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Abstract

Dominant sentence ordering models can be
classified into pairwise ordering models and
set-to-sequence models. However, there is lit-
tle attempt to combine these two types of mod-
els, which inituitively possess complementary
advantages. In this paper, we propose a nov-
el sentence ordering framework which intro-
duces two classifiers to make better use of pair-
wise orderings for graph-based sentence order-
ing (Yin et al., 2019, 2021). Specially, giv-
en an initial sentence-entity graph, we first
introduce a graph-based classifier to predict
pairwise orderings between linked sentences.
Then, in an iterative manner, based on the
graph updated by previously predicted high-
confident pairwise orderings, another classifier
is used to predict the remaining uncertain pair-
wise orderings. At last, we adapt a GRN-based
sentence ordering model (Yin et al., 2019,
2021) on the basis of final graph. Experiments
on five commonly-used datasets demonstrate
the effectiveness and generality of our model.
Particularly, when equipped with BERT (De-
vlin et al., 2019) and FHDecoder (Yin et al.,
2020), our model achieves state-of-the-art per-
formance. Our code is available at https://
github.com/DeepLearnXMU/IRSEG.

1 Introduction

With the rapid development and increasing applica-
tions of natural language processing (NLP), model-
ing text coherence has become a significant task, s-
ince it can provide beneficial information for under-
standing, evaluating and generating multi-sentence
texts. As an important subtask, sentence order-
ing aims at recovering unordered sentences back
to naturally coherent paragraphs. It is required to
deal with logic and syntactic consistency, and has
increasingly attracted attention due to its wide ap-
plications on several tasks such as text generation
(Konstas and Lapata, 2012; Holtzman et al., 2018)
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and extractive summarization (Barzilay et al., 2002;
Nallapati et al., 2012).

Recently, inspired by the great success of deep
learning in other NLP tasks, researchers have re-
sorted to neural sentence ordering models, which
can be classified into: pairwise ordering models
(Chen et al., 2016; Agrawal et al., 2016; Li and
Jurafsky, 2017; Moon et al., 2019; Kumar et al.,
2020; Prabhumoye et al., 2020; Zhu et al., 2021)
and set-to-sequence models (Gong et al., 2016; N-
guyen and Joty, 2017; Logeswaran et al., 2018;
Mohiuddin et al., 2018; Cui et al., 2018; Yin et al.,
2019; Oh et al., 2019; Yin et al., 2020; Cui et al.,
2020; Yin et al., 2021). Generally, the former pre-
dicts the relative orderings between pairwise sen-
tences, which are then leveraged to produce the
final ordered sentence sequence. Its advantage lies
in the lightweight pairwise ordering predictions,
since the predictions only depend on the semantic
representations of involved sentences. By contrast,
the latter is mainly based on an encoder-decoder
framework, where an encoder is first used to learn
contexualized sentence representations by consid-
ering other sentences, and then a decoder, such
as pointer network (Vinyals et al., 2015a), outputs
ordered sentences.

Overall, these two kinds of models have their
own strengths, which are complementary to each
other. To combine their advantages, Yin et al.
(2020) propose FHDecoder that is equipped with
three pairwise ordering prediction modules to en-
hance the pointer network decoder. Along this line,
Cui et al. (2020) introduce BERT to exploit the
deep semantic connection and relative orderings
between sentences and achieve SOTA performance
when equipped with FHDecoder. However, there
still exist two drawbacks: 1) their pairwise ordering
predictions only depend on involved sentence pairs,
without considering other sentences in the same
set; 2) their one-pass pairwise ordering predictions
are relatively rough, ignoring distinct difficulties in
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predicting different sentence pairs. Therefore, we
believe that the potential of pairwise orderings in
neural sentence ordering models has not been fully
exploited.

In this paper, we propose a novel iterative pair-
wise ordering prediction framework which intro-
duces two classifiers to make better use of pairwise
orderings for graph-based sentence ordering (Yin
et al., 2019, 2021). As an extension of Sentence-
Enity Graph Recurrent Network (SE-GRN) (Yin
et al., 2019, 2021), our framework enriches the
graph representation with iteratively predicted or-
derings between pairwise sentences, which further
benefits the subsequent generation of ordered sen-
tences. The basic intuitions behind our work are
two-fold. First, learning contextual sentence rep-
resentations is helpful to predict pairwise order-
ings. Second, difficulties of predicting ordering
vary with respect to different sentence pairs. Thus,
it is more reasonable to first predict the orderings
of pairwise sentences easily to be predicted, and
then leverage these predicted orderings to refine
the predictions for other pairwise sentences.

Concretely, we propose two graph-based clas-
sifiers to iteratively conduct ordering predictions
for pairwise sentences. The first classifier takes
the sentence-entity graph (SE-Graph) (Yin et al.,
2019, 2021) as input and yields relative orderings
of linked sentences via corresponding probabilities.
Next, in an iterative manner, the second classifier
enriches the previous graph representation by con-
verting high-value probabilities into the weights of
the corresponding edges, and then reconduct graph
encoding to predict orderings for the other pair-
wise sentences. Based on the final weighted graph
representation, we adapt SE-GRN to construct a
graph-based sentence ordering model, of which the
decoder is also a pointer network.

To the best of our knowledge, our work is the
first to exploit pairwise orderings to enhance the
graph encoding for graph-based set-to-squence sen-
tence ordering. To investigate the effectiveness of
our framework, we conduct extensive experiments
on several commonly-used datasets. Experimental
results and in-depth analyses show that our model
enhanced with some proposed technologies (De-
vlin et al., 2019; Yin et al., 2020) achieves the
state-of-the-art performance.

2 Related Work

Early studies mainly focused on exploring human-
designed features for sentence ordering (Lapata,
2003; Barzilay and Lee, 2004; Barzilay and Lapa-
ta, 2005, 2008; Elsner and Charniak, 2011; Guin-
audeau and Strube, 2013). Recently, neural net-
work based sentence ordering models have become
dominant , consisting of the following two kinds of
models:

1) Pairwise models. Generally, they first pre-
dict the pairwise orderings between sentences and
then use them to produce the final sentence order
via ranking algorithms (Chen et al., 2016; Agrawal
et al., 2016; Li and Jurafsky, 2017; Kumar et al.,
2020; Prabhumoye et al., 2020; Zhu et al., 2021).
For example, Chen et al. (2016) first framed sen-
tence ordering as a ranking task conditioned on
pairwise scores. Agrawal et al. (2016) conducted
the same experiments as (Chen et al., 2016) in the
task of image caption storytelling. Similarly, Li
and Jurafsky (2017) investigated the effectiveness
of discriminative and generative models on order-
ing pairs of sentences in small domains. Moon
et al. (2019) proposed a unified model that incor-
porates sentence grammar, pairwise coherence and
global coherence into a common neural framework.
Recently, Prabhumoye et al. (2020) and Zhu et al.
(2021) employed ranking techniques to find the
right order of the sentences under the constraint of
the predicted pairwise sentence ordering;

2) Set-to-sequence Models. Basically, these
models are based on an encoder-decoder frame-
work, where the encoder is used to obtain sentence
representations and then the decoder produces or-
dered sentences progressively. Among them, both
Gong et al. (2016) and Logeswaran et al. (2018) ex-
plored RNN based encoder, while both Nguyen and
Joty (2017) and Mohiuddin et al. (2018) employed
neural entity grid models as encoders. Typical-
ly, Cui et al. (2018) proposed ATTOrderNet that
uses self-attention mechanism to learn sentence
representations. Inspired by the successful applica-
tions of graph neural network (GNN) in many NLP
tasks (Song et al., 2018; Xue et al., 2019; Song
et al., 2019, 2020), Yin et al. (2019, 2021) repre-
sented input sentences with a unified SE-Graph and
then applied GRN to learn sentence representation-
s. Very recently, we notice that Chowdhury et al.
(2021) proposes a BART-based sentence ordering
model. Please note that our porposed framework
is compatible with BART (Lewis et al., 2020). For
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Figure 1: The architecture of SE-GRN model (Yin
et al., 2019, 2021).

example, we can easily adapt the BART encoder as
our sentence encoder.

With similar motivation with ours, that is, to
combine advantages of above-mentioned two kinds
of models, Yin et al. (2020) introduced three pair-
wise ordering predicting modules (FHDecoder) to
enhance the pointer network decoder of ATTOrder-
Net. Recently, Cui et al. (2020) proposed BERSON
that is also equipped with FHDecoder and utilizes
BERT to exploit the deep semantic connection and
relative ordering between sentences.

However, significantly different from them, we
borrow the idea from the mask-predict framework
(Gu et al., 2018; Ghazvininejad et al., 2019; Deng
et al., 2020) to progressively incorporate pairwise
ordering information into SE-Graph, which is the
basis of our graph-based sentence ordering mod-
el. To the best of our knowledge, our work is the
first attempt to explore iteratively refined GNN for
sentence ordering.

3 Background

In this section, we give a brief introduction to the
SE-GRN (Yin et al., 2019, 2021), which is selected
as our baseline due to its competitive performance.
As shown in Figure 1, SE-GRN is composed of
a Bi-LSTM sentence encoder, GRN (Zhang et al.,
2018) paragraph encoder, and a pointer network
(Vinyals et al., 2015b) decoder.

3.1 Sentence-Entity Graph

The SE-GRN takes I sentences s = [so1 , . . . , soI ]
as input and tries to predict their correct order
o∗ = [o∗1, . . . , o

∗
I ]. At first, each sentence soi

is fed into a Bi-LSTM sentence encoder, where
the concatenation of the last hidden states in t-
wo directions is used as the context-aware sen-
tence representation κ(0)

oi . As illustrated in the
middle of Figure 1, each input sentence set is rep-

resented as an undirected sentence-entity graph
G = (V ,E), where V ={vi}Ii=1∪{v̂j}Jj=1 and
E ={ei,i′}I,Ii=1,i′=1∪{ēi,j}

I,J
i=1,j=1∪{êj,j′}

J,J
j=1,j′=1

represent the nodes and edges respectively. Here, n-
odes include sentence nodes (such as vi) and entity
nodes (such as v̂j), and each edge is 1) sentence-
sentence edge (ss-edge, such as ei,i′) linking two
sentences having the same entity; or 2) sentence-
entity edge (se-edge, such as ēi,j) connecting an
entity to a sentence that contains it. Each se-edge
is assigned with a label including subject, object or
other, based on the syntactic role of its involved en-
tity; or 3) entity-entity edge (ee-edge, such as êj,j′)
connecting two semantic related entities. Besides,
a virtual global node connecting to all nodes is in-
troduced to capture global information effectively.

3.2 Paragraph Encoding with GRN
Node representations of each sentence and each
entity are first initialized with the concatenation of
bidirectional last states of the Bi-LSTM sentence
encoder and the corresponding GloVe word em-
bedding, respectively. Then, a GRN is adapted
to encode the above sentence-entity graph, where
node states are updated iteratively. During the pro-
cess of updating hidden states, the messages for
each node are aggregated from its adjacent nodes.
Specifically, the sentence-level messagem(l)

i and
entity-level message m̃(l)

i for a sentence si are de-
fined as follows:

m(l)
i =

∑
vi′∈Ni

w(κ(l-1)
i ,κ(l-1)

i′ )κ(l-1)
i′ ,

m̂(l)
i =

∑
vj∈N̂i

w̄(κ(l-1)
i , ε(l-1)

j , rij)ε
(l-1)
j ,

(1)

where κ(l-1)
i′ and ε(l-1)

j stand for the neighboring sen-
tence and entity representations of the i-th sentence
node vi at the (l − 1)-th layer, Ni and N̂i denote
the sets of neighboring sentences and entities of vi,
and both w(∗) and w̄(∗) are gating functions with
single-layer networks, involving associated node
states and edge label rij (if any).

Afterwards, κ(l-1)
i is updated by concatenating

its original representation κ(0)
i , the messages from

neighbours (m(l)
i and m̂(l)

i ) and the global state
g(l-1) via GRU:

ξ(l)
i = [κ(0)

i ;m(l)
i ; m̂(l)

i ; g(l-1)],

κ(l)
i = GRU(ξ(l)

i ,κ
(l-1)
i′ ).

(2)

Similar to updating sentence nodes, each entity s-
tate ε(l-1)

j is updated based on its word embedding
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Figure 2: The architecture of our model during inference. IRSE-Graph is a weighted graph representation, of
which weights of ss-edges are iteratively refined by iterative classifier. Note that we construct the sentence ordering
model based on the final IRSE-Graph.

embj , hidden states of its connected sentence n-
odes (such as κ(l-1)

i ), and g(l-1):

m(l)
j =

∑
vi∈Nj

w̄(ε(l-1)
j ,κ(l-1)

i , rij)κ
(l-1)
i ,

m̂(l)
j =

∑
vj′∈N̂j

w̃(ε(l-1)
j , ε(l-1)

j′ )ε(l-1)
j ,

ξ(l)
j = [embj ;m

(l)
j ; m̂(l)

j ; g(l-1)],

ε(l)
j = GRU(ξ(l)

j , ε
(l-1)
j ).

(3)

Finally, the messages from both sentence and entity
states are used to update global state g(l-1) via

g(l) = GRU(
1

|V |
∑
vi∈V

κ(l-1)
i ,

1

|V̂ |

∑
v̂j∈V̂

ε(l-1)
j , g(l-1)). (4)

The above updating process is iterated for L
times. Usually, the top hidden states are consid-
ered as fine-grained graph representations, which
will provide dynamical context for the decoder via
attention mechanism.

3.3 Decoding with Pointer Network

Given the learned hidden states {κ(L)
i } and g(L),

the prediction procedure for order o′ can be formal-
ized as follows:

P (o′|K (L)) =

I∏
t=1

P (o′t|o′<t,K
(L)
o′t−1

),

P (o′t|o′<t,K
(L)
o′t−1

) = softmax(qT tanh(Whd
t +UK (L)

o′t−1
)),

hd
t = LSTM(hd

t−1,κ
(0)
o′t−1

). (5)

Here, q, W and U are learnable parameters,
K(L)

o′t−1
and hd

t denote the sentence representations

with predicted order
[
κ(L)
o′1
, . . . ,κ(L)

o′t−1

]
and the de-

coder hidden state at the t-th time step, which is
initialized by g(L) as t=0, respectively.

4 Our Framework

In this section, we give a detailed description to
our framework. As shown in Figure 2, we first
introduce two graph-based classifiers to construct
an iteratively refined sentence-entity graph (IRSE-
Graph). It is a weighted version of SE-Graph,
where pairwise ordering inforamtion is iteratively
incorporated to update ss-edge weights. Then, we
adapt the conventional GRN to establish a neural
sentence ordering model based on the final IRSE-
Graph.

4.1 The Definition of IRSE-Graph

As an extension of SE-Graph, IRSE-Graph can be
denoted as G=(V ,E,W ), where V and E share
the same definitions with those of SE-Graph. Partic-
ularly, in IRSE-Graph, each ss-edge ei,i′ is a direct-
ed one with a weight wi,i′∈W indicating the prob-
ability of sentence si occurring before sentence si′ .
Meanwhile, there must exist a corresponding ss-
edge ei′,i with the weight wi′,i=1−wi,i′ denoting
the probability of si appearing after si′ . For ex-
ample, in Figure 2, for two linked sentence nodes
v1 and v2, there exist two ss-edges e1,2 and e2,1
with weights w1,2 and w2,1 respectively, both of
which are iteratively updated during constructing
IRSE-Graph.

4.2 Constructing IRSE-Graph

Inspired by Gui et al. (2020), we successively in-
troduce two classifiers — initial classifier and it-
erative classifier to construct IRSE-Graph. Both
classifiers are constructed using slightly adapted
GRN and utilized to deal with different scenarios,
respectively. In this way, we can fully exploit the
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potential of iterative classifier to predict better pair-
wise orderings. We will give a detail introduction
to the slightly adapted GRN in Section §4.3.

To better understand the procedure of construct-
ing IRSE-Graph, we provide the details in Algo-
rithm 1. During this procedure, pairwise orderings
are iteratively predicted and gradually incorporat-
ed to refine IRSE-Graph. Here we introduce a set
VP(k) to collect sentence node pairs with uncertain
pairwise orderings at the k-th iteration.

First, we bulid an initial classifier based on the
initial IRSE-Graph, where the learned sentence
representations are used to predict pairwise or-
derings between any two linked sentences only
once (Lines 2-6). Note that in the initial IRSE-
Graph, all weights of ss-edges are set to 0.5. In
this case, IRSE-Graph degrades to the conventional
SE-Graph. Concretely, for any two linked sentence
nodes vi and vi′ , we concatenate their vector rep-
resentations κi and κi′ as [κi;κi′ ] and [κi′ ;κi],
which are fed into an MLP classifier to obtain t-
wo probabilities. Then, we normalize and convert
these two probabilities into ss-edge weights wi,i′

and wi′,i. If both wi,i′ and wi′,i are within a pre-
fixed interval [δmin, δmax], we consider (vi, vi′) as
a sentence node pair with uncertain pairwise order-
ing and add it into VP(0). Moreover, we replace
both wi,i′ and wi′,i with 0.5, indicating that they
will be repredicted in the next iteration.

In the following, we also construct an iterative
classifier based on IRSE-Graph. However, in an
easy-to-hard manner, we use iterative classifier to
perform pairwise ordering predictions, where the
ss-edge weights of IRSE-Graph are continously up-
dated with previously-predicted pairwise orderings
with high confidence (Lines 13-26). By doing so,
graph representations can be continously refined
for better subsequent predictions. More specifical-
ly, the k-th iteration of this classifier mainly involve
three steps:

In Step 1, based on the current IRSE-Graph, we
employ the adapted GRN to conduct graph encod-
ing to learn sentence representations (Line 15).

In Step 2, on the top of learned sentence repre-
sentations, we stack an MLP classifier to predict
pairwise orderings for sentence node pairs in VP(k)

(Lines 16-19). Likewise, we collect sentence n-
ode pairs with uncertain pairwise orderings to form
VP(k+1), and reassign their corresponding ss-edge
weights as 0.5, so as to avoid the negative effect
of these uncertain ss-edge weights during the next

Algorithm 1 The procedure of constructing
IRSE-Graph
Input: the initial IRSE-Graph: G=(V ,E,W ) with all

wi,i′=0; two thresholds: δmin, δmax

Output: the final IRSE-Graph: G = (V ,E,W )

1: VP(0)← ∅
2: {κi}Ii=1 ← GRN(G)
3: for any linked sentence node pair (vi, vi′) && i<i′ do
4: wi,i′ ← InitialClassifer([κi;κi′ ])
5: wi′,i ← InitialClassifer([κi′ ;κi])
6: wi,i′ , wi′,i ← Normalize(wi,i′ , wi′,i)
7: if δmin ≤ wi,i′ ≤ δmax then
8: VP(0)← VP(0)∪{(vi, vi′)}
9: wi,i′ ← 0.5, wi′,i ← 0.5

10: end if
11: end for
12: k ← 0
13: repeat
14: VP(k+1)← ∅
15: {κi}Ii=1 ← GRN(G)

16: for (vi, vi′) ∈ VP(k) do
17: wi,i′ ← IterativeClassifer([κi;κi′ ])
18: wi′,i ← IterativeClassifer([κi′ ;κi])
19: wi,i′ , wi′,i ← Normalize(wi,i′ , wi′,i)
20: if δmin ≤ wi,i′ ≤ δmax then
21: VP(k+1)←VP(k+1) ∪{(vi, vi′)}
22: wi,i′ ← 0.5, wi′,i ← 0.5
23: end if
24: end for
25: k ← k + 1
26: until VP(k+1) ==VP(k) || VP(k) == ∅
27: return G

Figure 3: Introducing noisy ss-edge weights into IRSE-
Graph.

iteration (Lines 20-23).
In Step 3, if VP(k+1) is equal to VP(k) or emp-

ty, we believe the learning of IRSE-Graph G has
converged and thus return it (Lines 26-27).

Although both of our classifiers are constructed
using IRSE-Graph, their training procedures are
slightly different. As for initial classifier, we direct-
ly train it on the initial IRSE-Graph without any
pairwise ordering information (all ss-edge weight-
s are set to 0.5). By contrast, we train iterative
classifier on IRSE-Graph with partial pairwise or-
derings. To enable iterative classifier generalizable
to any IRSE-Graph with partial predicted pairwise
orderings, we first set all ss-edge weights to 1 or 0
according to their ground-truth pairwise orderings,
and then train the classifier to correctly predict pari-
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wise orderings for other pairs. Concretely, if si ap-
pears before si′ , we set wi,i′=1 and wi′,i=0, vice
versa. For example, in the left part of Figure 3, the
ground-truth sentence sequence is s1,s2,s3,s4, and
thus we assign the ss-edge weights of linked sen-
tence node pairs (v1, v2), (v3, v2), (v3, v4), (v2, v4)
as follows: w1,2=1, w2,3=1, w2,4=1, w3,4=1, and
w2,1=0, w3,2=0, w4,2=0, w4,3=0.

Moreover, to enhance the robustness of the iter-
ative classifier, we randomly select a certain ratio
η of sentence pairs and assign their ss-edges with
incorrect weights. Let us revisit Figure 3, for the
randomly selected sentence node pair (v1, v2), we
assign ss-edges weightsw1,2 andw2,1 with random-
ly generated noisy values 0.3 and 0.7 respectively.
In this way, we expect that iterative classifier can
conduct correct predictions even given incorrect
previously-predicted pairwise orderings.

4.3 IRSE-Graph Sentence Ordering Model
Finally, following the conventional SE-GRN (Yin
et al., 2019, 2021), we construct a graph-based sen-
tence ordering model. Note that the above two
classifiers and our sentence ordering model are all
based on IRSE-Graph rather than the conventional
SE-Graph, which makes the standard GRN unable
to be applied directly. To deal with this issue, we
slightly adapt GRN to utilize pairwise ordering
information for graph encoding. Specifically, we
adapt Equation 1 to incorporate ss-edge weight-
s into the message aggregation of sentence-level
nodes:

m(l)
i =

∑
vi′∈Ni

wi,i′ · w(κ(l-1)
i ,κ(l-1)

i′ )κ(l-1)
i′ ,

w(κ(l-1)
i ,κ(l-1)

i′ ) = σ(Wg[κ(l-1)
i ;κ(l-1)

i′ ]).

(6)

Here σ denotes sigmoid function and Wg is learn-
able parameter matrix. Equation 6 expresses that
the sentence-level aggregation should consider not
only the semantic representations of the two in-
volved sentences, but also the relative ordering be-
tween them. In addition, other Equations are the
same as those of conventional GRN, which have
been described in Section §3.2.

5 Experiment

5.1 Setup
Datasets. Following previous work (Yin et al.,
2020; Cui et al., 2018; Yin et al., 2021), we carry
out experiments on five benchmark datasets:

• SIND, ROCStory. SIND (Huang et al., 2016)
is a visual storytelling dataset and ROCStory

(Mostafazadeh et al., 2016) is about common-
sense stories. Both two datasets are composed
of 5-sentence stories and randomly split by
8:1:1 for the training/validation/test sets.
• NIPS Abstract, AAN Abstract, arXiv Ab-

stract. These three datasets consist of ab-
stracts from research papers, which are col-
lected from NIPS, ACL anthology and arX-
iv, respectively (Radev et al., 2016; Chen
et al., 2016). The partitions for train-
ing/validation/test of each dataset are as fol-
lows: NIPS Abstract: 2,427/408/377, AAN
Abstract: 8,569/962/2,626, arXiv Abstrac-
t: 884,912/110,614/110,615 for the train-
ing/validation/test sets.

Settings. For fair comparison, we use the same
settings as our most related baseline SE-GRN (Yin
et al., 2021) for our model and its variants. Specifi-
cally, we apply 100-dimensional GloVe word em-
beddings, and set the sizes of Bi-LSTM hidden
states, sentence node states, and entity node states
as 512, 512 and 150, respectively. The recurrent
step of GRN is 3. We empirically set thresholds
δmin and δmax as 0.2 and 0.8, and set η as 20%,
15%, 25%, 15%, 15% according to accuracies of
initial classifier on validation sets. Besides, we in-
dividually set the coefficient λ (See Equation 18
in (Yin et al., 2020)) as 0.5, 0.5, 0.2, 0.4, 0.5 on
the five datasets. We adopt Adadelta (Zeiler, 2012)
with ε = 10−6, ρ = 0.95 and initial learning rate 1.0
as the optimizer. We employ L2 weight decay with
coefficient 10−5, batch size of 16 and dropout rate
of 0.5.

When constructing our model based on BERT,
we use the same settings as (Cui et al., 2020). Con-
cretely, we set sizes of hidden states and node states
to 768, the learning rate of BERT as 3e-3, the batch
size as 16, 32, 128, 128, 64 for the five datasets.

Baselines. To demonstrate the effectiveness of
our model (IRSE-GRN), we compare it with SE-
GRN (Yin et al., 2021). Besides, we report the per-
formance of following sentence ordering models:
1) Pairwise models: Pairwise Model (Chen et al.,
2016), RankTxNet (Kumar et al., 2020), and B-
TSort (Prabhumoye et al., 2020), ConsGraph (Zhu
et al., 2021); 2) Set-to-sequence models: HAN
(Wang and Wan, 2019), LSTM+PtrNet (Gong et al.,
2016), V-LSTM+PtrNet (Logeswaran et al., 2018),
ATTOrderNet (Cui et al., 2018), TGCM (Oh et al.,
2019), SE-GRN (Yin et al., 2019), SE-GRN (Yin
et al., 2021), ATTOrderNet+FHDecoder (Yin et al.,
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Model NIPS Abstract AAN Abstract SIND ROCStory arXiv Abstract
Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

Pairwise Model (Chen et al., 2016)† - - - - - - - - - - - - - 66.00 33.43
LSTM+PtrNet (Gong et al., 2016)† 50.87 67.00 - 58.20 69.00 - - 48.42 12.34 - - - - 71.58 40.44
V-LSTM+PtrNet (Logeswaran et al., 2018)† 51.55 72.00 - 58.07 73.00 - - - - - - - - - -
ATTOrderNet (Cui et al., 2018)† 56.09 72.00 - 63.24 73.00 - - 49.00 14.01 - - - - 73.00 42.19
HAN (Wang and Wan, 2019)† - - - - - - - 50.00 15.01 - 73.00 39.62 - 75.00 44.55
SE-GRN (Yin et al., 2019)† 57.27 75.00 - 64.64 78.00 - - 52.00 16.22 - - - - 75.00 44.33
SE-GRN (Yin et al., 2021) 58.25 76.49 25.73 65.06 78.60 44.87 49.58 53.16 17.17 68.96 75.46 42.67 59.07 75.74 44.72
ATTOrderNet+FHDecoder (Yin et al., 2020)† - - - - - - - 53.19 17.37 - 76.81 46.00 - 76.54 46.58
TGCM (Oh et al., 2019)† 59.43 75.00 31.44 65.16 75.00 36.69 38.71 15.18 53.00 - - - 58.31 75.00 44.28
RankTxNet (Kumar et al., 2020)† - 75.00 24.13 - 77.00 39.18 - 57.00 15.48 - 76.00 38.02 - 77.00 43.44
B-TSort (Prabhumoye et al., 2020)† 61.48 81.00 32.59 69.22 83.00 50.76 52.23 60.00 20.32 - - - - - -
ConsGraph (Zhu et al., 2021)† - 80.29 32.84 - 82.36 49.81 - 58.56 19.07 - 81.22 49.52 - - -
BERSON (Cui et al., 2020)† 73.87 85.00 48.01 78.03 85.00 59.79 58.91 65.00 31.69 82.86 88.00 68.23 75.08 83.00 56.06
IRSE-GRN 63.14 80.45 32.63 68.51 82.09 49.56 51.01 54.97 18.77 71.28 77.43 46.38 70.15 84.22 56.85
IRSE-GRN+FHDecoder 73.62 87.45 50.19 77.34 87.87 62.24 54.98 61.87 22.77 77.70 84.20 57.11 74.45 88.57 60.30
IRSE-GRN+BERT+FHDecoder 78.00 90.35 58.81 82.07 91.11 68.93 59.08 66.14 28.79 83.77 89.09 69.06 78.64 90.30 66.59

Table 1: Main results on the sentence ordering task, where † indicates previously reported scores. Please note that
RankTxNet, B-TSort and ConsGraph are pairwise models based on BERT, and the previous SOTA BERSON is
also based on BERT and equipped with FHDecoder.

2020) and BERSON (Cui et al., 2020).
Furthermore, to examine the compatibility of

other technologies with our model, we report the
performance of IRSE-GRN equipped with some ef-
fective components: 1) IRSE-GRN+FHDecoder.
In this variant, we equip our model with FHDe-
coder (Yin et al., 2020), where pairwise or-
dering information is incorporated; 2) IRSE-
GRN+BERT+FHDecoder. In addition to FHDe-
coder, we construct the sentence encoder based
on BERT, where the mean-pooling outputs of all
learned word representations are used to initialize
sentence nodes.
Evaluation Metrics. Following previous work
(Oh et al., 2019; Cui et al., 2020; Prabhumoye
et al., 2020; Zhu et al., 2021; Yin et al., 2021),
we use the following three metrics: 1) Kendall’s
Tau (τ ): Formally, this metric is calculated as 1-
2×(number of inversions)/

(
I
2

)
, where I denotes the

sequence length and number of inversions is the
number of pairs in the predicted sequence with in-
correct relative order (Lapata, 2003); 2) Perfect
Match Ratio (PMR): This metric calculates the
ratio of samples where the entire sequence is cor-
rectly predicted (Chen et al., 2016); 3) Accura-
cy (Acc): This metric measures the percentage of
sentences, whose absolute positions are correctly
predicted (Logeswaran et al., 2018).

5.2 Pairwise Ordering
Since pairwise ordering plays a crucial role in our
proposed framework, we first compare the perfor-
mance of different classifiers on various datasets.
Table 2 shows the experimental results. Obviously,
the utilization of iterative classifier further benefits

Dataset Initial Classifier Initial + Iterative Classifiers

NIPS Abstract 80.46% 86.32%
AAN Abstract 84.53% 86.74%
SIND 77.72% 83.55%
ROCstory 87.59% 92.23%
arXiv Abstract 84.09% 86.82%

Table 2: The accuracies of our two classifiers on five
test datasets.

the predictions of pairwise orderings.

5.3 Main Results
Table 1 reports the overall experimental results of
sentence ordering. When incorporating BERT and
FHDecoder into IRSE-GRN, our model achieves
SOTA performance on most of datasets. Besides,
we arrive at the following conclusions:

First, IRSE-GRN significantly surpasses SE-
GRN on all datasets (bootstrapping test, p<0.01),
indicating that iteratively refining graph representa-
tions indeed benefit the ordering of input sentences.

Second, IRSE-GRN+FHDecoder exhibits better
performance than IRSE-GRN and all non-BERT
baselines, which are shown above the upper dotted
line of Table 1, across datasets in different domain-
s. Therefore, we confirm that our framework is
orthogonal to the current approach exploiting pair-
wise ordering information for decoder.

Third, when constructing our model based on
BERT, IRSE-GRN+BERT+FHDecoder also out-
performs all BERT-based baselines, such as Cons-
Graph, BERSON, achieving SOTA performance. It
can be known that our proposed framework is also
effective when combining with pretrained language
model.
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Figure 4: The Kendall’s τ of different models with
respect to different sentence numbers on the arXiv ab-
stract test set.

Finally, we note that IRSE-GRN+BERT+FH-
Decoder gains relatively marginal improvement on
SIND and ROCStory, and performs worse than
BERSON in PMR on SIND. We speculate that
there exist less ss-edges on these two datasets, re-
sulting in that our proposed framework can not
achieve its full potential. Specifically, average edge
numbers of SIND and ROCStory are 2.85 and 5.66
respectively, far fewer than 16.60, 10.86 and 16.73
on NIPS Abstract, ANN Abstract and arXiv Ab-
stract.

Besides, since it is a challenge to order longer
paragraphs, we investigate the Kendall’s τ of our
models and SE-GRN with respect to different sen-
tence numbers, as shown in Figure 4. Overall, all
models degrade with the increase of sentence num-
ber. However, our model and its two enhanced
versions always exhibit better performance than
SE-GRN.

5.4 Predictions of the First and Last
Sentences

As mentioned in previous studies (Gong et al.,
2016; Chen et al., 2016; Cui et al., 2018; Oh et al.,
2019), the first and last sentences are very impor-
tant in a paragraph. Following these studies, we
compare models by conducting experiments to pre-
dict the first and last sentences.

As displayed in Table 3, IRSE-GRN surpasses
all non-BERT baselines, and IRSE-GRN+BERT+
FHDecoder wins against BERTSON. These results
are consistent with those reported in Table 1, fur-
ther demonstrating the effectiveness of our model.

5.5 Ablation Study

We conduct several experiments to investigate the
impacts of our proposed components on ROCstory
dataset and arXiv dataset which are the two largest

Model SIND arXiv Abstract

head tail head tail

Pairwise Model (Chen et al., 2016)† - - 84.85 62.37
LSTM+PtrNet (Gong et al., 2016)† 74.66 53.30 90.47 66.49
ATTOrderNet (Cui et al., 2018)† 76.00 54.42 91.00 68.08
SE-GRN (Yin et al., 2019)† 78.12 56.68 92.28 70.45
SE-GRN (Yin et al., 2021) 79.01 57.27 92.23 70.46
ATTOrderNet+FHDecoder (Yin et al., 2020)† 78.08 57.32 92.76 71.49
TGCM (Oh et al., 2019)† 78.98 56.24 92.46 69.45
RankTxNet (Kumar et al., 2020)† 80.32 59.68 92.97 69.13
B-Tsort (Prabhumoye et al., 2020)† 78.06 58.36 - -
ConsGraph (Zhu et al., 2021)† 79.80 60.44 - -
BERSON (Cui et al., 2020)† 84.95 64.87 94.75 76.69

IRSE-GRN 78.62 59.11 94.46 80.97
IRSE-GRN+FHDecoder 82.87 64.15 96.09 85.04
IRSE-GRN+BERT+FHDecoder 86.21 67.14 98.23 88.33

Table 3: The ratios of correctly predicting first and last
sentences on arXiv Abstract and SIND. † indicates pre-
viously reported scores.

Model ROCStory arXiv Abstract
Pairwise τ PMR Pairwise τ PMR

IRSE-GRN 92.23 77.43 46.38 86.82 84.22 56.85
w/o initial classifier 88.96 77.31 45.06 77.90 81.03 51.65
iterative number k=1 91.73 77.21 46.13 86.22 83.89 56.03
w/o iterative classifier 87.59 75.98 44.14 84.09 83.24 55.05
w/o noise 90.42 77.06 46.02 80.45 82.23 53.10

Table 4: Ablation study on the impacts of our proposed
components on ROCStory dataset and arXiv abstract
dataset.

datasets. All results are provided in Table 4, where
we draw the following conclusions:

First, using only iterative classifier, IRSE-
GRN(w/o initial classifier) performs worse than
IRSE-GRN. This result proves that iterative classifi-
er fails to predict well from scratch and the pairwise
ordering predicted by initial classifier is beneficial
to construct a well-formed graph representation for
iterative classifier.

Second, when the iteration number k is set as 1,
the performance of IRSE-GRN decreases. More-
over, if we remove iterative classifier, the perfor-
mance of IRSE-GRN becomes even worse. There-
fore, we confirm that the iterative predictions of
pairwise ordering indeed benefit the learning of
graph representations.

Finally, the result in the last line indicates that
removing noisy weights leads to a significant per-
formance drop. It suggests that the utilization of
noisy weights is useful for the training of iterative
classifier, which makes our model more robust.

5.6 Summary Coherence Evaluation

Following previous studies (Barzilay and Lapata,
2005; Nayeem and Chali, 2017), we further in-
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Dataset SE-GRN IRSE-GRN IRSE-GRN+FHDecoder IRSE-GRN+BERT+FHDecoder
Runtime #Params Runtime #Params Runtime #Params Runtime #Params

NIPS abstract 6s 23.9M 6.2s 24.0M 18s 25.0M 29s 128.0M
AAN abstract 31s 23.9M 32.5s 24.0M 1min8s 25.0M 1min20s 128.0M
SIND 1min6s 23.9M 1min9s 24.0M 2min3s 25.0M 2min16s 128.0M
ROCStory 2min 23.9M 2min5s 24.0M 4min2s 25.0M 4min42s 128.0M
arXiv abstract 25min 23.9M 27min57s 24.0M 46min 25.0M 56min 128.0M

Table 6: The runtime on the validation sets and the numbers of parameters for our enhanced models and baseline.

Model Coherence

SE-GRN (Yin et al., 2021) 46.71 59.47

IRSE-GRN 47.48 60.01
IRSE-GRN+FHDecoder 49.84 61.81
IRSE-GRN+BERT+FHDecoder 51.01 62.87

Table 5: Coherence probabilities of summaries re-
ordered by different models using weights of 0.8 (left)
and 0.5 (right).

spect the validity of our proposed framework via
multi-document summarization. Concretely, we
train different neural sentence ordering models on
a large-scale summarization corpus (Fabbri et al.,
2019), and then individually use them to reorder
the small-scale summarization data of DUC2004
(Task2). Finally, we use coherence probability pro-
posed by (Nayeem and Chali, 2017) to evaluate
the coherence of summaries. In this group of ex-
periments, we conduct experiments using different
weights: 0.5 and 0.8, as implemented in (Nayeem
and Chali, 2017) and (Yin et al., 2020) respectively.

The results are reported in Table 5. We can ob-
serve that the summaries reordered by IRSE-GRN
and its variants achieve higher coherence probabil-
ities than baseline, verifying the effectiveness of
our proposed framework in the downstream task.

5.7 Further Experiment Results

To provide more experimental results, we summa-
rize the runtime on the validation sets and the num-
bers of parameters for our enhanced models and
baseline SE-GRN in Table 6.

6 Conclusion

In this work, we propose a novel sentence ordering
framework that makes better use of pairwise or-
derings for graph-based sentence ordering. Specif-
ically, we introduce two classifiers to iteratively
predict pairwise orderings, which are gradually in-
corporated into the graph as edge weights. Then,
based on this refined graph, we construct a graph-

based sentence ordering model. Experiments on
five datasets demonstrate not only the superiority of
our model over baselines, but also the compatibility
to other modules utilizing pairwise ordering infor-
mation. Moreover, when equipped with BERT and
FHDecoder, our enhanced model achieves SOTA
performance across datasets.

In the future, we plan to explore more effective
GNN for sentence ordering. In particular, we will
improve our model by iteratively merging nodes to
refine the graph representation.
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