
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2273–2285
November 7–11, 2021. c©2021 Association for Computational Linguistics

2273

Intention Reasoning Network for Multi-Domain End-to-end
Task-Oriented Dialogue

Zhiyuan Ma1, Jianjun Li1∗, Zezheng Zhang1, Guohui Li1, Yongjing Cheng2

1 Huazhong University of Science and Technology (HUST), China
2 National Unveristy of Defense Technology (NUDT), China

{zhiyuanma,jianjunli,zezhengzhang,guohuili}@hust.edu.cn
davidcheng1001@163.com

Abstract

Recent years has witnessed the remarkable
success in end-to-end task-oriented dialog sys-
tem, especially when incorporating external
knowledge information. However, the quality
of most existing models’ generated response
is still limited, mainly due to their lack of fine-
grained reasoning on deterministic knowledge
(w.r.t. conceptual tokens), which makes them
difficult to capture the concept shifts and iden-
tify user’s real intention in cross-task scenar-
ios. To address these issues, we propose a
novel intention mechanism to better model de-
terministic entity knowledge. Based on such
a mechanism, we further propose an inten-
tion reasoning network (IR-Net), which con-
sists of joint and multi-hop reasoning, to ob-
tain intention-aware representations of concep-
tual tokens that can be used to capture the con-
cept shifts involved in task-oriented conversa-
tions, so as to effectively identify user’s in-
tention and generate more accurate responses.
Experimental results verify the effectiveness
of IR-Net, showing that it achieves the state-
of-the-art performance on two representative
multi-domain dialog datasets.

1 Introduction

Task-oriented dialogue systems are designed to help
users to achieve specific goals such as schedule ar-
rangement or weather inquiry via natural language.
Compared with traditional pipeline dialogue sys-
tems (Young et al., 2013) that include multiple mod-
ules each requiring a huge amount of human effort
to design, end-to-end approaches (Gülçehre et al.,
2016; Wen et al., 2017; Eric and Manning, 2017;
Eric et al., 2017; Zhao et al., 2017; Quan et al.,
2019; Moon et al., 2019; Jung et al., 2020; Dai et al.,
2020) that can directly output system responses
with plain text as input have recently gained much
attention. In recent years, sequence to sequence
(Seq2Seq) models have dominated the study of
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Figure 1: Example of task-oriented dialog including
concept shifts from the SMD dataset (Eric et al., 2017).
The solid arrows indicate the existed relationships be-
tween entities, and the dotted arrows indicate the latent
entity relationships (captured by IR-Net). The colored
dotted boxes in the dialog indicate generated entities.

end-to-end task-oriented dialog systems, and many
memory augmented Seq2Seq models have been
proposed (Bordes et al., 2017; Madotto et al., 2018;
Wu et al., 2019; Wen et al., 2018; Qin et al., 2019;
Reddy et al., 2019; Wang et al., 2020), which
exploit both dialog history and domain-specific
knowledge base (KB) to incorporate KB informa-
tion and perform knowledge-based reasoning for
better performance.

Though achieving remarkable progress, existing
memory augmented Seq2Seq models still suffer
from the following two limitations. First, prior
models rely heavily on the soft attention mecha-
nism (Vaswani et al., 2017) to generate responses
by adopting a weighted sum over the embeddings
of memory triples (from both dialog history and
external KB) as the output representation. Since
the representation acquired in this way is scattered
by the context, it is difficult to model deterministic
knowledge w.r.t. specific conceptual tokens. Take
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the dialog in Figure 1 as an example, when answer-
ing the user’s query on today’s (Monday’s) weather,
the response generated by existing Seq2Seq mod-
els may be ambiguous or even incorrect due to
the impact of contextual triples such as (Tuesday,
weather, sunny) and (Wednesday,weather, cloudy).
Second, the soft attention mechanism is inherently
not suitable for performing fine-grained (token-
level) multi-hop reasoning, which makes it hard
to capture user’s real intention to generate accu-
rate responses, especially in complex cross-task
scenarios where concept shifts (Zhang et al., 2020)
may occur. For example, in Figure 1, when the
system is asked “please give me the specific ad-
dress for the dinner", it is expected to explore the
pivot “john’s_home" that connects the start token
“diner" (in Schedule domain) with the target to-
ken “550_Alester_Ave" (in Navigate domain), and
finally return the answer “550_Alester_Ave". Ex-
isting attention-based models generally fail to per-
form such a token-level multi-hop reasoning, which
hampers them from obtaining accurate responses.

To address the aforementioned limitations, we
propose a novel Intention Reasoning Network (IR-
Net), which is a memory-augmented Seq2Seq
model equipped with an intention reasoning mod-
ule that is responsible for obtaining an intention-
aware representation, with the goal of generating
more accurate responses. Specifically, to address
the first limitation, we propose a novel intention
mechanism (Sec. 2.3.1), which directly incorpo-
rates the tail-token of a knowledge triple by com-
paring the similarity between the query vector
and the triple’s head-token to model determinis-
tic knowledge. Based on the intention mechanism,
we further address the second limitation by propos-
ing an intention reasoning module that consists of
token-level joint reasoning and multi-hop reason-
ing (Sec. 2.3.2), which are responsible for captur-
ing specific target information from breadth and
depth respectively to generate intention-aware rep-
resentations, so as to improve the integrality and
accuracy of the generated responses.

We conduct experiments on two publicly avail-
able multi-domain datasets, namely SMD (Eric
et al., 2017) and Multi-WOZ 2.1 (Budzianowski
et al., 2018). The experimental results show that
IR-Net consistently outperforms the current state-
of-the-art models in both automatic and human
evaluation. To our best knowledge, we are the first
to effectively explore fine-grained token-level in-

tention reasoning in multi-domain end-to-end task-
oriented dialog.

2 Model Description

Our proposed model is based on a Seq2Seq dia-
log generation model (Sec. 2.1), which encodes
dialogue history X and knowledge base B and ulti-
mately obtains a response sequence Y . An external
memory module M = [X;B] is set up for knowl-
edge query (Sec. 2.2). Moreover, to capture poten-
tial concept shift and user’s intention to generate
a fluid and intention-aware response, an intention
reasoning module based on a novel intention mech-
anism is proposed (Sec. 2.3). The workflow of our
proposed model is depicted in Figure 2.

2.1 Seq2Seq Dialogue Generation

We define the Seq2Seq dialogue generation task as
generating the most likely response sequence Y =
{y1, y2, · · · , yn}, giving the input with multiple
rounds of dialogue history X and knowledge base
B. The probability of a response can be formally
defined as,

p(Y |X,B) =

n∏
t=1

p (yt|y1, . . . , yt−1, X,B) (1)

where yt represents the current output token. Differ-
ent from the vanilla Seq2Seq dialogue generation
model (Eric and Manning, 2017), we use pC (yt) to
denote the probability that the generated token yt is
a conceptual token withinM , and pC (yt) to denote
the probability that yt is a general token. Finally,
we choose the highest probability to generate the
token yt at time t.

Contextual Dialog History Encoder In order
to overcome the challenge of modeling long di-
alogue text, we encode dialog history utterances
round by round. We first encode every sentence
pair (Qp, Y p) ∈ X as a semantic representation,
where Qp and Y p respectively represent the p-th
round question sequence (with m tokens) and re-
sponse sequence (with n tokens). To better encode
the contextual information of the dialogue, we send
(Qp, Y p) into an effective pre-trained language rep-
resentation model BERT (Devlin et al., 2019) to
get the representation for the p-th round dialog se-
quence,

Hp
1:m+n = BERT([CLS]Qp[SEP ]Y p) (2)
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Figure 2: Workflow of the proposed model.

where Hp
1:m denotes the representation for the

question sequence, and Hp
m+1:m+n for the re-

sponse sequence. Afterward, we fed Hp
1:m+n

into a Bidirectional Long Short-Term Memory
network (BiLSTM) (Hochreiter and Schmidhu-
ber, 1997) to produce contextual hidden states
henc = (henc,1,henc,2, . . . ,henc,m+n), where,

henc,i = BiLSTM(Hp
i ,henc,i−1,henc,i+1) (3)

Note that the first hidden state will be initialized
with the last hidden state of the previous round, i.e.,
hp
enc,0 = hp−1

enc,m+n (the superscript p is omitted if
no confusion occurs in the following text).

Hierarchical Response Decoder We exploit a
hierarchy mechanism to decode the response se-
quence. Specifically, when decoding yt, we use a
coarse-grained LSTM decoder and a fine-grained
LSTM decoder to compute the probability simulta-
neously.

We first use a coarse-grained decoder. Given
(henc,1,henc,2, . . . ,henc,m+n), an LSTM is used to
repeatedly predict outputs (y1, y2, . . . , yt−1) by the
decoder hidden states (hdec,1,hdec,2, . . . ,hdec,t).
For the generation of yt, we first calculate an at-
tentive representation h′dec,t of the dialogue history
over the hidden state henc, and then concatenate it
with hdec,t to get the context-aware output repre-

sentation,

oC,t = W1

[
hdec,t,h′dec,t

]
(4)

where oC,t is the score (logit) for the next token
generation, and W1 is a trainable parameter. The
probability of the next word yt being regarded as a
general token is then calculated as follows,

pC (yt) = Softmax(oC,t) (5)

Next, we use a fine-grained decoder. In addi-
tion to incorporating h′dec,t to ensure the relevance
between the generated response and the question,
we further derive an intention-aware representa-
tion Idec,t (which will be detailed in Sec. 2.3) to
enhance the representation of the target entity for
generating more accurate response. By concate-
nating hdec,t with h′dec,t and Idec,t, we can get the
output representation as,

oC,t = W2

[
hdec,t,h′dec,t, Idec,t

]
(6)

The probability of yt being regarded as a concep-
tual token is then calculated as follows:

pC (yt) = Softmax(oC,t) (7)

Finally, we can get the probability of yt as,

p(yt) = max{pC (yt) , pC (yt)} (8)
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2.2 External Knowledge Memory
As well known, the successful conversations for
task-oriented dialogue system heavily depend on
accurate knowledge queries. We build our external
knowledge memory M based on two parts: dia-
logue history X and multi-domain knowledge base
B, i.e., M = [X;B] = (m1,m2, . . . ,ml). Each
entity in M is represented in a triple format, i.e.,
mi = (h, r, t). To better encode the external knowl-
edge to make it more suitable for multi-hop reason-
ing and vector calculation, we embed the knowl-
edge triples into a word vector space rich in strong
entity relationships and semantic shift information.
Specifically, for each triple mi = (h, r, t) ∈ M ,
we use the TransR model (Lin et al., 2015) to per-
form fine-grained representation learning and ob-
tain (eh, er, et) as the memory embeddings. More
details about TransR learning can be found in Ap-
pendix A.2.

To integrate knowledge information into the
end-to-end dialogue system, the memory network
(MN) (Sukhbaatar et al., 2015) is adopted to store
global cross-domain knowledge, which is shared
between the encoder and the decoder. For a k-
hop MN, the external knowledge is composed
of a set of trainable embedding matrices C =(
C1, . . . ,Ck+1

)
.

Query Knowledge in Encoder We use the last
hidden state as the initial query vector:

q1
enc = henc,m+n (9)

It can loop over k hops and compute the attention
weights at each hop k using

pki = Softmax((qk
enc)

Tcki ) (10)

where cki is the embedding in i-th memory position
using the embedding matrix Ck, and qk

enc is the
query vector for hop k. Finally, the model reads
out the memory okenc by the weighted sum over
ck+1
i and updates the query vector qk+1

enc . Formally,

okenc =
∑

i
pki ck+1

i , qk+1
enc = qk

enc + okenc (11)

where qk+1
enc is a coarse-grained representation con-

taining KB information, and can be used to initial-
ize the coarse-grained LSTM decoder.

By the above steps, we can obtain a global mem-
ory pointer G = (g1, . . . , gl) to filter out worthless
external knowledge for further decoding, where,

gki = Sigmoid((qk
enc)

Tcki ) (12)

Note that G is finally trained as a n-dimensional
0/1 prediction vector, and its training details are
shown in Appendices A.3 and A.4.

Query Knowledge in Decoder Recall that we
adopt two LSTMs as the decoder. For the coarse-
grained LSTM decoder, following Wu et al. (2019)
and Qin et al. (2020), we use the concatenation
of hdec,t (initialized by qk+1

enc ) with the attentive
representation h′dec,t to query knowledge.

For the fine-grained LSTM decoder, we use the
concatenation of the hidden states hdec,t (initial-
ized by qk+1

dec obtained when generating the previ-
ous conceptual word), the attentive representation
h′dec,t and the intention-aware representation Idec,t,
to query knowledge. Formally,

q1
dec =

[
hdec,t,h′dec,t, Idec,t

]
(13)

pki = Softmax((qk
dec)

Tcki g
k
i ) (14)

Instead of selecting the maximum pki to generate
yt, we read out the memory okdec by the weighted
sum over ck+1 and update the query vector qk+1

dec ,

okdec =
∑

i
pki ck+1

i , qk+1
dec = qk

dec + okdec (15)

Note that qk+1
dec is a fine-grained representation con-

taining user intention, and can be fed to the fine-
grained LSTM decoder for the next conceptual
word generation.

2.3 Intention Reasoning Module
To obtain intention-aware presentation Idec,t,
we first propose a novel intention mechanism
(Sec. 2.3.1), based on which we further pro-
pose a fine-grained intention reasoning module
(Sec. 2.3.2) that includes joint reasoning and multi-
hop reasoning.

2.3.1 Intention Mechanism
Previous works usually use soft attention mecha-
nisms (Vaswani et al., 2017) to calculate a weighted
sum of all the knowledge based on the whole vector
of each triple, which may not be conducive to gener-
ating accurate task-oriented responses. To address
this issue, we propose a new intention mechanism
to directly incorporate tail-entity information by
comparing the similarity between query vector and
the head-entity, which is formally defined as,

Intention (q, (eh, er, et)) = φ (q, eh) · et (16)

where q is query vector, and (eh, er, et) represents
the representation of the selected knowledge triple.
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Figure 3: The architecture of intention reasoning module.

Note here φ denotes for similarity score function,
such as cos(·), dot product and scaled dot-product.
We have tried these three functions and finally
chose cos(·) based on their performance.

2.3.2 Fine-grained Intention Reasoning
Based on the intention mechanism, we further per-
form fine-grained intention reasoning to obtain an
intention-aware representation Idec,t, which can
be used to capture the concept shift information
for final response generation. Specifically, giving
the encoder query vector qenc,s (i.e., henc,s), the
decoder query vector qdec,t (i.e., hdec,t) and the
global memory pointer G, Idec,t is obtained by per-
forming joint reasoning and multi-hop reasoning
sequentially. Note that before conducting inten-
tion reasoning, we first use G to filter the external
knowledge to obtain the target triples.

Joint Reasoning This operation is used to im-
prove the integrality of the generated responses.
Specifically, for multiple knowledge triples with
the same head entity (or same tail entity), we
fuse them into a single triple. Take the triples(
es, e1r , e1t

)
and

(
es, e2r , e2t

)
in Figure 3(a) as an ex-

ample, the joint reasoning is conducted as,

et = Wt(e1t , e
2
t ), er = Wr(e1r , e

2
r) (17)

where Wt and Wr are trainable weight matrices.
Then, (es, er, et) can be regarded as a new triple
for multi-hop reasoning below.

Multi-hop Reasoning This operation aims at im-
proving the accuracy of the generated responses.
Specifically, an intention weight γt,s is calculated
to evaluate the probability that a set of ordered
triples can generate the optimal reasoning chain.
As shown in Figure 3(b), after filtering by G, there

are two triples: (es, er, es′) and (es′′ , er′′ , et). Sup-
pose we perform 2-hop reasoning here, then there
are totally 22 possible chains, and their intention
weights can be calculated as follows:

γ1
t,s = φ

(
qenc,s, es

)
· φ (es′ , es) · φ

(
es′ , qdec,t

)
γ2
t,s = φ

(
qenc,s, es

)
· φ (es′ , es′′) · φ

(
et, qdec,t

)
γ3
t,s = φ

(
qenc,s, es′′

)
· φ (et, es′′) · φ

(
et, qdec,t

)
γ4
t,s = φ

(
qenc,s, es′′

)
· φ (et, es) · φ

(
ees′ , qdec,t

) (18)

Finally, we choose max
{
γit,s
}

as the final γt,s.
Note that the above procedures can be generalized
to L hops, where L is a model hyper-parameter.

After performing L-hop reasoning, we can get
γt,s, and the corresponding optimal reasoning
chain that contains L ordered triples, denoted
by {(e1h, e1r , e1t ), . . . , (eLh , eLr , eLt )} (note duplicate
may occur when the number of target triples is less
than L). Finally, we can obtain the intention-aware
representation as,

Idec,t =W(1)Intention
(
qenc,s, (e

1
h, e

1
r , e

1
t )
)

+
∑L

i=2
W(i)Intention(ei−1t , (eih, e

i
r, e

i
t))

(19)

where W(1) and W(i) are trainable parameters that
are used to weigh the tail-token information ob-
tained from the reasoning chain.

2.3.3 Degeneration
Note that when the encoded and decoded word is
a general word, our model will no longer perform
joint and multi-hop reasoning. Accordingly, the
intention weight is reduced to the attentive weight:

γt,s = φ
(
qenc,s,qdec,t

)
∝ αt,s (20)

where αt,s represents the attentive weight. This
means the intention mechanism actually degener-
ates to the attention mechanism, which proves the
robustness of our model.
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3 Experimental Setup

3.1 Datasets and Metrics

Two publicly available datasets: SMD (Eric et al.,
2017) and an extended version of Multi-WOZ
2.1 (Qin et al., 2020), are used to evaluate the
performance of our model. We follow Eric et al.
(2017), Madotto et al. (2018) and Wu et al. (2019)
to partition SMD, and follow Budzianowski et al.
(2018) and Qin et al. (2020) to partition Multi-
WOZ 2.1. The statistics of the datasets after parti-
tion are presented in Table 1.

Follow several previous work (Eric et al., 2017;
Madotto et al., 2018; Wu et al., 2019; Qin et al.,
2019, 2020), we use BLEU and F1 (including both
macro-F1 and micro-F1) to evaluate our model
versus existing models. Moreover, to evaluate the
performance in a more fine-grained level, we also
choose Rouge-1 and Rouge-2 as metrics.

3.2 Baselines

We compare our model with the following state-of-
the-art baselines.

• Mem2Seq (Madotto et al., 2018)1: the model
takes dialog history and KB entities as input
and utilizes a pointer gate to control either
generating a vocabulary word or copying an
entity word.

• KB-retriever (Qin et al., 2019)2: the model
adopts a retriever module to extract the most
relevant knowledge items and filter irrelevant
information for response generation.

• GLMP (Wu et al., 2019)3: the model adopts
a global-to-local pointer to query knowledge,
where the global memory pointer is used to
filter the external KB information, and the
local memory pointer is used to instantiate a
slot value generated by a sketch RNN.

• DF-Net (Qin et al., 2020)4: the framework
uses a dynamic fusion network to dynamically
exploit the correlation between all domains for
fine-grained knowledge transfer and achieves
state-of-the-art performance.

1https://github.com/HLTCHKUST/Mem2Seq.
2We reproduce KB-retriever as no open-source code is

available. Moreover, since Multi-WOZ 2.1 cannot be pro-
cessed by KB-retriever, we only report its results on SMD.

3https://github.com/jasonwu0731/GLMP.
4https://github.com/LooperXX/DF-Net.

Dataset Domains Train Dev Test
SMD Navigate, Weather, Schedule 2,425 302 304
Multi-WOZ 2.1 Restaurant, Attraction, Hotel 1,839 117 141

Table 1: Statistics of two datasets.

For BLEU and micro-F1 scores of the above
baselines, we adopt the reported results from Wu
et al. (2019) and Qin et al. (2020). For macro-F1
and Rouge scores, we rerun their public code to
obtain results on same datasets.

3.3 Implementation Details

We train our model end-to-end by using Adam opti-
mizer (Kingma and Ba, 2015) and choose the learn-
ing rate between [1e−3, 1e−4]. The loss functions
are described in Appendix A.4. The dropout ratio
is selected from {0.1, 0.15, 0.2, 0.25, 0.3} and the
batch size from {8, 16, 32}. The hyper-parameters
such as hidden size, dropout, batch size, and embed-
ding dimensionality are all tuned with grid-search
over the development set. All experiments are con-
ducted with PyTorch and our adopted BERT inher-
its huggingface’s implementation5. Appendix A.1
presents more details about hyper-parameters.

4 Evaluation Results

4.1 Response Quality Evaluation

Automatic Evaluation Follow the prior work
(Madotto et al., 2018; Wu et al., 2019; Qin et al.,
2020; Zhang et al., 2020), we evaluate model per-
formance automatically from two aspects: rele-
vancy and novelty, where the corresponding results
are presented in Tables 2 and 3, respectively.

From Table 2, we can observe that our model IR-
Net achieves the state-of-the-art performance on
two multi-domain datasets SMD and Multi-WOZ
2.1. Specifically, On SMD dataset, IR-Net exhibits
the highest BLEU compared with other baselines,
indicating that our model can generate responses
closer to the golden ones. Moreover, our model out-
performs DF-Net, a recent model that can capture
the correlation between domains for fine-grained
knowledge transfer, by 2.6% and 0.5% on macro-
F1 and micro-F1 respectively, which verifies the
effectiveness of our intention reasoning model in
capturing the concept shifts across multiple do-
mains to generate more accurate and appropriate
responses. On Multi-WOZ 2.1, a trend for a sim-
ilar performance improvement can be observed,
which further demonstrates the effectiveness of our
model.

5https://github.com/huggingface/pytorch-transformers.
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SMD Multi-WOZ 2.1
Model BLEU Macro-F1 Micro-F1 Rouge-1 Rouge-2 BLEU Macro-F1 Micro-F1 Rouge-1 Rouge-2
Mem2Seq (Madotto et al., 2018) 12.6 31.2 33.4 64.0 38.2 6.6 19.8 21.6 58.2 25.4
KB-retriever (Qin et al., 2019) 13.9 51.2 53.7 70.5 45.9 - - - - -
GLMP (Wu et al., 2019) 13.9 52.0 60.7 68.8 43.8 6.9 28.4 32.4 62.5 27.6
DF-Net (Qin et al., 2020) 14.4 59.4 62.7 70.6 46.1 9.4 32.2 35.1 65.1 31.9
IR-Net (ours) 16.3 62.0 63.2 71.3 48.0 10.9 35.3 37.5 66.1 33.6
Table 2: Main results. Relevance (higher better) between generated responses and golden responses. Note all our
results are statistically significant with p < 0.05 under t-test.

SMD Multi-WOZ 2.1
Model BLEURouge-1Rouge-2 BLEURouge-1Rouge-2
Mem2Seq 2.21 26.5 9.8 3.09 33.0 13.5
KB-retriever 1.90 19.2 3.5 - - -
GLMP 0.12 9.8 1.2 0.17 18.4 3.1
DF-Net 0.06 11.7 1.3 0.11 19.2 3.3
IR-Net 0.01 9.2 0.8 0.02 12.4 2.1

Table 3: Repetitiveness (lower better) between gener-
ated responses and user’s questions. All our results are
statistically significant with p < 0.05 under t-test.

From Table 3, we can see that compared with
other baselines, IR-Net achieves consistently lower
BLEU and Rouge scores, which demonstrates its
capability in generating more innovative responses,
possibly due to the following two reasons: 1) The
integration of cross-domain knowledge in multi-
hop reasoning makes the generated responses more
diverse; 2) The hierarchical LSTM decoder in IR-
Net can learn more forms of expressions.

Human Evaluation The human evaluation
mainly focuses on six aspects: helpfulness, ap-
propriateness, correctness, fluency, friendliness,
and human-likeness, which are all important for
task-oriented dialogue systems (Zhou et al., 2018;
Zhang et al., 2020; Qin et al., 2020). We first ran-
domly selected 100 dialogs 1:1 from the SMD and
Multi-WOZ 2.1 datasets, and used different models
to generate responses, including Mem2Seq, GLMP,
DF-Net and IR-Net. Then, we hired human experts
to score the responses and golden responses on a
scale from 1 to 5, which simulated a real-life task-
oriented conversation scenario. By calculating the
average score of the above metrics, we obtained the
final manual evaluation result, as shown in Table 4.
It can be seen that IR-Net outperforms the other
three models on all metrics, which is consistent
with the results of automatic evaluation.

4.2 Ablation Study

In this part, we perform ablation experiments to
evaluate the effectiveness of each component. We
focused on four crucial components and set them
accordingly: 1) w/o IR module and Fine-grained

Model Hel. App. Cor. Flu. Fri. Hum. Overall
Average

Relative
Ratio

Mem2Seq 1.50 2.64 3.15 3.62 2.20 1.80 2.49 52.8%
GLMP 2.45 2.86 3.24 3.84 3.95 3.90 3.37 71.4%
DF-Net 3.24 3.95 3.68 4.15 4.20 4.00 3.87 82.0%
IR-Net 3.90 4.00 3.80 4.20 4.35 4.15 4.07 86.2%
Golden 4.60 4.48 4.82 4.85 4.60 4.98 4.72 100%

Table 4: Human evaluation of responses on helpful-
ness (Hel.), appropriateness (App.), correctness (Cor.),
fluency (Flu.), friendliness (Fri.), and human-likeness
(Hum.) on randomly selected dialogs.

Model Entity F1 (%)
Test ∆

Complete model 63.2 -
w/o IR module & Fine-grained Decoder 60.9 2.3
w/o Coarse-grained Decoder 58.2 5.0
w/o Bert Embedding 61.4 1.8
w/o TransR Training 62.2 1.0

Table 5: Ablation study on SMD dataset.

Decoder denotes that we remove the intention rea-
soning module and the fine-grained decoder, and
just adopt the “coarse-grained decoder” with query-
ing external KB attentively; 2) w/o Coarse-grained
Decoder denotes that we only use attentive KB to
return answer; 3) w/o Bert Embedding denotes that
we simply feed randomly initialized embeddings
into the contextual dialog encoder; 4) w/o TransR
Training denotes that we discard the TransR-based
knowledge triple embedding learning. From the
results in Table 5, we can observe that removing
each component will result in a performance degra-
dation. In particular, w/o Intention Reasoning and
Fine-grained Decoder causes 2.3% drops in entity
F1 score, which further verifies the effectiveness of
our model.

4.3 Case Study and Visualization
We take the dialog in Table 6 as an example. To
better illustrate the advantage of our model and
understand what the intention reasoning module
has learned, we visualize the intention weights, as
well as the attention weights of an attention-based
Seq2Seq model for this dialog, as depicted in Fig-
ure 4. It can be observe that our intention-based
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Dialog Content Reasoning Chain

User
please check
the temperature
for me today.

(today, temperature, ?)

IR-Net
toady’s
temperature is
20f-30f.

0: (today, date, Monday)
1: (Monday, low_temp, 20f)
2: (Monday, high_temp, 30f)
3: (Monday, temperature, 20f-30f)
0→3: (today, temperature, 20f-30f)

Table 6: A dialog example illustrating joint reasoning
and 2-hop reasoning.

model is more adept at mining potential reason-
ing chains, while previous attention-based model,
which is limited by scattered attention weights, is
hard to capture explicit reasoning relations. Specif-
ically, for this dialog, IR-Net first performs joint
reasoning to derive triple 3 by triples 1 and 2. Then,
it performs a 2-hop reasoning to obtain a set of in-
tention weights, as shown in Figure 4 (a). Unlike
scattered attention weights in Figure 4 (b), it is
clear to see that chain 0→ 3 achieves the highest
intention weight (0.8801) in Figure 4 (a), indicating
that (today, date, Monday)→(Monday temperature,
20f-30f) has been mined by IR-Net to be the op-
timal 2-hop reasoning chain. Finally, IR-Net can
generate a relatively accurate response “today’s
temperature is 20f-30f”. More analyses and ex-
perimental details regarding the visualization of
intention and attention weights can be found in
Appendix B.2.

5 Related Work

Sequence to sequence approaches, which use an
encoder-decoder structure to capture the contex-
tual dialog semantics and generate responses di-
rectly, have recently gained much attention in
task-oriented dialogue systems (Zhao et al., 2017).
These models have effective language modeling
ability, but cannot work well in KB retrieval, even
with sophisticated attention-based mechanism. To
alleviate this problem, copy augmented Seq2Seq
models (Gülçehre et al., 2016; Eric and Manning,
2017) have been adopted, but still suffer from the
challenge of performing reasoning over KB triples.

To address this problem, memory augmented
Seq2Seq models, such as end-to-end Memory Net-
work (Bordes et al., 2017) and DQMN (Wu et al.,
2018), have been proposed and shown promising
results. Later, Mem2Seq (Madotto et al., 2018)
and GLMP (Wu et al., 2019) further augmented
memory based methods by incorporating the copy
mechanism (Gülçehre et al., 2016), which enables

0 1 2 3
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(a) Intention weights.
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(b) Attention weights.

Figure 4: Visualization of intention weights of IR-Net
and attention weights of an attentiton-based Seq2Seq
model for the dialog in Table 6.

copying words from both dialog history and KB.
DSR (Wen et al., 2018) proposed to leverage di-
alogue state representation to retrieve the KB im-
plicitly. Multi-level memory model (Reddy et al.,
2019) represented the KB results with a multi-
level memory instead of the form of triples. KB-
retriever (Qin et al., 2019) adopted a KB retriever
module to extract the most relevant knowledge
items and improve the consistency of generated
entities. DDMN (Wang et al., 2020) adopted a
dual dynamic memory network to track the dialog
context and KB triples respectively. DF-Net (Qin
et al., 2020) introduced a dynamic fusion model to
capture the correlation between domains for fine-
grained knowledge transfer.

Different from existing models that rely on the
soft attention mechanism to perform coarse-grained
reasoning, our IR-Net can model more determinis-
tic knowledge and capture the entity (or concept)
shift by performing fine-grained token-level reason-
ing based on the intention mechanism. To our best
knowledge, we are the first to effectively explore
fine-grained token-level reasoning in multi-domain
task-oriented dialog generation.

6 Conclusion

In this paper, we propose a novel intention mecha-
nism to directly incorporate the tail-token informa-
tion of a knowledge triple to better model determin-
istic knowledge for multi-domain task-oriented di-
alog. Moreover, based on the intention mechanism,
we further propose an intention reasoning mod-
ule that consists of token-level joint reasoning and
multi-hop reasoning to obtain an intention-aware
representation, aiming at improving the integral-
ity and accuracy of the generated response. Ex-
periments on two publicly available multi-domain
datasets demonstrate the effectiveness and superior
performance of our model in both automatic and
human evaluation.
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A Model Details

A.1 Hyperparameters Setting

Hyperparameter Name SMD Multi-WOZ 2.1
Batch Size 32 16
Hidden Size 128 128
Bert Embedding Size 768 768
Learning Rate 0.001 0.001
Dropout Ratio 0.15 0.15
Teacher Forcing Ratio 0.9 0.9
Memory Network’s Hop 3 3
Intention Reasoning’s Hop 3 3

Table 7: Hyperparameters we used for SMD and Multi-
WOZ 2.1.

A.2 Knowledge Embedding Training
In the KB memory module, each elementmi is rep-
resented in the triple format as (head, relation, tail),
e.g., (dinner, time_is, 7−pm), which is a commonly
used format to represent a knowledge item (Miller
et al., 2016; Eric et al., 2017). On the other hand,
the dialog history X is stored in the dialogue mem-
ory, where the user and temporal encoding are
included as in (Bordes et al., 2017) like a triple
format, e.g., the first utterance from the user in
Figure 1 will be denoted as {($user, turn1, How’s),
($user, turn1, the), ($user, turn1, weather), ($user,
turn1, today)}.

For each triple mi ∈ M , we use the TransR
model (Lin et al., 2015) to perform representation
learning and obtain (eh, er, et) as the memory em-
beddings. Specifically, for triple mi = (h, r, t),
where h, t ∈ E and r ∈ R ( E andR represent the
entity space and relation space, respectively), we
first use BERT to pre-train them:

(eh, er, et) = BERT(h, r, t) (21)

Then, we embed eh and et into the relation space
through a trainable projection matrix Mr, where
the evaluation function is described as follows:

fr(h, t) = ‖Mreh + er −Mret‖L2
(22)

Finally, we minimize the following loss function to
get the optimal knowledge triple embedding,

Lemb =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

max(λ+fr(h, t)−fr(h′, t′), 0)

(23)

where S and S′ are positive triple set and negative
triple set (1:3 selected in both SMD and Multi-
WOZ 2.1 datasets) respectively, and λ is the dis-
tance between the scores of positive and negative
triples.

A.3 Description on the Global Pointer
Follow prior work GLMP (Wu et al., 2019), we em-
ploy a global memory pointer to select knowledge
and regard it as a multi-label classification problem,
that is, selecting k target knowledge triples from
n candidate triples. For the training of the global
memory pointer G, we first use the sigmoid func-
tion to activate the dot product of the query vector
and the memory representation, and then convert
the multi-label classification problem into n binary
classification problems (each predicted value 1/0
represents whether the triplet is selected), and fi-
nally, we use the sum of the cross-entropy as the
loss function. Therefore, G is regarded as a final
n-dimensional 1/0 prediction vector to filter worth-
less knowledge triples, and its training details are
shown in Appendix A.4.

A.4 Loss Function
The loss L used in IR-Net is similar to that of
GLMP. We first define Glabel = (ĝ1, . . . , ĝl) by
checking whether the object words in the memory
exist in the expected system response Y,

ĝi =

{
1 if Object (mi) ∈ Y
0 otherwise

(24)

where mi is one triple in the external knowledge
M = [X;B] = (m1,m2, . . . ,ml) and Object(·)
is denoted as getting the object word from a triple.
Then, the cross-entropy loss Lg between G and
Glable can be written as,

Lg = −
l∑

i=1

(ĝi · log gi + (1− ĝi) · log (1− gi))

(25)
We exploit a hierarchy mechanism to decode the

response sequence. Specifically, when decoding
yt, we use a coarse-grained LSTM decoder and a
fine-grained LSTM decoder to generate a rough
response Y c

C = (yc1, . . . , y
c
n) and a fine-grained

response Y f
C = (yf1 , . . . , y

f
n), respectively. Their

output probabilities are calculated as follows,

pC (yt) = Softmax(W1

[
hdec,t,h′dec,t

]
) (26)

pC (yt) = Softmax(W2

[
hdec,t,h′dec,t, Idec,t

]
)

(27)
Then, we calculate standard cross-entropy losses
LC and LC as follows:

LC =
n∑

t=1

− log
(
pC(yt) · (y

c
t )
)

(28)



2284

82

5
13

8

78

14
22

13

65

0

10

20

30

40

50

60

70

80

90

Navigate Weather Schedule

Nav. Query Wea. Query Sch.Query

Figure 5: Knowledge distribution of cross-domain
query for randomly selected 100 examples in each do-
main on the SMD dataset.

LC =
n∑

t=1

− log(pC(yt) · (yft )) (29)

Finally, L is the weighted-sum of three losses:

L = βgLg + βCLC + βCLC (30)

where βg, βC andβC are hyperparameters. Note
that these three weights are initialized equally, i.e.,
0.33, 0.33 and 0.33. Then we tune them on the
verification set to obtain a better weight setting of
0.39, 0.36 and 0.25.

B Experimental Details

B.1 Additional experiments

Experiments on Domain-shift In this exper-
iment, we randomly selected 100 examples of
knowledge queries in each domain on the SMD test
set. By parsing the global memory pointer G, we
obtain the distribution of the selected knowledge,
as shown in Figure 5. We can find that: (1) A small
fraction of knowledge query successfully imple-
ments cross-domain knowledge-selection through
the attention mechanism, while the majority of
knowledge is selected within the domain. It means
that cross-domain knowledge query occurs in the
task-oriented dialogue. (2) Navigation-related
query selects more knowledge in the schedule
domain than in the weather domain. Similarly,
schedule-related query also selects more knowl-
edge in the navigation domain than in the weather
domain. This indicates that the navigation domain
and the schedule domain are more closely related.

Analysis on L-hops To analyze the impact of
the hop number L in intention reasoning, we keep
other hyper-parameters unchanged, and vary L in
the range of [1, 2, 3, 4, 5, 6, 7]. From Figure 6, we
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Figure 6: BLUE and Entity F1 under different reason-
ing hops on SMD dataset.

can observe that with the increase of L, the en-
tity (micro) F1 score first increases and then de-
creases, and reaches the best result at L = 3, less
or more hops would decrease the performance. It
is straightforward that less hops are insufficient to
capture user’s real intention, while too more hops
may also lead to more noisy, which is harmful to
the expressiveness of the obtained intention-aware
representations. Hence, it is necessary to choose
appropriate hops for intention reasoning.

B.2 Visualization of Attention and Intention
Weights

To further illustrate what our intention reasoning
module has learned, we visualize the attention and
intention weights (denoted by α and γ respectively)
of the dialog generation process in dialog #1 and
#2, as shown in Figure 7 (note that only parts of
knowledge triples are presented). Darker colors
represent higher attention or intention weights. G
represents for (0, 1) distribution vector generated
by α. From Figure 7, we can observe that: 1)
There is a joint reasoning guided by γ, i.e., “today
temperature is 20f-30f" by combining (monday,
low_temp, 20f ) with (monday, high_temp, 30f );
2) There are two 2-hop reasoning guided by
γ, one is (today, date, monday)→(monday,
temperature, 20f -30f ), and the other is
(friends_house, poi, jills_house)→(jills_house,
address, 347_alta_mesa_ave). The above two ob-
servations illustrate that our intentional reasoning
module can: 1) effectively perform cross-domain
knowledge selection (by the attention mechanism);
2) effectively perform fine-grained knowledge
reasoning (by the intention mechanism).

B.3 Error Analysis

To better understand the limitations of our model,
we conduct an error analysis on IR-Net. We ran-
domly select 100 responses generated by IR-Net
that achieve low human evaluation scores in the test
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[today] date [monday] 

[monday] weather [snow] 

[monday] low_temp [20f] 

[monday] high_temp [30f] 

[tuesday] weather [foggy] 

[tuesday] low_temp [30f] 

[tuesday] high_temp [50f] 

[friends_home] poi [jills_house] 

[jills_house] distance [5_miles] 

[home] address [56_cadwell_street] 

[home] poi_type [home] 

[home] traffic_info [no_traffic] 

[home] distance [1_miles] 

[jills_house] address [347_alta_mesa_ave] 

[jills_house] traffic_info [heavy_traffic] 

[dinner] time [5pm] 

[tennis_activity] date [monday] 

#1 dialogue
Question: please check the temperature for me today. 

Coarse-grained Response: @date temperature is @temperature
Fine-grained Response: today temperature is 20f-30f

Gold: i have checked that it will be cold with 20f-30f temperature  

#2 dialogue
Question: please give me the specific address to my friend's home.

Coarse-grained Response: @poi_type is at @address
Fine-grained Response: friend home is at 347 alta mesa ave

Gold: ok, you can try setting navigation to 347 alta mesa ave  

hop:1 hop:3hop:2

Attention Selection Intention Reasoning

G Reasoning Chain

Fine-grained Generation

#1 Dialog Generation

#2 Dialog Generation

Figure 7: Visualization of attention weight α and intention weight γ. The leftmost column denotes the attention
wights selected by the global memory pointer G; The three columns in the middle represent the intention weights
selected by the intention reasoning module; The rightmost column denotes the derived reasoning chain for #1 and
#2 dialog generation.

set of SMD. We report several reasons for the low
scores, which can roughly be classified into four
categories. (1) KB information in the generated
responses is incorrect (35%), especially when the
corresponding equipped knowledge base is large
and complex. (2) The sentence structure of the gen-
erated responses is incorrect and there are serious
grammatical and semantic errors (26%). (3) The
model makes incomplete response when there are
multiple options corresponding to the user inten-
tion (24%). (4) The conceptual tokens generated
by the fine-grained decoder cannot be well matched
with the golden entities (15%).


