 1% to

2% lower than UDA or MixText under the three

different volumes of labeled data. Overall, the per-

formance of FLiText surpasses or approaches that

of the SOTA frameworks on the semi-supervised

text classification benchmarks, while the model ob-

tained by FLiText is lighter (the scale of the param-

eters is only one-thousandth of UDA or MixText),

and faster (the inference speed is 67 times faster

than UDA or MixText). As a result, FLiText is a

very practical framework, suitable for many actual



2487

Model IMDb Yelp-5 Yahoo
20 500 2500 500 1000 2500 500 1000 2500

TextCNN(fully) 83.9 54.12 61.86

UDA(BERT) 90.15 90.27 91.07 56.53 59.64 61.37 66.86 68.9 70.32

MixText 78.24 88.17 90.02 54.34 57.98 60.02 67.38 68.84 70.4
UDA(TextCNN) 51.00 78.38 80.74 39.8 42.6 48.12 55.3 55.58 62.32

TextCNN(KD) 90.32 90.43 90.21 56.87 57.98 58.35 64.23 65.81 66.75

UDA(ALBERT) 88.24 89.04 90.07 51.08 55.43 57.44 62.13 64.81 66.07

UDA+KD(DistilBERT6) 89.51 90.42 91.06 57.21 58.41 59.87 55.09 60.64 66.97

UDA+KD(TinyBERT4) 87.17 88.23 89.17 56.51 57.79 58.97 64.67 66.17 67.46

UDA+KD(TinyBERT6) 87.54 89.26 90.34 56.41 57.94 59.43 66.01 67.87 69.76

FLiText 90.49 90.74 90.96 58.06 59.27 60.4 65.08 67.25 68.04

Table 2: Performance (test accuracy(%)) comparison with baselines. The three numbers in the next row of each

dataset indicate the amount of labeled data; UDA(TextCNN) means applying UDA to TextCNN; TextCNN(fully)

is a supervised method that uses the full dataset for training; TextCNN(KD) means distilling the knowledge of

the inspirer into TextCNN; MixText uses the {7,9,12} layer for TMix; UDA(ALBERT) means applying UDA to

ALBERT; UDA+KD(DistilBERT6) means performing the KD method of 6 layers DistilBERT to get a smaller and

lighter model from BERT trained by UDA; UDA+KD(TinyBERT4) means performing the KD method of 4 layers

TinyBERT to get a smaller and lighter model from BERT trained by UDA; FLiText is our proposed method.

Model #SpeedUp #Params #FLOPs
UDA(BERT) 1.0× 110.08M 22.5B

MixText 1.0× 85.7M 24.3B

UDA(ALBERT) 1.2× 12.2M 20.7B

UDA+KD(DistilBERT6) 2.3× 52.7M 11.3B

UDA+KD(TinyBERT4) 10.2× 14.4M 1.2B

UDA+KD(TinyBERT6) 2.1× 67.5M 11.3B

FLiText 67.2× 9.6M 0.5B

Table 3: Inference speed with Intel(R) Xeon(R) Plat-

inum 8163 CPU @2.50GHz.

industrial scenarios, especially in resource-limited

scenarios or large-scale online systems, such as e-

commerce search and real-time recommendation

systems.

Comparison with the lightweight BERT. As

shown in Table 2, the lightweight BERT (ALBERT)

does not perform well under the framework of

UDA, and is worse than that of FLiText. For exam-

ple, when using 500 labeled data, FLiText achieves

accuracy improvement of 1.7%, 6.98% and 2.95%,

compared to UDA(ALBERT) on the three datasets

respectively. Moreover, even the base version of

ALBERT has the same inference speed as BERT,

which is 52 times of our method, as shown in Table

3.

Comparison with the KD method for BERT.
In the experiment, we also performed the

KD methods of DistilBERT6, TinyBERT4, and

TinyBERT6 to get smaller and lighter models from

BERT trained by UDA, to compare with FLi-

Text. As shown in Table 2, the performance of

“UDA+KD(DistilBERT6)” is worse than FLiText

under almost all experimental conditions, where

the accuracy of the former is at least 0.5% lower

than that of the latter. The same conclusion can also

be seen in the comparison with TinyBERT4, which

is the fastest variant of BERT in our experiment

as shown in Table 3. Compared with TinyBERT6,

FLiText performs much better on the IMDb and

Yelp-5 datasets. Though the performance of FLi-

Text is about 1% lower than TinyBERT6 on the

dataset of Yahoo, it is 32× faster and 7× smaller

than TinyBERT6, which is a valuable trade-off in

the situations with low resources.

Comparison of the efficiency. From the results

of Table 3, FLiText is 11.5× smaller and 67.2×
faster than that of UDA(BERT), and it performs as

well as UDA(BERT) on the datasets of IMDb and

Yelp-5 with only 2.7% FLOPs. Compared with

“UDA+KD(TinyBERT4)”, which is the smallest

variant of BERT in Table 2 and Table 3, FLiText

is 2× smaller and 6.7× faster, and achieves accu-

racy improvement of about from 1.5% to 3% on

the three datasets with 46.2% FLOPs. In terms

of computational complexity, (Vaswani et al.,

2017) shows that Multi-Head Self-Attention re-

quires O(n2d + nd2) operations while 1D-CNN

requires O(k ∗ n ∗ d) operations, where n is the

sequence length, d is the representation dimen-
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sion, k is the kernel size of convolutions. There-

fore, the computational complexity of BERT is

O(L ∗ (n2d + nd2)) ≈ O(L ∗ n ∗ n ∗ d), where

L is the number of Transformer blocks, and the

complexity of TextCNN is O(N ∗k ∗n∗d), where

N is the number of CNN kernels. Considering that

N ∗ k << L ∗ n in our situation, so the computa-

tional complexity of FLiText is much smaller than

that of UDA(BERT).

5 Ablation Study

5.1 Different Combinations of Transformer
Layers and CNN Filters

We choose different transformer layers and filters

for multiple combinations and the results are shown

in Table 4. We use {Transformer layer}-{filter size}

to indicate which Transformer layers and CNN

filters are selected. For example, {0,1,2}-{2,3,5}

means that the first, second, and third layers of

BERT are combined with the size of 2, 3, and 5 re-

spectively. Three conclusions are drawn from Table

4. Firstly, a combination of a higher-level Trans-

former layer and a filter with a larger size achieves

better performance. For example, with the com-

bination of {0,1,2}-{2,3,5}, FLiText just achieves

accuracy of 63.4%; with {6,7,8}-{5,7,9}, the ac-

curacy is increased from 63.4% to 64.44%; and

with {9,10,11}-{7,9,11}, the accuracy is yet again

increased to 64.53%. Secondly, our hypothesis that

filters with small window sizes focus on simple

features, and as the filters become larger, the more

advanced features can be captured. We performs

inverted combinations, such as {9,10,11}-{2,3,5}

and {0,1,2}-{7,9,11}, the accuracy is 63.15% and

63.53%, respectively, which is lower than the

combination of {0,1,2}-{2,3,5}. Finally, FLiText

achieves the best accuracy of 65.07% with the com-

binations of {5,7,9,11}-{2,3,9,11}. This combina-

tion features BERT’s middle-level and high-level

transformer, as well as medium and large filters.

Most of the grammatical and semantic information

is transferred from BERT to TextCNN.

5.2 Remove Different Parts of FLiText

In order to verify the performance of each part of

FLiText, we remove each component and show the

results in Table 5. The removal of output-based

distillation results in the worst performance degra-

dation of the performance, which manifests that the

target network mainly learns from the output-based

knowledge The performance decreased 1.24% after

Transformer TextCNN Accuracy
0,1,2 2,3,5 63.53

3,4,5 3,5,7 64.05

6,7,8 5,7,9 64.44

9,10,11 7,9,11 64.53

9,10,11 2,3,5 63.15

0,1,2 7,9,11 63.4

5,7,9,11 2,3,9,11 65.08

1,3,5,7,9,11 2,3,5,7,9,11 64.51

Table 4: Accuracy on Yahoo with 500 labeled data and

70000 unlabeled data with different combinations of

transformer layer and filters.

Model Accuracy
FLiText 67.25

-feature distillation 65.75

-consistency regulation 66.01

-output distillation 35.28

Table 5: Accuracy on Yahoo with 1000 labeled data

and 70000 unlabeled data with remove different part.

removing consistency regularization, which indi-

cates that consistency regularization constraints can

boost the performance in the KD framework. After

removing the feature distillation, the performance

dropped from 67.25% to 65.75%. This shows that

feature distillation can help FLiText transfer more

knowledge from the inspirer network to the target

network on the basis of output-based distillation.

5.3 Consistency Regularization Effect

We add a consistency regularization framework

on the basis of KD to verify the performance of

the former on the latter. The results are shown in

Table 6. We observe that after the introduction

of the consistency regularization, the accuracy of

TextCNN(KD+CR) is increased by 0.22%, 0.66%

and 0.28% on the three datasets respectively, com-

pared to the TextCNN(KD). In our opinion, the

improvement of performance brought by the con-

sistency regularization is task-independent and can

Model Yelp-5 Yahoo
TextCNN(KD) 57.98 65.81

TextCNN(KD+CR) 58.64 66.09

Table 6: Accuracy on Yelp-5 and Yahoo with

1000 labeled data and 70000 unlabeled data.

TextCNN(KD+CR) represents adding consistency

regularization on TextCNN(KD)
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Model Accuracy
∅ 63.37

Relu 65.08

Tanh 64.44

Table 7: Accuracy on Yahoo with 500 labeled data and

70000 unlabeled data. ∅ is non-linear transformation.

be used as a supplement to KD, so as to guide the

student model to achieve better local smoothness.

5.4 Nonlinear Activation Function Effect

We find that adding a nonlinear transformation to

the feature projection has a distinct impact on the

performance of the model. In order to verify this

impact, we examine the effect of using Relu, Tanh

and avoid nonlinear transformation (∅). The re-

sults are shown in Table 7. It can be seen that when

the nonlinear transformation is removed, FLiText

only achieves an accuracy of 63.37%. Using Relu

or Tanh offers a 1.71% or 1.07% boost in perfor-

mance respectively.

6 Conclusion

SSL has made great progress, but its rapid devel-

opment is accompanied by increasingly complex

algorithms and a sharp increase in the amount of

computation, which is undoubtedly a bottleneck to

the actual use of these algorithms in the industry.

Therefore we introduce FLiText, a light and fast

SSL framework for text classification with a convo-

lution network. We show that FLiText achieves new

SOTA results on multiple benchmark datasets on a

lightweight model. Moreover, FLiTex achieves a

close or even better performance compared to the

previous SOTA SSL methods, while maintains a

lightweight architecture with only one-thousandth

of the parameters and a speed boost of more than 50

times. FLiText provides an effective way to deploy

semi-supervised algorithms on resource-limited de-

vices and industrial applications. In future research,

we plan to apply FLiText to a wider range of NLP

tasks, such as relation extraction and machine trans-

lation.
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