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Abstract

One challenge in evaluating visual question
answering (VQA) models in the cross-dataset
adaptation setting is that the distribution shifts
are multi-modal, making it difficult to iden-
tify if it is the shifts in visual or language
features that play a key role. In this paper,
we propose a semi-automatic framework for
generating disentangled shifts by introducing
a controllable visual question-answer genera-
tion (VQAG) module that is capable of gen-
erating highly-relevant and diverse question-
answer pairs with the desired dataset style. We
use it to create CrossVQA, a collection of
test splits for assessing VQA generalization
based on the VQA2, VizWiz, and Open Im-
ages datasets. We provide an analysis of our
generated datasets and demonstrate its utility
by using them to evaluate several state-of-the-
art VQA systems. One important finding is
that the visual shifts in cross-dataset VQA
matter more than the language shifts. More
broadly, we present a scalable framework for
systematically evaluating the machine with lit-
tle human intervention.

1 Introduction

Multiple datasets have been proposed to mea-
sure the progress on visual question answering
(VQA) (Antol et al., 2015; Zhu et al., 2016b; Goyal
et al., 2017; Gurari et al., 2018; Hudson and Man-
ning, 2019; Yang et al., 2016; Tu et al., 2014; Qi
et al., 2015; Liu et al., 2016). However, these
datasets often possess biases introduced in the data
collection process and by the human annotators. It
has been shown that existing VQA models lever-
age these spurious biases and take shortcuts (Goyal
et al., 2017; Agrawal et al., 2018; Chao et al.,
2018a; Akula et al., 2020a). As a result, the perfor-
mance of those models on a specific VQA dataset
can only serve as a rough proxy for the true learning
of the VQA task (Bras et al., 2020).

∗Work done in part while AA was an intern at Google.
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sets

QAvqa2 QAvzwz

Ivqa2 X 7
Ivzwz 7 X
Ioid 7 7

(a)

Test
sets

QAvqa2 QAvzwz

Ivqa2 X X
Ivzwz X X
Ioid X X

(b)

Table 1: (a) Existing VQA test sets; (b) CrossVQA (disen-
tangled) test sets generated by our VQAG model.

One common remedy to this is to go beyond in-
domain evaluation, in which the test set exhibits
some form of “distribution shifts” from the train-
ing set (Agrawal et al., 2018; Chao et al., 2018b).
The key idea is that a generalizable VQA model
should be able to extrapolate, for example, from
one dataset to another. One challenge that is quite
unique to VQA in this setting is that the distribution
shift is multi-modal. When one dataset unsatisfac-
torily transfers to another, it is difficult to identify
how much of this is due to vision or language dis-
tribution mismatches. To complicate things even
more, the frequency of objects occurring in natural
images follows a long-tail distribution (Salakhutdi-
nov et al., 2011; Zhu et al., 2014, 2016a). Lack of
sufficient instances of minority classes in the test
sets further complicates the estimation of general-
ization capabilities from one dataset to another.

A possible solution to address this issue is to
use an iterative, human-in-the-loop approach for
dataset collection where human annotators care-
fully devise new test samples by incorporating vi-
sual and language distribution shifts (Nie et al.,
2020; Bartolo et al., 2020; Kaushik et al., 2020;
Gardner et al., 2020). However, this approach is
not scalable and training the human annotators, be
they seasoned AI experts or non-experts, would
incur huge annotation time and cost.

In this work, we propose to make the pro-
cess of creating distribution shifts more system-
atic and automatic. Inspired by recent work on
dynamic benchmarks that co-evolve with strong
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What color is 
the man’s tie? 
Yellow

Can you 
please tell me 
how many men 
are in the 
picture? 2

VQAG

Ivqa2

QAvqa2

QAvzwz

Ivzwz

What color is 
the screen’s 
background? 
Green

There is a 
screen above 
my finger. Can 
you please tell 
me what it 
says? Swipe

QAvqa2

QAvzwz

VQAG

Figure 1: Existing works on VQA domain adaptation between source and target datasets (e.g. VQA2. and VizWiz) can
only compare the model’s performance on the entangled test splits 〈Ivqa2, QAvqa2〉 and 〈Ivzwz, QAvzwz〉. In this work, we
propose a VQAG module to generate novel and scalable VQA test sets, called CrossVQA, consisting of additional test sets
〈Ivqa2, QAvzwz〉 and 〈Ivzwz, QAvqa2〉 where visual and language features are disentangled.

models (Zellers et al., 2019b), we propose to bring
in visual question-answer generation (VQAG) mod-
ule in the evaluation process. More specifically,
we first build a strong, controllable VQAG engine
that is capable of creating particular dataset-style
question-answer pairs. Then, we use it to gener-
ate novel 〈image, question, answer〉 test splits,
while controlling distribution shifts in vision and
language features. This is summarized in Ta-
ble 1 and exemplified with the VQA2 and VizWiz
datasets in Figure 1. Collectively, we refer to the
resulting VQA test sets as CrossVQA.

There are at least two advantages in using a
VQAG model to construct our CrossVQA test sets:
(1) We can evaluate the adaptation skills of VQA
models on non-VQA datasets such as Open Images
(OID) (Kuznetsova et al., 2018), which contains
various image annotations but no question/answer
pairs, i.e. 〈Ioid, Qvqa2〉 and 〈Ioid, Qvzwz〉 (see Ta-
ble 1); (2) Collecting human-annotated test sets
is resource-intensive and scales poorly, while the
VQAG approach can be massively scaled and ap-
plied in a never-ending learning scenario for gener-
ating dynamic benchmarks (Nie et al., 2020).

We conduct extensive experiments to evaluate
the utility of our proposed framework. First, we
validate that our VQAG module is capable of gen-
erating relevant questions and correct answers with
the desired distribution shifts, which we achieve

through a combination of transformer-based ar-
chitectures, vision-and-language pre-training, and
multiple types of control signals. We also find that,
when evaluated against state-of-the-art generative
models for visual question generation, our VQAG
substantially outperforms them in terms of accu-
racy, diversity, and novelty.

Additionally, we perform analysis and human
evaluation of our CrossVQA test sets that are built
on VQA2, VizWiz, and Open Images datasets. We
show that they are effective at finding and quanti-
fying weaknesses of cross-dataset generalization
abilities in the state-of-the-art VQA models. For
instance, our experimental results show that VQA
models drop up to 40% in absolute accuracy if there
is a mismatch in image distribution. On the other
hand, VQA models are found to be relatively less
sensitive to a mismatch in language distribution.

Finally, inspired by the success of contrastive
learning and multi-task learning techniques in im-
proving generalization and robustness of multi-
modal tasks (Akula et al., 2020a), we investigate
whether these techniques improve the performance
of VQA models on our CrossVQA test sets. Inter-
estingly, we find that contrastive losses and multi-
task regularization do not lead to significant gener-
alization gains on CrossVQA.

In summary, our key contributions are three-fold.
First, we introduce the CrossVQA benchmark for
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systematically assessing the generalization skills
of VQA models, and provide analysis and experi-
ments to support its utility. Second, we describe a
scalable data collection and benchmarking frame-
work for semi-automatically constructing the pro-
posed benchmarks using a strong and controllable
visual question-answer generation (VQAG) mod-
ule. Finally, we empirically demonstrate the su-
periority of our VQAG module by achieving new
state-of-the-art results in visual question genera-
tion.

2 Related Work

Cross-Dataset Distribution Shifts. There is a
large body of work analyzing the generalization
skills of neural networks from a labeled source do-
main to a target domain where there is no or limited
labeled data (Ganin and Lempitsky, 2015; Gong
et al., 2012; Guo and Xiao, 2012; Tzeng et al.,
2015; Akula et al., 2020b). However, these works
focus either on language modeling or visual recog-
nition tasks. Here, we investigate adaptation skills
using the multi-modal VQA task, for which distri-
bution mismatches can occur in both language and
visual features.

There are a few works that study systematic com-
positional skills in multi-modal tasks. For example,
Lampert et al. (2009) study the use of attributes
in transferring information between object classes.
Jabri et al. (2016) explore several variants of the
VQA task and show that VQA models struggle with
transferring knowledge across datasets. Agrawal
et al. (2018) study the extent to which a model
is visually grounded, by evaluating its ability to
generalize to a different answer distribution for
each question type. Chao et al. (2018b) investi-
gate the issue of cross-dataset generalization, using
a specific setting where the source domain con-
tains a large amount of training data and the target
domain contains insufficient data to train a VQA
system from scratch. Unlike these works, our work
performs a more fine-grained analysis by disentan-
gling the distribution mismatches in language and
vision, achieved by generating out-of-distribution
shifts using a learned VQAG module.

Visual Question Generation (VQG). The goal of
VQG is to generate natural questions for an im-
age. This task has drawn much attention due to its
ability to test a model’s understanding of natural
language in the context of visual grounding and its
application in downstream tasks such as image re-

VQAG
B’s image

B’s indicator
Other control signals

Question & 
Answer

A’s image
A’s indicator

Other control signals

B’s image
A’s indicator

Other control signals

A’s image
B’s indicator

Other control signals

C’s image
A’s or B’s indicator
Other control signals

Training

Inference

VQAG Question & 
Answer

Figure 2: Overview of CrossVQA. We train a controllable
visual question-answer generation (VQAG) engine and use the
dataset indicators and control signals to generate the desired
cross-dataset shifts.

trieval and question answering (Antol et al., 2015;
Zhu et al., 2016b; Akula, 2015; Palakurthi et al.,
2015).

While the task of generating question automat-
ically is well studied in the language domain, it
has been under-explored for image-related natu-
ral questions (Mostafazadeh et al., 2016). Prior
works explored VQG using autoencoder-based ar-
chitectures (Jain et al., 2017; Yang et al., 2018;
Alberti et al., 2019; Krishna et al., 2019). Jain et al.
(2017) employ a variational autoencoder paradigm
where they first learn to embed a given question
and image into a low dimensional latent space. The
latent codes are subsequently mapped to a high-
dimensional representation using RNNs during in-
ference to generate the question. Krishna et al.
(2019) model question generation as a process that
maximizes mutual information between the image
and the expected answer’s category. They incor-
porate fine-grained answer type as the guidance to
generate goal-driven questions. Xu et al. (2020)
propose an answer-centric approach where they
model the complex relationship between an answer
and its relevant image regions. Unlike these works,
our approach uses a simple encoder-decoder frame-
work, but we enhance it using a transformer-based
architecture, vision-and-language pre-training, and
various control signals, which together lead to a
stronger VQG model. Furthermore, our work not
only improves the VQG performance, but also
takes a step further by exploring using VQG in
the context of VQA evaluation.



2151

3 Approach

3.1 Overview

Figure 2 overviews our approach to systematically
generating cross-dataset distribution shifts. Dur-
ing training, we train a visual question-and-answer
generation (VQAG) engine using multiple sources
of VQA data (denoted by A and B). This VQAG
module uses a dataset indicator to learn and gener-
ate question-answer pairs of a particular dataset’s
style.

During inference, we apply the trained VQAG
model to multiple image sources (denoted by A,
B, and C), while varying the dataset indicator. For
example, we turn on the dataset B indicator for
the images of A, which generates B-style ques-
tions/answers for the images in A. Furthermore,
VQAG can also be applied to images from a dif-
ferent dataset C, for which no VQA annotations
are available, yet we can still control the style of
annotations generated. In the post-processing step,
the resulting VQA datasets are validated by human
annotators.

We first provide more details on our VQAG en-
gine (Sec. 3.2) and then describe how it is used to
generate CrossVQA benchmarks (Sec. 3.3).

3.2 Visual Question-Answer Generation

We start from a transformer-based encoder-decoder
model that learns to generate question-answer
pairs from images. We then enhance this model
in two ways. First, we perform image-text pre-
training using a recently introduced Conceptual
12M (CC12M) dataset (Changpinyo et al., 2021).
Second, we experiment with multiple control sig-
nals. As we will show in our experimental results,
these signals help improve the accuracy and the
diversity of the generated outputs when applied to
diverse sources of images.

Base VQAG Model and Input-Output Format.
We adopt a transformer-based encoder-decoder
framework (Vaswani et al., 2017) for image-to-
text generation as our base model, following re-
cent work on large-scale image captioning (Sharma
et al., 2018; Changpinyo et al., 2019). In particular,
we represent each input image as a sequence of
feature vectors, and the model learns to produce
relevant questions and their corresponding correct
answers.

Each input image is represented by multiple
types of visual features (Changpinyo et al., 2019),

which we briefly describe here (see Appendix D
for more details):
(i) a global feature vector extracted by Graph-
RISE (Juan et al., 2019), a ResNet-101 (He et al.,
2016) trained for image classification at ultrafine
granularity levels;
(ii) 16 regional feature vectors, obtained from
Graph-RISE featurization of top-16 proposals of
a Faster RCNN (Ren et al., 2015) object detector
trained on Visual Genome (Krishna et al., 2017);
(iii) top semantic object label vectors, where labels
(e.g. “river", “man", “football") are produced by
the Google’s Vision API1.

Our target is a question-answer pair in the for-
mat q 〈sep〉 a, where q is the question tokens, a
is the answer tokens, and 〈sep〉 is the chosen de-
limiter. Furthermore, since a is not limited to a
single answer (Bhattacharya et al., 2019), a is repre-
sented as a1〈dsep〉a2〈dsep〉 . . . 〈dsep〉aK , where
a1, a2, . . . , ak are possible answers for q. We use
beam search to generate the target question and
answer(s) during the decoding stage.

Next we incorporate two enhancements into this
base model to (a) maximize the relevance between
image, question and expected answer in the gener-
ated test sets; (b) improve generalization capability
of the model to out-of-domain images; and (c) in-
crease the diversity and novelty of the questions.

Enhancement 1: Image-To-Text Pre-Training.
We pre-train our base VQAG model on Con-
ceptual 12M (Changpinyo et al., 2021), a large-
scale dataset specifically designed for vision-and-
language pre-training. It consists of 12.4 million
image–Alt-text pairs harvested from the Web. We
use the standard image captioning objective for pre-
training (Changpinyo et al., 2021). Despite this
task mismatch (i.e., image captioning vs. visual
question/answer generation), we observe the utility
of pre-training in addressing the long-tail distribu-
tion of objects (see Sec. 4.2)

Enhancement 2: Dataset-Agnostic Control Sig-
nals. In addition to the image features, we also
condition our model on up to three control knobs
more directly related to visual question generation
and answering. In particular, we explore three main
types of dataset-agnostic control signals, summa-
rized in Table 2: the expected first two words of
the question (i.e. question prefix), the expected
answer category, and the expected answer(s). See

1https://cloud.google.com/vision/docs/labels
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Table 2: Dataset-agnostic control signals and examples.

Notation Description
P Question prefix
C Answer category
A Most common answer
Ã All answers

Examples
Question 1: Is the screen’s background blue?
P : Is the, C : Color, Ã : yes <dsep> true <dsep> blue screen <dsep> yes, A : yes

Question 2: How many men are in the picture?
P : How many, C : Counting, Ã : 2 <dsep> 2 <dsep> 3 <dsep> 5, A: 2

Appendix A for further discussion.
To condition the VQAG model on these control

signals, the embeddings for the control signals are
fed to the encoder together with the image embed-
dings. The visual and language features from the
image embeddings and the control signals are al-
lowed to attend to all other features through the
self-attention mechanism.

Dataset indicator as additional control signal.
As the main focus of this paper is cross-dataset
shifts, we consider the dataset indicator control sig-
nal as an additional input. This signal helps inform
the model of the desired domain or style of visual
questions. Similar to dataset-agnostic control sig-
nals above, the one-hot embedding for the dataset
indicator is concatenated to the image and other
control signal embeddings and fed to the encoder.

3.3 Generating CrossVQA Benchmarks

We now describe how to use the enhanced VQAG
model together with the dataset indicator described
in previous section for generating CrossVQA
benchmarks.

Datasets. We consider two VQA datasets:
VQA2 (Goyal et al., 2017) and VizWiz (Gurari
et al., 2018). The two datasets are drastically differ-
ent visually and textually. VQA2 is built on top of
high-quality COCO images (Lin et al., 2014) with
visual questions intended to fool “smart robot" but
not humans. VizWiz, on the other hand, is col-
lected in-the-wild from the visually-impaired users,
often with lower image quality and more conversa-
tional and simpler questions intended to be useful
if answered correctly.

Additionally, we consider the images from
Open Images (OID) (Kuznetsova et al., 2018),
which is known to have more diverse objects than
COCO (Agrawal et al., 2019).

3.3.1 Training
We mix the training splits of VQA2 and VizWiz
and use that for training our VQAG. We experi-
ment with pre-training and different combinations
of dataset-agnostic control signals (Sec. 4). We

leverage ground-truth control signals in the training
set whenever available; question prefixes and an-
swers are available for both datasets, while the an-
swer categories are available on a subset of VQA2,
as provided by (Krishna et al., 2019).

3.3.2 Inference

Creating Disentangled Shifts. By varying
the dataset-indicator control knob of our best-
performing VQAG models, we generate our de-
sired disentangled shifts. More specifically, de-
note by 〈IA, QAB〉 a dataset with A-style images
and B-style questions. We generate the follow-
ing four VQA splits: VQA2-style question-answer
pairs on a subset of VizWiz validation images
〈Ivzwz, QAvqa2〉, VizWiz-style question-answer
pairs on a subset of VQA2 validation images
〈Ivqa2, QAvzwz〉, and additionally both VQA2-
style and VizWiz-style pairs on a subset of OID val-
idation images 〈Ioid, QAvqa2〉 and 〈Ioid, QAvzwz〉.
In addition, we also generate 〈Ivqa2, QAvqa2〉 and
〈Ivzwz, QAvzwz〉 as a sanity check to verify if our
model learns to understand the styles of VQA2 and
VizWiz.

Dataset-agnostic control signals. There are no
ground-truth control signals for the images during
inference. Thus, we train an image tagger with the
multi-label sigmoid cross entropy loss to predict
top-k most relevant first two words (i.e. question
prefix), answer categories, and answers from the
input image and the target dataset indicator This is
more flexible than the approach used in (Krishna
et al., 2019) where all the pre-annotated answer
categories are used during inference for all images.

3.3.3 Postprocessing
We further clean CrossVQA by using the human
annotators to assess question relevance and answer
correctness (Sec. 4.2).

4 Experiments

In this section, we first evaluate the performance
of our VQAG model against existing state-of-the-
art baselines (Krishna et al., 2019; Wang et al.,
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2017; Jain et al., 2017). We then demonstrate the
importance of conditioning our VQAG model on
the proposed control signals by performing sev-
eral ablation studies. Next, we present CrossVQA
examples and several statistics based on the gen-
erated data. We finally show that CrossVQA is
effective at identifying the limitations of state-of-
the-art VQA models, and examine the extent to
which existing adaptation techniques help in im-
proving performance of VQA models as measured
by CrossVQA.

4.1 In-Domain Evaluation of VQAG
We first benchmark the in-domain performance
of our VQAG model by training and testing on
VQA2 (Goyal et al., 2017) against existing models
for visual question generation (VQG). Note that,
unlike those models which focus on generating
only questions, our model also generates answers;
we discard the generated answers when evaluating
the generated questions against existing work.

Metrics. We consider two sets of evaluation
metrics. The first set of metrics measure ques-
tion relevance. It consists of multiple automatic
text similarity metrics widely used for image cap-
tioning and VQG: BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), SPICE (Anderson et al., 2016) and
CIDEr (Vedantam et al., 2015). The second set
of metrics measure the diversity and novelty of
questions and answers (Vijayakumar et al., 2016;
Jain et al., 2017): (i) generative strength: the per-
centage of unique generated questions normalized
by the number of unique ground truth questions,
(ii) inventiveness: the percentage of unique gener-
ated questions that are unseen during training, (iii)
oracle CIDEr: the maximum value of the CIDEr
over a list of all references. Note that, although
not considered by previous work, both generative
strength and inventiveness for questions (QS and
QI, respectively) can be extended to measure the
diversity and novelty of generated answers as well
(AS and AI, respectively).

Notation. We use X2Y to denote the model with
X as input and Y as output. We use I, Q, A, C
to refer to image, question, answer, and answer
category, respectively. Furthermore, we use Ã to
refer to multiple answers and P to question prefix.
See Table 2 for examples of our control signals.

Baselines. We compare the performance of our
VQAG model against the following baselines:

IA2Q (Wang et al., 2017), a non-variational model
that takes an image and answer as input and gen-
erates a question; V-IA2Q (Wang et al., 2017), a
variational-autoencoder based approach that em-
beds the input image and question to a latent space
before generating a question; IC2Q and V-IC2Q,
extensions to the IA2Q and V-IA2Q models, re-
spectively, where the models are conditioned on
answer categories (Krishna et al., 2019) instead of
ground-truth answers; MI-IA2Q (Krishna et al.,
2019) and MI-IC2Q, also variational models pos-
ing the question generation as a process that maxi-
mizes mutual information between the image, the
expected answer and the answer category.

Results. Results are reported in Table 3. Our mod-
els (IÃC2QÃ, IÃP2QÃ) significantly outperform
all the baselines on standard automatic metrics by
large margins, especially improving the BLEU-4,
METEOR and CIDEr scores by +29.5%, +23.17%
and +0.62, respectively, compared to the current
state-of-the-art methods MI-IC2Q and MI-IA2Q.
In addition, our best model IÃP2QÃ outperforms
the state-of-the-art MI-IC2Q by +7.06% in QS, sug-
gesting that we generate a diverse pool of questions.
Moreover, for question inventiveness, a +30.39%
QI improvement paired with a high oracle CIDEr
score indicates that our model also generates novel
and appropriate questions by using new combina-
tions of objects and question patterns. We also
find a +20% improvements in AS and AI with the
enhancements discussed in Sec. 3.2.

4.2 Analysis of Generated Data
Now that we establish the superiority of our VQAG
engine to existing approaches, we analyze the out-
puts of our best model (IÃP2QÃ with pre-training)
when used to generate CrossVQA benchmarks
(Sec. 3.3.2).

Statistics and Examples of CrossVQA. Table 4
presents basic statistics of the six CrossVQA test
splits generated by our VQAG model. Figure 3
provides examples.

Human Evaluation. We first conduct a human
study to verify question relevance and answer
correctness of 3000 samples from the generated
splits. More concretely, we present each <image,
question, answer> triplet to three crowd workers
and ask them to verify if the generated question is
relevant to the image. Questions that are annotated
as not relevant by at least two workers are discarded.
For each of the relevant questions, we also ask the
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Model Pre-train? B1 B4 M R S C QS QI AS
(0−100)

AI
(0−100)

OC
(0−10)

IC2Q (Wang et al., 2017) 7 30.42 4.44 9.42 - - 0.27 11.37 34.76 - - -
V-IC2Q (Jain et al., 2017) 7 35.40 10.78 13.35 - - 0.42 12.97 38.32 - - -
MI-IC2Q (Krishna et al., 2019) 7 47.40 14.49 18.35 40.27 - 0.86 26.06 52.11 - - -
Ours (IC2QA) 7 55.77 27.54 22.18 49.60 21.80 0.98 27.00 53.90 2.80 11.15 2.78
Ours (IC2QA) X 61.34 32.01 29.09 52.18 26.03 1.15 27.94 57.00 3.79 15.00 3.12

IA2Q (Wang et al., 2017) 7 32.43 6.23 11.21 - - 0.36 - - - - -
V-IA2Q (Jain et al., 2017) 7 36.91 6.25 12.39 - - 0.36 - - - - -
MI-IA2Q (Krishna et al., 2019) 7 48.09 15.17 18.78 49.10 - 0.92 - - - - -
Ours (IA2QA) 7 57.12 29.00 24.16 51.13 23.69 1.02 27.20 54.09 2.90 11.20 3.02
Ours (IA2QA) X 63.00 34.82 30.05 55.00 27.18 1.18 28.90 58.11 3.89 16.01 3.18

Ours (IÃ2QÃ) X 66.02 37.15 32.00 58.16 30.62 1.20 29.10 61.09 4.96 18.89 4.56
Ours (IÃC2QÃ) X 75.34 42.09 41.52 69.41 38.60 1.40 33.00 80.50 22.09 39.80 4.98
Ours (IÃP2QÃ) X 79.52 44.74 41.01 68.20 39.87 1.54 33.12 82.50 23.50 39.86 5.74

Table 3: Performance of our VQAG model against the baselines using the metrics BLEU-1 (B1), BLEU-4 (B4), METEOR (M),
ROUGE-L (R), SPICE (S), CIDEr (C), Question generative strength (QS) and inventiveness (QI), answer generative strength
(AS) and inventiveness (AI), and oracle cider (OC). “Pre-train?" refers to whether or not we pre-train our VQAG on Conceptual
12M (Changpinyo et al., 2021).

Q: What position is this 
man playing?
Answer: Catcher

Q: What do you see in 
this picture?
Answer: Kitchen

Q: How many leaves are 
in the forest?
Answer: Many

Q: Can you please tell 
me what this says?
Answer: Unsuitable

Q: What is the man 
wearing on his head?
Answer: Helmet

Q: How many hands can 
you see?
Answer: 2

I(vqa2), Q(vqa2) I(vzwz), Q(vqa2) I(oid), Q(vqa2) 

I(vqa2), Q(vzwz) I(vzwz), Q(vzwz) I(oid), Q(vzwz) 

Figure 3: Qualitative examples of questions and answers in our CrossVQA dataset.

Test Set #Images #Questions Question
Vocab

Unique
Answers

〈Ivqa2, QAvqa2〉 3000 8418 976 464
〈Ivqa2, QAvzwz〉 3000 8986 927 389
〈Ivzwz, QAvqa2〉 3000 8438 872 440
〈Ivzwz, QAvzwz〉 3000 3014 1004 325
〈Ioid, QAvqa2〉 3000 8986 963 332
〈Ioid, QAvzwz〉 3000 8986 982 427

Table 4: Statistics of CrossVQA before human valida-
tion.

workers to verify if the generated answer is correct,
and, if incorrect, ask them to write a correct answer
(See Appendix C).

As shown in Table 5, workers annotate a large
portion of the generated questions by our VQAG
model as relevant (QR percentages between 77.4%
and 97.8%), showcasing the effectiveness of the
proposed VQAG model. Answer correctness is
found to be relatively lower (AC percentages be-
tween 51.6% and 74.8%), a result that indicates
that CrossVQA is a challenging new benchmark
for visual question answering. We find that the
questions belonging to count, time, spatial, food

Test Set QR AC Categories
with AC < 30%

〈Ivqa2, QAvqa2〉 97.8 69.8 count, time
〈Ivqa2, QAvzwz〉 96.0 74.8 count, time, spatial
〈Ivzwz, QAvqa2〉 69.8 52.07 time, food, spatial
〈Ivzwz, QAvzwz〉 82.2 61.2 food, spatial, attribute
〈Ioid, QAvqa2〉 77.4 51.6 count, time, attribute
〈Ioid, QAvzwz〉 81.4 63.7 count, time, spatial

Table 5: Human Evaluation: question relevance (QR)
and answer correctness (AC).

and attribute categories are relatively more difficult
for our model to generate correct answers.

Further Analysis. We first assess the controllabil-
ity ability of our VQAG model in the generation of
VQA2-style or VizWiz-style questions. In Table 6,
we use the Jensen-Shannon (JSD) divergence be-
tween the unigrams and bigrams distributions of
questions between each data pair to measure their
“style" distance. Regardless of the image sources,
the generated VQA2-style (VizWiz-style) ques-
tions are much more similar to VQA2 (VizWiz)
than the original VizWiz (VQA2) questions are.

We then focus on the generated ques-
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QA QB JSD JSD
from from unigram bigram

VQA2 VizWiz 0.57 0.59
〈Ivqa2, QAvqa2〉 VQA2 0.06 0.07
〈Ivqa2, QAvzwz〉 VizWiz 0.09 0.08
〈Ivzwz, QAvqa2〉 VQA2 0.11 0.09
〈Ivzwz, QAvzwz〉 VizWiz 0.06 0.07

Table 6: Comparison of question distribution of source and
the generated datasets measured using the Jensen-Shannon
(JSD) divergence

Is there a Fish in 
the tank?
What is the shark 
doing in the 
water?

What color is the 
fruit?
Is the pineapple 
ripe?

What color is the 
fire hydrant?
What is the color 
of the fire 
extinguisher?

What are the 
animals doing?
What does the 
panda have in its 
mouth?

What is the man 
doing?
What number is 
on the back of 
the player’s shirt?

Is this a living 
room?
Which side of the 
living room is the 
lamp on?

w/o pre-training  pre-training

Figure 4: Pre-training improves the ability of the
VQAG model to generate questions and answers about
long-tail concepts (images in the figure are from OID).

tions/answers on OID and assess the benefits of
pre-training and control signals on out-of-domain
images. Figure 4 shows a qualitative compar-
ison of questions generated without (red) and
with pre-training (green). We observe that the
pre-trained model generates more accurate and
informative questions (e.g., fire hydrant vs. fire
extinguisher, fish vs. shark). In Figure 5, the
sunburst plots (shown at the top) of the first
three words of the questions exhibit much higher
diversity with control signals. Further, in Figure 6,
the distribution of answer categories demonstrate
that control signals increase the entropy of answer
category distribution, helping the heavy tail ones.

4.3 Cross-Dataset VQA Experiments

Performance of Existing VQA Systems on
Human-Validated CrossVQA. On the 2100
human-validated CrossVQA relevant questions, we
evaluate the VQA adaptation performance of the

Model vqa2,vqa2 vqa2,vzwz vzwz,vqa2 oid,vqa2
LXMERT 60.1 50.5 25.0 38.6
VisualBERT 58.1 55.1 21.4 43.6
ViLBERT(VB) 62.5 57.8 26.6 44.8

VB+Sum-H 62.8 57.8 26.9 43.9
VB+Max-H 64.1 58.0 26.9 42.8
VB+GQA 65.3 57.8 25.7 40.4
VB+RER 63.0 58.1 27.2 44.0
VB+VCR 61.0 54.3 24.1 39.6

Table 7: Performance on human-validated CrossVQA
test sets with VQA2 images or VQA2-style questions
for (i) the state-of-the-art models (top three rows) and
(ii) ViLBERT (VB) with contrastive (Sum-H, Max-H)
and multi-task (GQA, RER, VCR) losses.

state-of-the-art VQA models: ViLBERT (VB) (Lu
et al., 2019a), LXMERT (Tan and Bansal, 2019),
and VisualBERT (Li et al., 2019), all trained on
VQA2. In Table 7 (top three rows), we find
that ViLBERT outperforms other baselines on
CrossVQA splits with VQA2 images or VQA-style
questions, so we provide a detailed analysis of ViL-
BERT.

Figure 7 compares the CrossVQA performance
of (a) ViLBERT trained on the VQA2 dataset, and
(b) ViLBERT trained on VQA2 and fine-tuned on
VizWiz. We find that both VQA models show
accuracy drops on all six splits, compared to the
SOTA accuracy 71.0% on VQA2 test set and 54.7%
on VizWiz test set (left-most column). This indi-
cates that the questions in CrossVQA are harder
for SOTA models to get right. Moreover, the
model trained on VQA2 drops by up to 40% on
VizWiz and OID input images, a rather unexpected
(and never-before quantified) result. Similarly, the
model trained on VizWiz underperforms on splits
with VQA and OID images by similarly large mar-
gins. This suggests that the VQA models struggle
to generalize when there is a mismatch in image
distribution. In contrast, the drop in accuracy is
relatively low for mismatches in language distribu-
tion, indicating that these models are relatively less
robust to visual features compared to language fea-
tures. We believe that the rich object-level features
and interactions available in the visual space could
be causing the models to overfit to training image
distribution and therefore the models struggle to
generalize to new image distribution.

Adaptation Techniques with Auxiliary Losses.
We also examine if the contrastive and multi-
task (MTL) losses (Akula et al., 2020a) im-
prove the adaptation performance of ViLBERT on
CrossVQA in Table 7. In contrastive leaning, neg-
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Figure 5: Distribution of the first three words for questions generated without (left) and with (right) control signals
(on OID).
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ative examples that are close to the current exam-
ple are mined, and used to learn to jointly min-
imize the loss on the current (positive) example
and maximize the loss on the (hard) negative ex-
amples. Two versions of contrastive losses are
considered: Sum of Hinges (Sum-H), taking a
sum over all negative samples, and Max of Hinges
(Max-H), which only considers the loss on hard-
est negative sample by applying the max oper-
ation. For MTL, the following auxiliary tasks

are used: GQA (Hudson and Manning, 2019),
visual common sense reasoning (VCR) (Zellers
et al., 2019a), and referring expression recogni-
tion with RefCOCOg (RER) (Mao et al., 2016).
The last five rows of Table 7 show the perfor-
mance of ViLBERT (VB) using these contrastive
and MTL losses. Although the losses slightly
improve the accuracy on in-domain CrossVQA
split 〈Ivqa2, QAvqa2〉, they fail to improve gener-
alization on cross-domain splits 〈Ivqa2, QAvzwz〉,
〈Ivzwz, QAvqa2〉 and 〈Ioid, QAvqa2〉, suggesting
that there is ample room for improvement (see Ap-
pendix E).

5 Conclusion

We present a step toward scalable and systematic
evaluation of VQA systems. Key to our approach
is an accurate and controllable VQAG module that
is capable of generating disentangled distribution
shifts. We generate CrossVQA benchmarks, a col-
lection of test splits based on VQA2, VizWiz, and
Open Images datasets. We validate their utility
by showing that existing VQA models struggle to
perform well in this evaluation scenario and identi-
fying the image distribution mismatch as the main
factor.

Acknowledgments. We would like to thank Prof.
Joyce Chai, Prof. Siva Reddy, Spandana Gella for
helpful discussions, Sebastian Goodman and Nan
Ding for their feedback on the code, Ashish Thap-
liyal on his feedback on an earlier version of the
draft, Keze Wang for his help with technical issues,
and Google data team for their help with human
annotations. We are grateful to the anonymous
reviewers for their useful feedback.



2157

References
Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and

Aniruddha Kembhavi. 2018. Don’t just assume;
look and answer: Overcoming priors for visual ques-
tion answering. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pages
4971–4980. IEEE Computer Society.

Harsh Agrawal, Peter Anderson, Karan Desai, Yufei
Wang, Xinlei Chen, Rishabh Jain, Mark Johnson,
Dhruv Batra, Devi Parikh, and Stefan Lee. 2019.
nocaps: novel object captioning at scale. In 2019
IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pages 8947–8956. IEEE.

Arjun Akula, Spandana Gella, Yaser Al-Onaizan, Song-
Chun Zhu, and Siva Reddy. 2020a. Words aren’t
enough, their order matters: On the robustness of
grounding visual referring expressions. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6555–6565,
Online. Association for Computational Linguistics.

Arjun R Akula. 2015. A novel approach towards build-
ing a generic, portable and contextual nlidb sys-
tem. International Institute of Information Technol-
ogy Hyderabad.

Arjun R. Akula, Shuai Wang, and Song-Chun Zhu.
2020b. Cocox: Generating conceptual and counter-
factual explanations via fault-lines. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 2594–
2601. AAAI Press.

Chris Alberti, Jeffrey Ling, Michael Collins, and David
Reitter. 2019. Fusion of detected objects in text
for visual question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2131–2140, Hong Kong,
China. Association for Computational Linguistics.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Spice: Semantic propo-
sitional image caption evaluation. In European
Conference on Computer Vision, pages 382–398.
Springer.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: visual question an-
swering. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015, pages 2425–2433. IEEE Com-
puter Society.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Max Bartolo, Alastair Roberts, Johannes Welbl, Sebas-
tian Riedel, and Pontus Stenetorp. 2020. Beat the
AI: Investigating adversarial human annotation for
reading comprehension. Transactions of the Associ-
ation for Computational Linguistics, 8:662–678.

Nilavra Bhattacharya, Qing Li, and Danna Gurari.
2019. Why does a visual question have different
answers? In 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Ko-
rea (South), October 27 - November 2, 2019, pages
4270–4279. IEEE.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E. Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial fil-
ters of dataset biases. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
1078–1088. PMLR.

Soravit Changpinyo, Bo Pang, Piyush Sharma, and
Radu Soricut. 2019. Decoupled box proposal and
featurization with ultrafine-grained semantic labels
improve image captioning and visual question an-
swering. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1468–1474, Hong Kong, China. Association for
Computational Linguistics.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and
Radu Soricut. 2021. Conceptual 12M: Pushing web-
scale image-text pre-training to recognize long-tail
visual concepts. In CVPR.

Wei-Lun Chao, Hexiang Hu, and Fei Sha. 2018a. Be-
ing negative but constructively: Lessons learnt from
creating better visual question answering datasets.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 431–441, New
Orleans, Louisiana. Association for Computational
Linguistics.

Wei-Lun Chao, Hexiang Hu, and Fei Sha. 2018b.
Cross-dataset adaptation for visual question answer-
ing. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pages 5716–5725. IEEE
Computer Society.

Volkan Cirik, Louis-Philippe Morency, and Taylor
Berg-Kirkpatrick. 2018. Visual referring expression

https://doi.org/10.1109/CVPR.2018.00522
https://doi.org/10.1109/CVPR.2018.00522
https://doi.org/10.1109/CVPR.2018.00522
https://doi.org/10.1109/ICCV.2019.00904
https://doi.org/10.18653/v1/2020.acl-main.586
https://doi.org/10.18653/v1/2020.acl-main.586
https://doi.org/10.18653/v1/2020.acl-main.586
https://aaai.org/ojs/index.php/AAAI/article/view/5643
https://aaai.org/ojs/index.php/AAAI/article/view/5643
https://doi.org/10.18653/v1/D19-1219
https://doi.org/10.18653/v1/D19-1219
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1109/ICCV.2019.00437
https://doi.org/10.1109/ICCV.2019.00437
http://proceedings.mlr.press/v119/bras20a.html
http://proceedings.mlr.press/v119/bras20a.html
https://doi.org/10.18653/v1/D19-1155
https://doi.org/10.18653/v1/D19-1155
https://doi.org/10.18653/v1/D19-1155
https://doi.org/10.18653/v1/D19-1155
https://doi.org/10.18653/v1/N18-1040
https://doi.org/10.18653/v1/N18-1040
https://doi.org/10.18653/v1/N18-1040
https://doi.org/10.1109/CVPR.2018.00599
https://doi.org/10.1109/CVPR.2018.00599
https://doi.org/10.18653/v1/N18-2123


2158

recognition: What do systems actually learn? In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 781–787, New
Orleans, Louisiana. Association for Computational
Linguistics.

Yaroslav Ganin and Victor S. Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 1180–1189.
JMLR.org.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323, Online. Association for Computational
Linguistics.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman.
2012. Geodesic flow kernel for unsupervised do-
main adaptation. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence,
RI, USA, June 16-21, 2012, pages 2066–2073. IEEE
Computer Society.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
V in VQA matter: Elevating the role of image un-
derstanding in visual question answering. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 6325–6334. IEEE Computer So-
ciety.

Yuhong Guo and Min Xiao. 2012. Cross language
text classification via subspace co-regularized multi-
view learning. In Proceedings of the 29th Inter-
national Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012. icml.cc / Omnipress.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo,
Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P.
Bigham. 2018. Vizwiz grand challenge: Answering
visual questions from blind people. In 2018 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 3608–3617. IEEE Computer So-
ciety.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Drew A. Hudson and Christopher D. Manning. 2019.
GQA: A new dataset for real-world visual reason-
ing and compositional question answering. In IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pages 6700–6709. Computer Vision Foun-
dation / IEEE.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting visual question an-
swering baselines. In Proceedings of ECCV.

Unnat Jain, Ziyu Zhang, and Alexander G. Schwing.
2017. Creativity: Generating diverse questions us-
ing variational autoencoders. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 5415–5424. IEEE Computer Society.

Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng,
Aleksei Timofeev, Yi-Ting Chen, Yaxi Gao, Tom
Duerig, Andrew Tomkins, and Sujith Ravi. 2019.
Graph-rise: Graph-regularized image semantic em-
bedding. ArXiv preprint, abs/1902.10814.

Divyansh Kaushik, Eduard H. Hovy, and
Zachary Chase Lipton. 2020. Learning the differ-
ence that makes A difference with counterfactually-
augmented data. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ranjay Krishna, Michael Bernstein, and Li Fei-Fei.
2019. Information maximizing visual question gen-
eration. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 2008–2018. Com-
puter Vision Foundation / IEEE.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-
sual Genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Interna-
tional Journal of Computer Vision, 123(1):32–73.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Ka-
mali, Stefan Popov, Matteo Malloci, Tom Duerig,
et al. 2018. The open images dataset v4: Uni-
fied image classification, object detection, and vi-
sual relationship detection at scale. ArXiv preprint,
abs/1811.00982.

https://doi.org/10.18653/v1/N18-2123
http://proceedings.mlr.press/v37/ganin15.html
http://proceedings.mlr.press/v37/ganin15.html
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.1109/CVPR.2012.6247911
https://doi.org/10.1109/CVPR.2012.6247911
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
http://icml.cc/2012/papers/789.pdf
http://icml.cc/2012/papers/789.pdf
http://icml.cc/2012/papers/789.pdf
https://doi.org/10.1109/CVPR.2018.00380
https://doi.org/10.1109/CVPR.2018.00380
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2017.575
https://doi.org/10.1109/CVPR.2017.575
https://arxiv.org/abs/1902.10814
https://arxiv.org/abs/1902.10814
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR.2019.00211
https://doi.org/10.1109/CVPR.2019.00211
https://arxiv.org/abs/1811.00982
https://arxiv.org/abs/1811.00982
https://arxiv.org/abs/1811.00982


2159

Christoph H. Lampert, Hannes Nickisch, and Stefan
Harmeling. 2009. Learning to detect unseen object
classes by between-class attribute transfer. In 2009
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2009), 20-25
June 2009, Miami, Florida, USA, pages 951–958.
IEEE Computer Society.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. ArXiv preprint, abs/1908.03557.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. In ECCV.

Changsong Liu, Shaohua Yang, Sari Saba-Sadiya,
Nishant Shukla, Yunzhong He, Song-Chun Zhu,
and Joyce Chai. 2016. Jointly learning grounded
task structures from language instruction and visual
demonstration. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1482–1492, Austin, Texas. Asso-
ciation for Computational Linguistics.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019a. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
13–23.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019b. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
13–23.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L. Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 11–20.
IEEE Computer Society.

Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Mar-
garet Mitchell, Xiaodong He, and Lucy Vander-
wende. 2016. Generating natural questions about
an image. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1802–1813, Berlin,

Germany. Association for Computational Linguis-
tics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial NLI: A new benchmark for natural lan-
guage understanding. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4885–4901, Online. Association
for Computational Linguistics.

Ashish Palakurthi, Ruthu S M, Arjun Akula, and Rad-
hika Mamidi. 2015. Classification of attributes in
a natural language query into different SQL clauses.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing,
pages 497–506, Hissar, Bulgaria. INCOMA Ltd.
Shoumen, BULGARIA.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo,
Radu Soricut, and Vittorio Ferrari. 2019. Connect-
ing vision and language with localized narratives.
ArXiv preprint, abs/1912.03098.

Hang Qi, Tianfu Wu, Mun-Wai Lee, and Song-Chun
Zhu. 2015. A restricted visual turing test for deep
scene and event understanding. ArXiv preprint,
abs/1512.01715.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and
Jian Sun. 2015. Faster R-CNN: towards real-time
object detection with region proposal networks. In
Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 91–99.

Ruslan Salakhutdinov, Antonio Torralba, and Joshua B.
Tenenbaum. 2011. Learning to share visual appear-
ance for multiclass object detection. In The 24th
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2011, Colorado Springs, CO,
USA, 20-25 June 2011, pages 1481–1488. IEEE
Computer Society.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2556–2565, Melbourne, Australia. Association for
Computational Linguistics.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on

https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/CVPR.2009.5206594
https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.03557
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/D16-1155
https://doi.org/10.18653/v1/D16-1155
https://doi.org/10.18653/v1/D16-1155
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.18653/v1/P16-1170
https://doi.org/10.18653/v1/P16-1170
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://aclanthology.org/R15-1065
https://aclanthology.org/R15-1065
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1912.03098
https://arxiv.org/abs/1912.03098
https://arxiv.org/abs/1512.01715
https://arxiv.org/abs/1512.01715
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.1109/CVPR.2011.5995720
https://doi.org/10.1109/CVPR.2011.5995720
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514


2160

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111, Hong Kong, China. Association for
Computational Linguistics.

Ashish V. Thapliyal and Radu Soricut. 2020. Cross-
modal Language Generation using Pivot Stabiliza-
tion for Web-scale Language Coverage. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 160–170, On-
line. Association for Computational Linguistics.

Kewei Tu, Meng Meng, Mun Wai Lee, Tae Eun Choe,
and Song-Chun Zhu. 2014. Joint video and text pars-
ing for understanding events and answering queries.
IEEE MultiMedia, 21(2):42–70.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate
Saenko. 2015. Simultaneous deep transfer across
domains and tasks. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santi-
ago, Chile, December 7-13, 2015, pages 4068–4076.
IEEE Computer Society.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. Cider: Consensus-based image
description evaluation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 4566–
4575. IEEE Computer Society.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. ArXiv preprint, abs/1610.02424.

Tong Wang, Xingdi Yuan, and Adam Trischler. 2017.
A joint model for question answering and question
generation. ArXiv preprint, abs/1706.01450.

Xing Xu, Tan Wang, Yang Yang, Alan Hanjalic, and
Heng Tao Shen. 2020. Radial graph convolutional
network for visual question generation. IEEE Trans-
actions on Neural Networks and Learning Systems.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and
Devi Parikh. 2018. Visual curiosity: Learning to ask
questions to learn visual recognition. ArXiv preprint,
abs/1810.00912.

Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming
Xiong, Song-Chun Zhu, and Joyce Y. Chai. 2016.
Grounded semantic role labeling. In Proceedings of

the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 149–
159, San Diego, California. Association for Compu-
tational Linguistics.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019a. From recognition to cognition: Vi-
sual commonsense reasoning. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019,
pages 6720–6731. Computer Vision Foundation /
IEEE.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019b. HellaSwag: Can
a machine really finish your sentence? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4791–
4800, Florence, Italy. Association for Computational
Linguistics.

Xiangxin Zhu, Dragomir Anguelov, and Deva Ra-
manan. 2014. Capturing long-tail distributions of
object subcategories. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, pages
915–922. IEEE Computer Society.

Xiangxin Zhu, Carl Vondrick, Charless C Fowlkes, and
Deva Ramanan. 2016a. Do we need more training
data? International Journal of Computer Vision,
119(1):76–92.

Yuke Zhu, Oliver Groth, Michael S. Bernstein, and
Li Fei-Fei. 2016b. Visual7w: Grounded question
answering in images. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages
4995–5004. IEEE Computer Society.

https://doi.org/10.18653/v1/2020.acl-main.16
https://doi.org/10.18653/v1/2020.acl-main.16
https://doi.org/10.18653/v1/2020.acl-main.16
https://doi.org/10.1109/ICCV.2015.463
https://doi.org/10.1109/ICCV.2015.463
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1706.01450
https://arxiv.org/abs/1706.01450
https://arxiv.org/abs/1810.00912
https://arxiv.org/abs/1810.00912
https://doi.org/10.18653/v1/N16-1019
https://doi.org/10.1109/CVPR.2019.00688
https://doi.org/10.1109/CVPR.2019.00688
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.1109/CVPR.2014.122
https://doi.org/10.1109/CVPR.2014.122
https://doi.org/10.1109/CVPR.2016.540
https://doi.org/10.1109/CVPR.2016.540


2161

A Appendix

In this supplementary material, we begin by pro-
viding more details on our VQAG implementa-
tion. We then provide additional results and de-
tailed analysis comparing the diversity, novelty of
questions generated using our VQAG model and
baselines. Next, we present our experiment inter-
faces used for conducting human studies and show
additional results. We then present details of con-
trastive learning and multi-task learning models
used in our adaptation analysis. Finally, we present
more statistics from CrossVQA.

B Implementation Details

The models are optimized with Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.000032.
We use a linear decay learning rate schedule with
warm up and employ early stopping based on val-
idation set accuracy. If not pre-trained, we train
our VQAG model for a maximum of 2M iterations.
With pre-trained initialization, we train our VQAG
model for a maximum of 500, 000 iterations. Both
the encoder and decoder layers of transformer have
6 layers each with 8 heads for multiheaded at-
tention. The vocabulary embedding size is 512,
and the hidden embedding size is 1024. We train
our models with a global batch size of 4096 over
Google Cloud 32-core TPUs2. The average train-
ing time for pre-training on conceptual captions
dataset is 52 hours, and training on VQA2.0 and
VizWiz takes up to 21 hours.

We condition our VQAG model using the ex-
pected answer categories (Ã) of the output answer
as one of the control signals, in order to maxi-
mize the relevance between image, question and
expected answer in the generated test sets. These
answer categories can be objects, attributes, colors,
materials, time, etc. Specifically we use 16 cate-
gories (similar to (Krishna et al., 2019)), covering
more than 80 objects, 40 attributes, 17 colors, and
8 materials. Table 8 presents the list of all the 16
categories and provides examples of answers for
each of the categories.

The decoder generates the question and the an-
swer(s) separated by delimiters, for example, ques-
tion 〈sep〉 answer1 〈dsep〉 answer2. We use beam
search (width = 5, alpha = 0.6) to generate the
target question and answer(s) during decoding.

2https://cloud.google.com/tpu/

Categories Examples
Count 0, 1, 2, 30, 40, 200, many, lot,

very
Binary yes, no
Predicate on ground, on plate
Material wood, plastic, concrete, oak,

plaid
Time afternoon, sunset, morning,

spring
Color white, blue, red, black
Attribute sunny, male, winter, stripes,

open
Object frisbee, water, grass, skate-

board, phone
Stuff sky
Food vegetables, tomato, salad,

milk, dessert
Shape rectangle, triangle, oval,

round
Other nothing, english, electricity,

united
Location living room, beach, ocean,

mountains
Animal cat, dog, zebras, person, po-

lice
Spatial right, left, front, downhill,

north
Activity skateboarding, standing, play-

ing wii

Table 8: Answer categories in our VQAG Model

C More Results on Diversity and Novelty

In Section 4 of the main paper, we show that con-
trol signals improve the diversity and novelty of the
generated questions through the metrics question
generative strength (QS) and inventiveness (QI),
answer generative strength (AS) and inventiveness
(AI). To do this, we trained our VQAG model on
VQA2.0 train split and evaluated the model per-
formance on the in-domain VQA2.0 val split. In
this section, we additionally show the performance
of VQAG model on out-of-domain (o.o.d) splits,
namely, VizWiz val split and OID val split. Fig-
ure 8 shows the results. As we can see, there is
no significant drop in QS and AS on o.o.d splits,
suggesting the superior generalization skills of our
model. Moreover, increase in QI and AI indicates
that model is relatively more creative in inventing
new questions and answers on o.o.d splits com-
pared to in-domain splits. Table 9 presents exam-
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Figure 8: Diversity and Novelty of our VQAG model on out-of-domain splits: VizWiz val split and OID val split.

Examples of Invented Questions Examples of Invented Answers
Q1: What hand is the man using to write with?
Q2: Are most of the lights on or off in the living room?
Q3: Will this woman be drinking beer?
Q4: What is the number on the front side of the bike?
Q5: In this scene how many sheep can be clearly seen?
Q6: What is the purpose of the number on the yellow board?
Q7: Which sheep is the older in the picture?
Q8: Is the fire hydrant old or new?
Q9: What is the first letter of the word on the blue sign?
Q10: What is the name of the logo on top of the keyboard?

{at least 10 years, above doorway, in-
side the baggage, behind red car, to-
wards bottom left side, dirt bikes, fishing
boats, fork and sharp knife, riding big
elephants, right side of road}

Table 9: Examples of unseen questions and answers invented by our VQAG Model

ples of the invented/unseen questions and answers
that are not seen by our VQAG model during train-
ing. In the next section, we verify the question
relevance and answer correctness of these o.o.d
questions.

D Additional Human Evaluation Results

We verify question relevance and answer correct-
ness of the samples in CrossVQA splits where the
VQAG model is trained on combined train sets of
VQA2.0 and VizWiz. In this section, we present
additional results on human evaluation of VQAG
model that is trained on only VQA2.0 train split.
We generate questions and answers for VQA2.0
val split (in-domain) and VizWiz, OID val splits
(o.o.d). Figure 9 shows the interface used for con-
ducting this study. Questions that are annotated as
not relevant by at least two workers are considered
as irrelevant. For each of the relevant questions, we
ask the workers to verify if the generated answer
is correct, and if incorrect, ask them to write the
correct answer. Table 10 present human evaluation

results. A significant portion of generated questions
are annotated as relevant. Moreover, we do not find
significant differences in QR and AC metrics across
in-domain and o.o.d samples, confirming that the
higher percentage of invented questions on o.o.d
splits (in Figure 9) are indeed relevant and not due
to random noise. Furthermore, in Table 10, we
also show the QA and AC percentages across seen
and unseen questions generated by VQAG model.
We see higher drop in AC percentage on unseen
questions compared to the drop in QR, indicating
that unseen questions are relatively harder for the
model to generate correct answers.

E More Details on our Base Model

Both the encoder and the decoder contain a stack of
L layers, with each layer consisting of a multi-head
self-attention layer followed by a feedforward layer.
For a given token embedding, the self-attention
layer produces a weighted representation of all
other tokens in the input. This weighted representa-
tion is then combined with the input representation
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Question: What are the bricked letters on the surface? 
Answer: Can’t tell

1. Does the question apply to the image?

2. Is the answer correct?

3. What is the correct answer?

Add a correct answer here...

Task: Assess the quality of the question and the answer presented for the image.
More instructions on how to complete the task are available in this guidelines doc.

Yes, relevant No, not relevant

Yes, relevant No, not relevant Cannot tell

Cannot tell

Submit

Figure 9: Experiment interface for human evaluation to verify question relevance and answer correctness.

Seen+Unseen Seen Unseen
QR AC QR AC QR AC

VQA2.0 val split 90.6 61.7 93.2 74.7 84.6 58.8
VizWiz val split 91.2 54.2 92.8 59.7 86.1 48.3
OpenImages val split 88.8 57.0 89.1 60.9 85.7 49.1

Table 10: Comparison of question relevance (QR) and answer correctness (AC) on in-domain val splits (VQA2.0)
and out-of-domain splits (VizWiz, OpenImages).

of the given token and it is passed to the next layer.
Specifically, each attention head first calculates

the queries Q, keys K and values V as follows:

Q = XWQ,K = XWK , V = XWV (1)

where X contains all the input features stacked
into a matrix, and WQ, WK , and WV are learned
projection matrices.

The output of the attention head is then com-
puted as follows:

ATTN (Q,K, V ) = softmax

(
QK>√
dk

)
V (2)

where dk, dv are the dimension of the keys K and
values V respectively. Intuitively, with the above
attention, the encoder jointly attends to information
from different representation subspaces at different
positions in the input image.

The point-wise feedforward network (FFN) is
applied to each output of the attention layer and it
consist of two linear transformations, with a ReLU

activation in between,

FFN (x) = max (0, xW1 + b1)W2 + b2 (3)

whereW1, b1 andW2, b2 are the weights and biases
of two fully connected layers.

Embedding Regional Image Features We ex-
tract image objects and their features using a Faster
RCNN (Ren et al., 2015) object detector model,
trained on Visual Genome (Krishna et al., 2017).
We extract 100 object regions per image. The result-
ing bounding boxes are considered as visual tokens.
Similar to the positional encoding in language mod-
els (Vaswani et al., 2017), for each visual token, the
spatial position of bounding box is also encoded.
We use a 5-d vector, pspatial, to encode the top-left,
bottom-right, and the bounding box area relative to
the image, i.e., pspatial = [xtl

W , ytlH , xbr
W , xbr

H , w·h
W ·H ].

Embedding Global Image Features Similar to
(Thapliyal and Soricut, 2020; Changpinyo et al.,
2019; Pont-Tuset et al., 2019), we also use a
global image representation using the Graph-RISE
model (Juan et al., 2019), a ResNet-101 model (He
et al., 2016) trained for image classification at ultra-
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Adversarial Referring Expressions 1

Q: What game system are these people playing

<IMG> … <CLS> What game … <SEP>

V- Transformer L- Transformer

Co-Attention Transformer

V- Transformer L- Transformer

hL0
…hL1 hL2

hLT hL0
…hL1 hL2

hLT

.
Task-Specific Layers

Figure 10: Multi-task learning model for VQA with auxiliary tasks such as GQA, REF, and VCR.

fine granularity levels. These regional and global
image features fI = (fr, fg) are fixed during train-
ing.

fr = RCNN(I; θRCNN )

fg = GraphRISE(I; θGraphRISE)
(4)

F Models for Adaptation Analysis

ViLBERT Training: As discussed in Section
4 of the main paper, we use ViLBERT (Lu
et al., 2019b) for our adaptation experiments.
ViLBERT uses a pretrain-then-transfer learning
approach to jointly learn visual and textual
representations from large-scale data, and utilizes
them to answer VQA questions. Specifically,
we consider 8-layer ViLBERT implementation
available at the link https://github.com/
jiasenlu/vilbert_beta. On VQA train
splits, we train the model for a maximum of
25 epochs and use early-stopping based on the
validation performance. We use an initial learning
rate of 3e−5 and use a linear decay learning rate
schedule with warm up. We train on 8 Tesla V100
GPUs with a total batch size of 512.

Contrastive Learning using ViLBERT: In im-
plementing the contrastive loss functions, we ran-
domly sample negatives from the mini-batch for
computational efficiency (similar to (Akula et al.,
2020a)). We sampled 64 negatives from each batch
for both Sum-H and Max-H losses and fine-tune
the margin parameters based on development split.

Multi-Task Learning using ViLBERT: We
present our multi-task learning (MTL) architecture
in Figure 10. The shared layers of ViLBERT consti-
tute transformer blocks (TRM) and co-attentional

transformer layers (Co-TRM) (Lu et al., 2019b).
The weights for the task-specific layers are ran-
domly initialized, whereas the shared layers are
initialized with weights pre-trained on 3.3 mil-
lion image-caption pairs from Conceptual Captions
dataset (Sharma et al., 2018). We use a binary cross-
entropy loss for all the auxiliary tasks GQA (Hud-
son and Manning, 2019), visual common sense
reasoning (VCR) (Zellers et al., 2019a), and re-
ferring expression recognition (REF) (Cirik et al.,
2018). We considered RefCOCOg (Mao et al.,
2016) dataset for REF task. We optimize each task
alternatively in mini-batches based on a mixing
ratio and employ early-stopping based on the vali-
dation performance. In all our contrastive learning
and multi-task learning experiments, we use an ini-
tial learning rate of 4e-5, and use a linear decay
learning rate schedule with warm up. We train on
4 RTX 2080 GPUs with a total batch size of 256.

Transfer Learning using ViLBERT: In addi-
tion to the contrastive learning and MTL based
adaptation results presented in Section 4 of main
paper, we also explore transfer learning (TL) based
models. Specifically, we first pre-train ViLBERT
on auxiliary tasks, in contrast to joint training in
MTL, and then fine-tune it on VQA train split.
As shown in Table 11, we did not find any sig-
nificant improvement in model’s performance on
CrossVQA.

G More Details on CrossVQA

In addition to the statistics presented in the Sec-
tion 4 of the main paper, we present additional
details of our CrossVQA splits. Figure 12a and
Figure 12b show a word cloud plot for the majority

https://github.com/jiasenlu/vilbert_beta
https://github.com/jiasenlu/vilbert_beta
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Model vqa2,vqa2 vqa2,vzwz vzwz,vqa2 oid,vqa2
VB 62.5 57.8 26.6 44.8

VB+TL(GQA) 59.3 57.9 26.0 42.1
VB+TL(REF) 58.4 54.2 24.1 40.2
VB+TL(VCR) 59.7 56.3 25.0 41.4

Table 11: Adaptation Results on CrossVQA with Transfer Learning

Figure 11: Question length distribution for all the six
CrossVQA splits.

questions and answers across all the six splits. A
variety of objects and answers can be seen in the
plots, suggesting that our splits are diverse. More-
over, the relative frequency of the most frequent
spatial relationships across all the six splits in Fig-
ure 13 show that CrossVQA comprises of rich and
diverse spatial relationships. Figure 11 shows ques-
tion length distribution of all the six splits. As we
expected, we find that splits with VizWiz style ques-
tions, i.e. 〈Ivqa2, QAvzwz〉, 〈Ivzwz, QAvzwz〉, and
〈Ioid, QAvzwz〉 contain more words in the question
on average than other splits in CrossVQA.
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11/22/2020 wordcloud

https://www.wordclouds.com 1/2

(a)

11/22/2020 wordcloud

https://www.wordclouds.com 1/2

(b)

Figure 12: Wordcloud for (a) questions and (b) answers across all the CrossVQA splits.

Figure 13: Relative frequency of the most frequent spatial relationships in CrossVQA.


