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Abstract

Knowledge-grounded dialogue generation has
achieved promising performance with the en-
gagement of external knowledge sources. Typ-
ical approaches towards this task usually per-
form relatively independent two sub-tasks, i.e.,
knowledge selection and knowledge-aware re-
sponse generation. In this paper, in order to
improve the diversity of both knowledge se-
lection and knowledge-aware response gener-
ation, we propose a collaborative latent vari-
able (CoLV) model to integrate these two as-
pects simultaneously in separate yet collabo-
rative latent spaces, so as to capture the in-
herent correlation between knowledge selec-
tion and response generation. During genera-
tion, our proposed model firstly draws knowl-
edge candidate from the latent space condi-
tioned on the dialogue context, and then sam-
ples a response from another collaborative la-
tent space conditioned on both the context and
the selected knowledge. Experimental results
on two widely-used knowledge-grounded di-
alogue datasets show that our model outper-
forms previous methods on both knowledge se-
lection and response generation.

1 Introduction

Knowledge-grounded dialogue generation (Liu
et al., 2018; Zhou et al., 2018a; Lian et al., 2019;
Tian et al., 2020), which utilizes external knowl-
edge to enhance conversation backgrounds, has
achieved promising performance. To exploit ex-
ternal knowledge efficiently for conversations, typ-
ical approaches (Dinan et al., 2019; Kim et al.,
2020; Xu et al., 2020; Sun et al., 2020; Chen
et al., 2020; Meng et al., 2020; Chen et al., 2021)
tend to decompose this task into two streamlined
sub-tasks: knowledge selection and knowledge-
aware response generation. Besides, some other
work (Qin et al., 2019; Tian et al., 2020) also tries to
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Dialogue
context

What is your favorite number? → I love the number 7.
What do you think about that?
1. Anyone who dares to kill Cain "will suffer vengeance
seven times over".
2. Seven is the natural number following six and preceding
eight.

Knowledge
candidates

3. Islam first came to the western coast when Arab traders
as early as the 7th century CE.
4. The number 7 has been associated with a great deal of
symbolism in religion. In western culture, it is often con-
sidered lucky.
......
N. This genre has been popular throughout the history of
culture.

Response a Yeah. I know that it is before 8 and after 6!
Response b Yes, it is known as a lucky number in western countries!
Response c I think 7 is lucky certain cultures. It also depicts some reli-

gious importance.

Table 1: An example of knowledge-grounded conver-
sations. Given the dialogue context, knowledge selec-
tion and response generation are inherently coupled.
Besides, while knowledge selection is diverse, the
knowledge-aware response generation could also be di-
verse based on the same knowledge content. Knowl-
edge No.2 and No.4 are appropriate to the dialogue. Be-
sides, given the same knowledge No.4, both Response
b and c are appropriate.

integrate these two sub-tasks in a unified memory-
augmented training framework. In both paradigms,
knowledge selection plays an important role in the
knowledge-grounded dialogue systems.

Observing that the diversity of knowledge se-
lection (given a dialogue context, several pieces
of knowledge are appropriate) can be dramatically
raised from prior and posterior distributions over
knowledge, recent studies (Lian et al., 2019; Kim
et al., 2020; Chen et al., 2020) utilize posterior
mechanism to select knowledge during training
phase. KL loss (Kullback and Leibler, 1951) is em-
ployed as one of the training objectives to minimize
the gap between training and inference procedure,
since posterior information is absent at inference.
Kim et al. (2020) enhances this framework with
sequential latent variables and Chen et al. (2020)
proposes a knowledge distillation training strategy
to further bridge the gap between prior and poste-
rior information.
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While the success of variational knowledge
selection is indisputable, there still exists some
challenges that impede the conversational models
from selecting appropriate knowledge. Firstly,
knowledge selection is inherently coupled with
knowledge-aware response generation. However,
previous methods mostly emphasize the impor-
tance of knowledge selection without explicitly
modeling the correspondence between the selected
knowledge and the generated response. In Table 1,
knowledge No.2 (in blue) corresponds to response
a (in blue), while knowledge No.4 (in red) is related
to response b and c (in red). Secondly, the diver-
sity of knowledge selection is effectively improved
with variational inference, while the diversity of
knowledge-aware response generation (given the
selected knowledge, several suitable responses can
be generated) is still neglected. As shown in Ta-
ble 1, response b and c are two different responses
that share the same piece of knowledge, i.e., No.4.

In this paper, in order to simultaneously im-
prove the diversity of both knowledge selection and
knowledge-aware response generation, we propose
a Collaborative Latent Variable (CoLV) model to
integrate both aspects in separate yet collaborative
latent spaces, so as to capture the inherent corre-
lation between knowledge selection and response
generation. During generation, our proposed model
firstly draws knowledge candidate from the latent
space conditioned on the dialogue context, and
then samples a response from another collaborative
latent space conditioned on both the context and
the selected knowledge. Experimental results on
two widely-used datasets of knowledge-grounded
dialogue generation show that our model outper-
forms previous methods on both knowledge selec-
tion and response generation. Further analysis on
collaborative latent variables demonstrates CoLV
model’s ability to not only improve the diversity
of knowledge selection but also generate coherent
and diverse responses.

2 Related Work

Our work is mainly related to two research
branches: knowledge-grounded dialogue genera-
tion and variational auto-encoder learning.
Knowledge-grounded Dialogue Generation has
raised broad interest and also has been greatly ad-
vanced by many new datasets (Zhou et al., 2020;
Wu et al., 2019; Dinan et al., 2019; Moghe et al.,
2018; Zhou et al., 2018b). Existing methods on this

task mainly focus on resolving two research prob-
lems: knowledge selection (KS) and knowledge-
aware response generation. Dinan et al. (2019)
proposed a memory network to retrieve knowledge
and combined it with a Transformer-based model
to generate response. External knowledge base was
also utilized to facilitate the utterance understand-
ing and knowledge selection (Wang et al., 2020;
Zheng et al., 2020). Lin et al. (2020) used memory
network and copy mechanism to keep deep inter-
action between knowledge and utterances. Meng
et al. (2020) employed a dual learning paradigm
to enhance knowledge interaction. Su et al. (2020)
proposed to augment the dialogue generation by
utilizing external non-conversational text, which is
effective but also introduce noise. Li et al. (2020)
and Zhan et al. (2021) proposed to employ pre-
training methods on the structured/unstructured
knowledge representation and fine-tune the model
using the limited knowledge-grounded training ex-
amples. Other work took efforts on utilizing future
information. Lian et al. (2019) firstly employed
posterior network, while Kim et al. (2020) further
utilized sequential characteristics of knowledge.
Besides, to further bridge the gap between prior
and posterior network, Chen et al. (2020) and Chen
et al. (2021) devised specific posterior information
prediction modules. Hereby, our proposed CoLV
model differs from previous work by utilizing col-
laborative latent variables to model the distributions
of knowledge and response simultaneously.

VAE Learning (Kingma and Welling, 2014)
is widely used in a variety of natural lan-
guage processing tasks, including machine transla-
tion (Zhang et al., 2016), question answering (Lee
et al., 2020), and conversations (Serban et al., 2017;
Shen et al., 2019; Li et al., 2020; Shen et al., 2021).
The core idea of variational auto-encoder is to
utilize the advantage of posterior information or
external information during training phase, and
optimize the objectives by minimizing the KL di-
vergence (Kullback and Leibler, 1951). Unlike
previous work that applied VAEs on dialogue gen-
eration (Wu et al., 2020; Serban et al., 2017; Qiu
et al., 2019), we aim at using collaborative latent
variables to connect the external knowledge, di-
alogue context, and response, which will further
enhance the correlation between knowledge selec-
tion and response generation. To the best of our
knowledge, our method takes the first attempt to
collaboratively model these two different distribu-
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tions for knowledge-grounded conversations.

3 Proposed Model

3.1 Task Formulation

Our goal is to simultaneously improve the di-
versity of knowledge selection and generate di-
verse knowledge-aware responses. Formally, given
a dialogue context c which contains |c| tokens,
c = {c1, ..., c|c|}, and its corresponding knowl-
edge pool KP , which contains |k| knowledge
candidate sentences, KP = {k1, ..., k|k|}. Each
knowledge sentence ki ∈ KP contains M to-
kens, ki = {k1i , ..., kMi }. Our goal has two main
steps: (1) selecting the most relevant knowledge
sentence k from knowledge pool KP based on di-
alogue context. (2) Then, generating a response
r = {r1, ..., r|r|} with |r| tokens, based on the dia-
logue context c and the selected knowledge k. We
aim at tackling this task by learning the conditional
collaborative latent distributions of the knowledge
selection and response generation given the dia-
logue context, which can be formulated as follows:
(k, r) ∼ p(k, r|c), We estimate the collaborative
distribution p(k, r|c) by employing a collaborative
latent variable model, named as CoLV model.

3.2 CoLV Framework

Our proposed CoLV model tends to model the con-
ditional collaborative distribution p(k, r|c) in rel-
atively separate ye collaborative latent spaces for
knowledge and response, which is defined as fol-
lows:

pθ(k, r|c) =
∫
zk

∑
zr

pθ(k|zk, c)pθ(r|zr,k, c)·

pφ(zr|zk, c)pφ(zk|c)dzk,

where zk and zr are latent variables for knowledge
and response respectively, and the pφ(zr|zk, c) and
pφ(zk|c) are their conditional prior distributions.
Specifically, a Gaussian distribution (Kingma and
Welling, 2014) and a categorical distribution (Jang
et al., 2017), are employed for zr and zk respec-
tively, as shown in Figure 1. Knowledge selection
is a discriminative task, which is suitable to be
modeled by a Categorical distribution. Besides,
Gaussian distribution is continuous, which is ap-
propriate to model the response latent variable. As
shown in Figure 1, we devise a mutual interaction
of these collaborative latent variables for knowl-
edge and response separately.

c

zr

r
(r| , c, k)pθ zr(k|c, )pθ zk

( | , c, k, r)qφ zr zk( |c, k)qφ zk

k

Knowledge Selection

Training
Response Generation

zk

Figure 1: The graphical framework for CoLV model.
c: dialogue context, k: knowledge, r: response. The
dotted line denotes training procedure solely, while the
solid line denotes both training and inference process.

To construct the collaborative latent variables,
we enforce the response latent space to be depen-
dent on the knowledge latent space in pφ(zr|zk, c),
while the knowledge latent space is conditioned
on the dialogue context c in pφ(zk|c). During the
training phase, we use a variational posterior qϕ(·)
to maximize the Evidence Lower Bound (ELBO)
as follows:

LCoLV =

−KL(qϕ(zk|c,k)||pφ(zk|c))
−KL(qϕ(zr|zk, c,k, r)||pφ(zr|zk, c))
+ Ezk∼qϕ [log pθ(k|zk, c)]
+ Ezr∼qϕ [log pθ(r|zr,k, c)],

where θ, φ and ϕ are the parameters of the genera-
tion, prior and posterior networks. The graphical
framework for our proposed CoLV model is shown
in Figure 1.

During training phase, our proposed CoLV
model consists of two independent latent variables:
zk and zr, which represent the latent variables of
knowledge and response respectively. Meanwhile,
the variational lower bound includes the reconstruc-
tion terms and KL divergence terms (Kullback and
Leibler, 1951) based on these two latent variables,
which will be optimized in a unified process.

In the generative process, latent variables ob-
tained via prior networks and selected knowledge
are fed to the decoder phase, which corresponds
to red solid arrows in Figure 1. The generative
process is as follows:

Step 1: Sample knowledge latent variable: zk ∼
pφ(zk|c).
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Figure 2: The illustration of our proposed CoLV framework. KP: knowledge pool, c: dialogue context, k: selected
knowledge, r: response. The dotted line denotes the training procedure, while the solid line denotes the inference
process. “KS" and “RG" denote knowledge selection and response generation, respectively.

Step 2: Sample response latent variable: zr ∼
pφ(zr|zk, c).

Step 3: Select a knowledge: k ∼ pθ(k|zk, c).
Step 4: Generate a response: r ∼ pθ(r|zr,k, c).

3.3 Input Representation
We employ a pre-trained BERTbase (Devlin et al.,
2019) model as encoder to capture the semantic rep-
resentation of both dialogue context c and knowl-
edge candidate sentences KP = {k1, ..., k|k|}.
Take dialogue context c = {c1, ..., c|c|} as an ex-
ample. The initial representation of c is the sum of
word, position and turn-level embeddings:

ec = WE(c) + PE(c) + TE(c),

Hc = BERTbase(ec),hc = Avgpool(Hc),

where ec and hc are the initial representation and
hidden representation after BERT of dialogue con-
text. WE(·), PE(·) and TE(·) refer to the word-
level, position-level and turn-level embeddings re-
spectively. Avepool(·) is the average pooling op-
eration (Cer et al., 2018). Similarly, we also em-
ploy BERTbase to encode the knowledge candi-
date sentences. The initial representation ekp and
hidden representation hkp after BERT model and
average pooling operation of knowledge candidate
sentences are formulated as follows:

ekp = WE(kp) + PE(kp) + TE(kp),

Hkp = BERTbase(ekp),hkp = Avgpool(Hc).

Similarly, we can also get the posterior informa-
tion of ground truth response representation hr and
knowledge representation hk for training phase.

3.4 Collaborative Latent Variables
We will use two separate but content-dependent
latent variables zr and zk to represent dialogue

response and knowledge respectively. In the fol-
lowing section, we will discuss the prior network
and posterior network separately.

3.4.1 Prior Network

We use two different conditional prior networks
pφ(zk|c) and pφ(zr|zk, c) to model these two
tasks. As we know, knowledge selection and re-
sponse generation belongs to discriminative and
generative task respectively. For better collabora-
tively modelling the relationship between knowl-
edge selection and response generation, we uti-
lize two different distribution models: the standard
Categorical distribution Cat(π) for pφ(zk|c) and
Gaussian distribution N (µ, σ2I) for pφ(zr|zk, c).
Therefore, the zk and zr are sampled from:

pφ(zk|c) = Catφ(zk|π),
pφ(zr|zk, c) = Nφ(zr|µr,σrI),

where the parameters σ and µ are estimated by:

µr = MLPrφ(hc),σ
r = softplus(MLPrφ(hc)),

where MLP(·) denotes the multiple layer percep-
tion, and softplus(·) function is a smooth approx-
imation to ReLU and can be used to ensure posi-
tiveness.

3.4.2 Posterior Network

During training phase, we utilize the posterior infor-
mation to help enforce training. Similar to the prior
network, we also use two different conditional pos-
terior networks qϕ(zk|c,k) and qϕ(zr|zk, c,k, r)
to approximate the true posterior distributions of la-
tent variables for both knowledge k and response r.
Therefore, the zk and zr in the posterior networks
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are sampled from:

qϕ(zk|c,k) = Catϕ(zk|π),
qϕ(zr|zk, c,k, r) = Nϕ(zr|µr,σrI),

where the parameters σ and µ in the posterior net-
works are estimated by:

µr = MLPrϕ([hc,hr]),

σr = softplus(MLPrϕ([hc,hr])).

In the training phase, we adopt the re-
parameterization trick (Kingma and Welling, 2014)
to train our model with back-propagation since the
stochastic sampling process of both knowledge se-
lection and response generation is non-differential.
Besides, we further employ gumbel-softmax (Mad-
dison et al., 2017) for knowledge selection training
procedure, since the latent variables zk is discrete.

3.5 Heuristic-based Knowledge Selection

While the efficiency of heuristic matching algo-
rithm (Mou et al., 2016) has been demonstrated in
many other tasks, such as question and answer-
ing. Following Lee et al. (2020), we also em-
ploy a heuristic-based knowledge selection module.
Besides, different from previous work, which se-
lect out relevant knowledge instance from multiple
knowledge sentences, our proposed heuristic-based
knowledge selection module regards all candidate
knowledge sentences as an integrated paragraph.
Then, this module will predict the start and the end
word position of an knowledge span. The knowl-
edge span is regarded as the selected knowledge
and will be incorporated by the following response
generation process.

Specifically, given the representation of dialogue
context hc and latent variables zk, the heuristic-
based knowledge selection layer will consider to
concatenate the adding and multiplying operation
as an new integrated representation hcat, which is
formulated as follows:

hcat = [hc, zk, |hc − zk|,hc � zk],

where the new representation hcat will be used to
predict the knowledge span in the following steps.
Therefore, we will feed the integrated representa-
tion hcat into two separate linear layers (as shown
in Figure 2) to predict the start and end position of
knowledge span ks. the knowledge span ks will
be extracted and sent into the generation phase.

3.6 Response Generation
In the decoding layer for response generation,
we apply a stacked Transformer decoder module
equipped with a copying mechanism (See et al.,
2017) to generate response. The copy mechanism
is used to copy specific knowledge from the se-
lected knowledge span. We feed the dialogue con-
text representation hc, the selected knowledge span
representation hks and latent variable zr into the
decoder phase. Specifically, the probability of gen-
erating token yt at t-th step is modeled as:

P (yt) = λ1Pvocab(yt|hc, zr) + λ2Pcp(yt|hks).

where Pcp(yt|hks) derives the copying probability
from the selected knowledge span ks. The copy
mechanism is defined as follows:

Pcp(yt|hks) =
∑
i:ti=yt

αt,i.

Pvocab(yt|hc, zr) is the output probability from
a stack of Transformer decoder layers (Vaswani
et al., 2017). λ1, and λ2 are the coordination prob-
ability parameters.

4 Experiments

4.1 Experimental Setup
Dataset. We conduct our experiments on two pub-
lic knowledge-grounded dialogue datasets, Wizard
of Wikipedia (Dinan et al., 2019) (WoW) and Holl-
E (Moghe et al., 2018). In these two benchmarks,
both of them contain multiple sessions of dialogues
with corresponding knowledge candidate pool. For
each dialogue utterance, there is a ground truth
knowledge sentence. The statistical details on these
two datasets are shown in Table 3.
Baseline Models. We compare our CoLV model
with several state-of-the-art models, including:

• S2SA: The bidirectional LSTM-based encoder-
decoder framework with attention mechanism.
This baseline model only consider the dialogue
context and do not utilize knowledge informa-
tion. (Sutskever et al., 2014).

• Transformer: an encoder-decoder architecture
relying solely on multi-head self-attention mecha-
nisms (Vaswani et al., 2017). It does not consider
the knowledge information either.

• MemNet: The E2E Transformer with memory
mechanism (Dinan et al., 2019), which uses a
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Model
WoW Test Seen WoW Test Unseen

ACC PPL BLEU-4 RG-1 RG-2 Dist-2 ACC PPL BLEU-4 RG-1 RG-2 Dist-2
S2SA - 93.85 0.46 12.53 0.69 4.81 - 120.81 0.34 9.30 0.76 11.53

Transformer - 72.42 0.39 14.35 1.36 19.68 - 91.41 0.39 12.87 0.66 12.15
MemNet 21.60 63.52 0.41 16.9 0.64 24.16 13.82 96.47 0.32 14.46 0.82 16.27
PostKS 3.66 79.19 0.57 13.04 1.17 16.70 3.29 152.7 0.36 13.15 1.08 13.38
SKLS 26.83 52.09 1.35 16.87 6.84 23.13 16.59 81.44 1.05 16.16 4.21 16.42

DukeNet 25.96 48.33 2.46 19.02 6.54 25.67 17.49 69.38 1.68 19.36 5.23 17.03
PIPM 27.75 42.71 2.26 19.34 7.36 26.41 19.43 65.71 1.56 17.60 5.49 17.74
CoLV 30.12? 39.56? 2.85? 20.62 7.89 29.74? 18.91 54.30? 2.12? 19.68? 6.31 20.13?

Table 2: Automatic evaluation results on WoW Test Seen and WoW Test Unseen (%). The metrics Accuracy, Per-
plexity, ROUGE-1, ROUGE-2 and Distinct-2 are abbreviated as ACC, PPL, RG-1, RG-2 and Dist-2, respectively.
The best results are highlighted with bold. “?” denotes that the result is statistically significant with p < 0.01.

WoW Holl-E
Training size 18,430 7,228
Validation size 1,948 930
Test size 965 (S)/968 (U) 913
Avg. Num of kg 67 53

Table 3: Statistics of two experimental datasets, Wizard
of Wikipedia (WoW) and Holl-E. “S” and “U” denotes
the test seen and test unseen in WoW dataset respec-
tively.

Transformer memory network for knowledge se-
lection and a Transformer decoder for utterance
prediction.

• PostKS: A LSTM-based model with the poste-
rior knowledge selection mechanism (Lian et al.,
2019), which uses the posterior knowledge distri-
bution as a pseudo-label for knowledge selection.

• SLKS: A sequential latent knowledge selection
model (Kim et al., 2020), which keeps track of
prior and posterior distribution over knowledge
in a sequential process.

• DukeNet: A dual knowledge interaction net-
work (Meng et al., 2020), modeling the knowl-
edge shift and tracking processes with a dual
learning paradigm.

• PIPM: SLKS model with posterior information
prediction module and knowledge distillation
training strategy (Chen et al., 2020). It aims
to bridge the gap between prior and posterior
distributions.

Evaluation Metrics. We report accuracy (Acc)
to evaluate the knowledge selection1. Besides,

1Note that lower perplexity (PPL) indicates better per-
formance. For the evaluation on knowledge selection, only
knowledge span with both correct start and end position will
be counted in the accuracy. Partially correct sample will not

Model
Holl-E

ACC PPL BLEU-4 RG-1 RG-2 Dist-2
S2SA - 150.26 4.84 4.28 2.01 10.38

Transformer - 120.31 5.09 6.72 2.96 14.29
MemNet 22.75 138.38 5.49 20.19 10.34 23.63
PostKS 1.56 187.20 5.85 15.23 6.08 19.74
SKLS 29.25 48.97 17.81 29.82 23.19 27.43

DukeNet 30.38 42.72 19.15 32.64 19.55 28.53
PIPM 30.67 39.22 18.27 30.81 23.96 27.20
CoLV 32.65? 34.84? 20.33? 31.97 25.84? 29.86?

Table 4: Automatic evaluation results on Holl-E (%).
The best results are highlighted with bold. “?” denotes
that the result is statistically significant with p < 0.01.

we use the traditional indicators, i.e., perplexity
(PPL), BLEU-4 (Papineni et al., 2002), ROUGE-
1, ROUGE-2 (Lin, 2004) and Distinct-2 (Li et al.,
2016) to evaluate the quality of response genera-
tion. We also conduct human evaluation for our
model. We randomly sampled 300 generated re-
sponse and then we invite six annotators to select
out their preferred response (win), or vote a tie, con-
sidering the following aspects: diversity, coherence
and knowledge engagement. Each comparison is
conducted between two responses generated by our
CoLV and a baseline models respectively.
Implementation Details. We implement our pro-
posed model with pytorch (Paszke et al., 2019). For
fair comparison, we keep the same defualt settings
during dataset pre-processing and the model param-
eter settings as the same as in (Kim et al., 2020).
We employ a pre-trained BERTbase model to en-
coder dialogue context and knowledge sentences.
The initial word embedding size is set to 300, and
we keep the sentence length of dialogue context
and knowledge to 64 and 512 respectively. The hid-
den size is 768 and vocabulary size is set to 30,522.
The batch size is set to 64. Models are trained with

be counted in the accuracy calculation, but we will analysis
the KS performance in Section 4.5
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Model
WoW Test Seen WoW Test Unseen

ACC PPL BLEU-4 RG-1 RG-2 Dist-2 ACC PPL BLEU-4 RG-1 RG-2 Dist-2
Full model 30.12 39.56 2.85 20.62 7.89 29.74 18.91 54.30 2.12 19.68 6.31 20.13
- knowledge latent 23.65 46.37 2.30 18.41 6.93 26.48 14.70 63.84 2.14 17.36 5.93 18.29
- response latent 26.48 58.72 1.75 15.81 4.22 17.93 16.56 72.57 1.56 12.60 3.51 14.96
- heuristic matching 24.93 48.16 2.06 17.97 7.14 23.06 13.96 68.29 2.04 15.83 5.92 17.25
- all 21.16 74.62 1.26 14.39 3.85 15.39 12.74 81.82 1.43 13.45 3.20 12.77

Table 5: Ablation study results on WoW Test Seen and WoW Test Unseen (%). The metrics Accuracy, Perplexity,
ROUGE-1, ROUGE-2 and Distinct-2 ar abbreviated as ACC, PPL, RG-1, RG-2 and Dist-2, respectively.

Dataset Model COLA vs. kappaWin Loss Tie

(a)

S2SA 67% 13% 20% 0.618
Transformer 56% 21% 23% 0.572

MemNet 58% 19% 23% 0.538
PostKS 64% 16% 20% 0.596
SKLS 47% 28% 25% 0.424

DukeNet 42% 33% 25% 0.474
PIPM 49% 24% 27% 0.445

(b)

S2SA 57% 16% 27% 0.538
Transformer 56% 16% 34% 0.407

MemNet 52% 19% 29% 0.481
PostKS 48% 11% 41% 0.523
SKLS 50% 22% 28% 0.509

DukeNet 51% 29% 20% 0.426
PIPM 46% 27% 29% 0.473

(c)

S2SA 71% 8% 21% 0.561
Transformer 65% 11% 24% 0.539

MemNet 59% 18% 23% 0.472
PostKS 54% 16% 30% 0.494
SKLS 48% 23% 29% 0.586

DukeNet 52% 27% 21% 0.463
PIPM 47% 25% 28% 0.535

Table 6: Human evaluations on Holl-E and WoW
datasets. (a): WoW test seen. (b) WoW test unseen.
(c) Holl-E.

30 epoch to get the best performance. For training
details, we use Adam (Kingma and Ba, 2015) for
gradient optimization in our experiments, and the
correspondign parameters β1 and β2 are set to 0.9
and 0.998. The learning rate is set to 0.001. We use
gradient clipping with a maximum gradient norm
of 0.4. We run all models on the Tesla P40 GPU
and select the best models based on performance
on the validation set.

4.2 Experimental Results
Automatic Evaluation Results. The quantitative
evaluation results on WoW and Holl-E datasets are
shown in Table 2 and Table 4 respectively. Gener-
ally, CoLV outperforms baselines on most metrics
in these two datasets. In terms of the knowledge
selection accuracy, CoLV outperforms three strong
baseline SKLS, DukeNet and PIPM on WoW Test
Seen dataset by 11.0%, 16.2% and 8.7%, which
is significant. Even though the accuracy of CoLV
on WoW Test Unseen is a little lower than PIPM,
it still outperforms other baselines. The reason
why CoLV can improve knowledge selection per-
formance is that CoLV takes two collaborative la-

Table 7: Ablation study results on Holl-E (%). The
knowledge, response, heuristic are abbreviated as kg,
res, hr, respectively.

Model
Holl-E

ACC PPL BLEU-4 RG-1 RG-2 Dist-2
Full model 32.65 34.84 20.33 31.97 25.84 29.86
- kg latent 23.94 39.25 18.27 27.86 18.92 26.84
- res latent 27.48 56.35 15.36 24.01 13.48 22.05
- hr matching 24.12 45.63 16.28 25.86 16.76 24.27
- all 14.82 78.29 11.05 19.04 11.67 21.58

tent variables simultaneously, which resolving the
gap between knowledge and response. Besides, in
terms of the generation performance, CoLV also
has a significant improvement over baseline models.
It helps verify the consistency of improvement on
both knowledge selection and response generation.
Human Evaluation Results. The human-based
evaluation results are shown in Table 6. For each
case, given a post-knowledge pair, two generated
responses are provided, one is from our model and
the other is from the compared model. Not surpris-
ingly, CoLV consistently outperforms all the com-
pared models. Meanwhile, we notice that CoLV
exhibits significant improvements comparing with
vanilla S2SA and Transformer. Besides, CoLV sub-
stantially reaches better performances than strong
baselines, e.g., SKLS and PIPM. We analyze the
bad cases and find that some baselines still suffer
from the general or knowledge-irrelevant responses.
Augmented with the collaborative latent variables,
CoLV introduces a competitive boost in response
quality, which is in line with the automatic evalu-
ation, confirming the superior performance of our
proposed model. We also employ Fleiss’ kappa
scores (Fleiss, 1971) to measure the reliability be-
tween different annotators, and results show that
annotators reach a moderate agreement.

4.3 Ablation Study

To examine the effectiveness of proposed CoLV
model we conduct model ablations by removing
particular modules from CoLV, including knowl-
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(b) Wow Test Unseen.

50 60 70 80 90 100
The percentage of correct knowledge span (%)

15

20

25

30

35

40

45

50

55

60

ac
cu

ra
cy

 (%
)

SKLS
DukeNet
PIPM
ours

(c) Holl-E.

Figure 3: Analysis on the heuristic-based knowledge selection module. Horizontal axis denotes the percentage of correct
knowledge span, ranging from 50% to 100%. Vertical axis denotes the accuracy of knowledge selection. Note that in our
experiments, we treat all knowledge candidates as an integrated paragraph, rather than individual sentence.

edge latent, response latent, heuristic matching and
all modules. The ablation results on WoW and Holl-
E are shown in Table 5 and Table 7 . We observe
that without either knowledge latent and heuristic
matching, the performance of knowledge selection
drops largely with respect to accuracy metric. The
result verifies the effectiveness of integrating these
two modules into knowledge selection process. Be-
sides, the values of generative metrics, e.g., PPL,
BLEU-4, ROUGE-1/2 and Dist-2, also drop signif-
icantly if we remove the response latent variables.
It affirms that the collaborative latent variables are
helpful to refine the coherence, knowledge engage-
ment and diversity of generated responses. While
we remove all these three modules, we can witness
a similar performance of our model with the base-
line model MemNet, a vanilla Transformer model
with knowledge memory network.

4.4 Case Study

To facilitate a better understanding of baselines and
our model, we present some examples in Table 8.
To better evaluate the performance of response gen-
eration, we choose a case from WoW Test Seen
that both three baseline models SKLS, DukeNet,
PIPM and our model select the same knowledge
(marked as yellow in Table 8 from knowledge pool.
We observe that even though both baselines and
our model can select out the true knowledge sen-
tence, our model still achieve better performances
in response generation. For example, SKLS gener-
ates a counterfactual response that is not consistent
with original knowledge. In orignial knowledge,
"Ireland is the third-large island in Europe". How-
ever, SKLS generates "Ireland is the largest". Be-
sides, to show the effectiveness of our model in
generating diverse responses, we present several
different responses that all generated by our model.

Dialogue Context: Have you been to Europe? → I have! I
have been to British. → Great! I’ve only ever been to Canada.

Knowledge Candidates: 1. Ireland is the third-largest island in

Europe. Thick woodlands covered the island until the Middle Ages .
2. Ireland the second largest island in the British Isles, after Great Britain.
3....

GT That’s pretty cool, but I’d still love to visit more of Europe.
It’s cool to explore woodland in Ireland.

SKLS Yes, Ireland is the largest island in the Europe. I would
like to go there again.

DukeNet Canada is also a beautiful country, like the Ireland.

PIPM Pretty cool! Canada is fantastic! I wish I lived there instead
of the Europe.

Ours-1 That’s great! Come to Ireland, the third largest island
in Europe.

Ours-2 Pretty great! If you know that Ireland was covered by
woodlands before many years.

Ours-3 That’s pretty cool. The woodlands in Ireland deserves
to be visited.

Ours-4 Yeah, Ireland has a third-largest woodlands. Have you
ever heard it?

Table 8: Case study on the WoW Test Seen dataset.
For fair comparison of the generation performance, we
choose the case that all model select the same knowl-
edge (marked as yellow). We further present several
different responses that all generated by our model.
"GT" denotes the ground truth.

As shown in Table 8, our model is able to engage
different parts in the knowledge sentence and then
generate diverse and coherent response. The reason
why our model has the ability to generate different
and semantic coherent response is that the collabo-
rative latent variables in CoLV consider these two
distributions collaboratively.

4.5 Analysis of Heuristic-based KS

We conduct a further experiments to analyze if our
fine-grained knowledge selection perform better
than traditional sentence-level match methods. The
results of knowledge selection on three datasets
are shown in Figure 3. Different from previous
sentence-level knowledge selection. Our method
firstly treats all knowledge sentences as an inte-
grated paragraph and select knowledge span from
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Dialogue Context: Thierry Henry is one of my all time favorite
players. What about you?

Knowledge Candidates: 1. Thierry Daniel Henry is a retired

French professional footballer . 2. He played as a forward and is

the second assistant manager of the Belgium national team .
3. Henry made his professional debut with Monaco in 1994.
4. A year later he signed for Premier League club Arsenal .

GT Pair
Kg: a retired French professional footballer.
Response: He was good. he is a retired French
professional footballer.

Pair-1
Kg: Premier League club Arsenal .
Response: I know him. He has served in the premier
league club Arsenal.

Pair-2
Kg: a retired French professional footballer .
Response: Henry is a retired French footballer,
he was so famous.

Pair-3

Kg: the second assistant manager of the Belgium

national team .
Response: Yes, I love him too. He was also the second
assistant manager of the Belgium team.

Table 9: Qualitative analysis of collaborative latent
variables. Knowledge-response pairs generated by our
model. "GT pair" denotes the ground truth knowledge-
response pair in the dataset. “Pair-1", “Pair-2" and
“Pair-3" are generated from our model.

this paragraph. Only the start and end position of
knowledge span are totally matched (100% match-
ing) with original knowledge sentence, it will be
counted by accuracy metric. However, we observe
that in our test set, many bad cases also select out
partial correct knowledge content. Therefore, we
conduct a further statistics on accuracy of different
percentage of correct knowledge span, as shown in
Figure 3. Take the WoW Test Seen dataset as exam-
ple ((a) in Figure 3), our model can reach around
0.35 accuracy on the 80% and 90% percentage
of correct knowledge span, which is significantly
higher than baseline models. Considering that con-
versational model usually do not engage all the
knowledge context into response generation, we
claim that the 80% and 90% percentage of correct
knowledge span are acceptable in real application
scenarios. Therefore, CoLV is more practical and
flexible than the existing methods.

4.6 Effects of Collaborative Latent Variables
We conduct a further qualitative analysis on the
collaborative latent variables. Firstly, we utilize the
knowledge variable in multiple times to get differ-
ent knowledge. Then, for each selected knowledge,
we employ the decoder phase to generate corre-
sponding responses. As shown in Table 9, our
CoLV is able to select different knowledge context
and then generate corresponding responses. We
can notice that all responses in Pair-1 to Pair-3
are coherent and fluency to the dialogue context.

Besides, knowledge information is appropriately
engaged into the response. Therefore, the two la-
tent variables in our CoLV model are effective to
help select diverse knowledge and then generate
coherent response.

5 Conclusion

In this paper, we propose a novel collaborative
latent variable (CoLV) model to simultaneously
learning to select knowledge and generate re-
sponses in knowledge-grounded dialogue gener-
ation. CoLV model helps improve the diversity not
only on knowledge selection but also help generate
diverse response while given a specific knowledge.
Besides, the CoLV model uses two collaborative
latent variables for coupling the knowledge and
dialogue. Extensive experiments on two bench-
mark datasets show that CoLV achieves satisfied
performance, indicating that CoLV can select more
diverse knowledge and further generate more co-
herent and diverse responses than baseline models.
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