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Abstract
Broader disclosive transparency—truth and
clarity in communication regarding the func-
tion of AI systems—is widely considered de-
sirable. Unfortunately, it is a nebulous con-
cept, difficult to both define and quantify. This
is problematic, as previous work has demon-
strated possible trade-offs and negative conse-
quences to disclosive transparency, such as a
confusion effect, where “too much informa-
tion” clouds a reader’s understanding of what
a system description means. Disclosive trans-
parency’s subjective nature has rendered deep
study into these problems and their remedies
difficult. To improve this state of affairs, We
introduce neural language model-based prob-
abilistic metrics to directly model disclosive
transparency, and demonstrate that they cor-
relate with user and expert opinions of sys-
tem transparency, making them a valid objec-
tive proxy. Finally, we demonstrate the use of
these metrics in a pilot study quantifying the
relationships between transparency, confusion,
and user perceptions in a corpus of real NLP
system descriptions.

1 Introduction

Among the draft Ethics Guidelines for Trustworthy
AI released by the European Union in 2019 were
calls for greater transparency around deployed sys-
tems using artificial intelligence, advising that an
“AI system’s capabilities and limitations should be
communicated to practitioners or end-users in a
manner appropriate to the use case at hand.” (High-
Level Expert Group on AI, 2019) This is a high-
profile example of the vagueness endemic to guid-
ance on ethical disclosure and AI—what consti-
tutes an appropriate manner of communication?

There is a growing awareness of the importance
of communicating AI system function and perfor-
mance clearly and understandably. This is both
a matter of public interest, for mitigating harms
caused by, for example, racial biases in the perfor-
mance of human classifiers (Raji and Buolamwini,

2019), but also in the interest of system providers,
as users who feel like they do not understand how
machine learning models work and what kind of
information they rely on tend to be more resistant
to using them (Poursabzi-Sangdeh et al., 2021).

However, while fairness (Dwork et al., 2018;
Harrison et al., 2020) and privacy as general prin-
ciples (Ji et al., 2014; Papernot et al., 2016) have
been well-studied in the context of AI, transparency
does not receive as much attention. The term
transparency is overloaded (Lipton and Steinhardt,
2019), with many different definitions in the lit-
erature (Felzmann et al., 2019). It has a broad
meaning in the public consciousness, from which
some studies adopt a “you’ll know it when you see
it” definition (Doshi-Velez and Kim, 2017). As op-
posed to the notions of transparency as explainabil-
ity (Veale et al., 2018) and as invisibility (Hamilton
et al., 2014), transparency as disclosure (Suzor
et al., 2019), the extent to which the producers of
an AI system or service provide detailed messag-
ing about a system to stakeholders such as buyers,
users, or the general public. This third sense, dis-
closive transparency, is particularly subjective.

Pieters (2011) identifies a confusion dynamic
where providing “too much information” about
a decision system worsens user understanding
and trust. This dynamic could have serious
ramifications—if disclosive transparency really de-
creases user trust, stakeholders are further incen-
tivized to not disclose. Unfortunately, studies on
this relationship are small-scale and subjective.
This is why measurable, repeatable, and objec-
tive measures of disclosive transparency are sorely
needed. In this work, we decompose disclosive
transparency into two components: replicability
and style-appropriateness, develop three objec-
tive neural language model measures of them,
and apply them in a pilot study of real systems.1

1All code, data, and annotations are available online at
github.com/michaelsaxon/disclosive-transparency.
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2 Decomposing Disclosive Transparency

Our goal is to develop an objective measure of dis-
closive transparency that is repeatable, explainable,
intuitive, and well-correlated with subjective opin-
ions. However, at face value there is not an obvious
way to assign a numerical value to the “level of
transparency” in a description. To resolve some
vagueness, we decompose disclosive transparency
into two components: the replicability, or degree
to which the requisite content to reproduce the sys-
tem being described is present in a description, and
the style-appropriateness, or the degree to which
it is written in a manner understandable to a mem-
ber of the general public. These components are
more specific than “transparency” alone, but still
quite subjective.

A key insight underpins the possibility of devel-
oping objective measures of replicability and style-
appropriateness: disclosure is a communication
task. In describing a system, an explainer, typically
an authority providing an AI service to the public,
attempts to encode information about the design
and function of their system in a summary. We
find the communication-based definition of mean-
ing provided in Bender and Koller (2020) useful
for motivation. In their framework, the meaning, m
of an utterance is a pair (e, i) of the surface form e
(such as text or speech audio) and communicative
intent, i which is external to language. In the case
of disclosive transparency, this i is the particulars
of the system being described. Any assessment of
the disclosive transparency of a description e is fun-
damentally an assessment of its underlying i—the
degree to which i contains the information neces-
sary to reconstruct the system being described.

Furthermore, some short descriptions come
paired with longer ones. Anyone who has clicked
“I Agree” without reading a terms of service, but
has taken the time to look over a short, to-the-
point statement on how data is used, knows that
the lengthy legalese-laden descriptions that truly
define systems we interact with can be sufficiently
summarized succinctly. However, the succinct sum-
marization is intended to carry the detailed meaning
of the actual contract a user is agreeing to. In other
words, for the short description e′ of an agreement,
there exists a ‘source’ document e that is much
more detailed, which share a common i. An ana-
logue in system descriptions is what enables our
metrics.
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Figure 1: A diagram of our proposed method for ex-
tracting the style-appropriateness and replicability ob-
jective features to characterize disclosive transparency.

3 Objective Transparency Metrics

We now move to developing usable metrics
that quantify both the replicability and style-
appropriateness of real system descriptions. The
system demonstration tracks at academic AI con-
ferences represent a good source of real-world sys-
tem descriptions. Ideally, the purpose of a system
demonstration paper at an academic AI venue is to
provide a sufficiently detailed system description
such that a peer could (given sufficient resources
and data) replicate it. Each of these lengthy docu-
ments, ei, is accompanied by an abstract, e′i which
briefly describes the system. Although these ab-
stracts are not intended for consumption by the
general public, they do succinctly describe imple-
mented systems, some of which are intended to (at
least hypothetically) be used by the public. Com-
bined with the fact that these paper/abstract pairs
are freely available online, these are an appeal-
ing subject of study for modeling disclosive trans-
parency. Details on our pilot study using demo
track NLP papers is provided in section 4.

Figure 1 provides a high-level depiction of our
objective disclosive transparency metrics, the style-
appropriateness ‘clarity’ metric C(e), and the repli-
cability metrics of ‘sentence affinity’ RA(e′,e) and
simulated ‘information recovery ratio’ RR(e′,e).
We assess these features using language model
scores derived from GPT-2 (Radford et al., 2019)
and BERT (Devlin et al., 2019).

For fine-tuning data on academic language in AI
and CS, we produce a training dataset by crawl-
ing a random sample of 100k LATEX files from the
arXiv preprint repository with topic label cs.* from
2007-2020. Additionally, we further collect all 30k
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crawlable LATEX files from the cs.CL label from
2017-2020, to adequately sample recent research
in natural language processing and computational
linguistics. From these raw .tex files we produce
task-specific plaintext training corpora as described
in Appendix C. We then fine-tune the GPT-2 regu-
lar pretrained model from Huggingface (Wolf et al.,
2020) on the corpora as explained below. We man-
ually exclude all papers used in our downstream
case study from pretraining.

3.1 Modeling Replicability

When discussing system descriptions, replicabil-
ity typically refers to the ability of a third party to
implement a functionally equivalent replacement
system from a description. Rather than automate
replication itself, we use the process of recover-
ing the full text of the system description from the
abstract as a proxy for replicability.

As we established previously, a reasonable as-
sumption for the communicative goal i of an author
of an academic paper e describing a system is to
transmit the information necessary to reconstruct it.
Obviously, it is not generally possible to perfectly
recover i from e′ or academic papers beyond the
abstract would be generally superfluous.

The problem of generalized inversion of com-
municative intent i from form e is yet unsolved
(Yogatama et al., 2019). So, we treat recovery of e
from a short summary e′ as a proxy for recovering
i, reconstructing the system. In other words, the
replicability of an abstract e′ can be modeled as
the amount of information contained in the full
article text e than can be recovered from e′. We
propose two metrics to simulate this process using
the document e and abstract e′; trigram information
recovery and sentence affinity.

3.1.1 Trigram recovery
We directly attempt the recovery of e from e′ using
a generative language model (in this case, GPT-
2 (Radford et al., 2019)) fine-tuned on a full-text
recovery task, where for each abstract the replica-
bility score is the rate of trigram information in e
recovered by the model-generated text.

The model generates predicted sentences eg from
the full paper conditioned on an abstract. Given
promising results on quantifying semantic com-
plexity using simple measures such as n-gram en-
tropy (McKenna et al., 2020), we use a trigram self-
information content metric to measure the amount
of information content in e′ that is recovered in eg.

Using the training dataset global trigram dis-
tribution, we take the ratio of the trigram self-
information of all trigrams present in eg that were
recovered from e against the total trigram self-
information of e. This gives us a ratio of recovered
form information R as defined in Equation 1:

RR(e,eg) =
∑t∈eg∩e log(p(t))

∑t∈e log(p(t))
(1)

3.1.2 Sentence affinity
Using the aforementioned trigram recovery metric
to model replicability has risks. The distribution of
source papers could be too specific, and not con-
tain requisite information, or the generated output
might be too noisy to meaningfully simulate the
process of inverting system from abstract. Thus,
we present an alternative approach here.

Zhang et al. (2020) presented a method for
evaluating the similarity of sentence pairs called
BERTscore, which is computed by averaging a
greedy match of the cosine similarities of the BERT
(Devlin et al., 2019) token embeddings b(t) for
each token in a pair of sentences:

PBERT(s1,s2) =
1
∣s1∣
∑

ti∈s1

(max
t j∈s2
(b(ti)T b(t j)) (2)

We propose extending this to match a sentence
over a set of sentences in a document to produce a
document-level affinity score,

RA(e1,e2) =
1
∣e1∣
∑

s1∈e1

max
s2∈e2
(PBERT(s1,s2)) (3)

This metric has advantages over trigram recov-
ery in that it doesn’t rely on training a generative
language model, and is more readily interpretable,
as Figure 2 demonstrates.

3.2 Modeling Style-appropriateness

Orthogonal to the question of whether an abstract
contains the necessary information to perform a
replication is the question of who would be capa-
ble of performing the replication. This question
is important for assessing the appropriateness of
a description to layperson audiences. We simu-
late this with a pair of language models tuned to
two styles of writing—one general interest, one
scientific—to make a perceptual model of “aca-
demic style,” as a layperson would probably require
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Abstract: 
1: We present Tabouid, a word-guessing game 
automatically generated from Wikipedia. 
2: Tabouid contains 10,000 (virtual) cards in 
English, and as many in French, covering not 
only words and linguistic expressions but also a 
variety of topics including artists, historical 
events or scientific concepts. 
3: Each card corresponds to a Wikipedia article, 
and conversely and conversely, any article …

BERTScore

Best candidate 
abstract sentence

Article Sentence 17: This automated process means that Tabouid can benefit from a wealth of 10,000 cards in English, and as many in French, 
covering not only words and linguistic expressions but also a variety of topics including artists, historical events or scientific concepts.

Figure 2: A demonstration of how our sentence affinity curve simulates the replicability of the abstract based
on the degree to which it “covers” the content of the full article. For each line in the source document, the
maximum pairwise BERTscore between it and the sentences in the short system description is measured. The
affinity-replicability score of the article is the paper length-normalized area under this curve.

many more textbook lookups to understand an aca-
demic paper or detailed terms of service than they
would reading a Wikipedia article. This approach is
analogous to a popular the use of perceptual likeli-
hood ratios in speech processing, which have been
shown to correlate well with subjective perceptual
opinions (Saxon et al., 2020).

For each passage we extract a likelihood ratio
between two language models, one a GPT-2 model
fine-tuned on the 100k file arXiv corpus, the other
the vanilla GPT-2 model that is pretrained on a
large, diverse corpus of online English text. Given
the system demo abstract e, we compute the style-
appropriateness C as a log-likelihood ratio that it
belongs to this academia-specific distribution A or
a general public distribution V as follows:

C(e) = −
∣{t∣t∈e}∣
∑

j=1
log(

p(t j∣A,t j−1...t1)
p(t j∣V,t j−1...t1)

) (4)

4 Pilot Studies

To analyze how well our objective measures track
with subjective notions of transparency, and to
demonstrate how they might be used to investigate
how transparency affects prospective user opinions
in the real world, we perform two pilot studies uti-
lizing our metrics and a corpus of real-world AI
system descriptions.

4.1 *ACL System Demo Corpus
We extract system demonstration abstracts from
EMNLP 2017–2020, ACL 2018–2020, and
NAACL 2018 and 2019, retrieving a corpus of 268
abstracts describing a variety of demonstrations,
including systems intended for use by the general
public (e.g., translation systems, newsreaders) as

well as demonstrations that are of interest more
narrowly to the NLP community, software devel-
opers, or academics at large (e.g., toolkits, pack-
ages, or benchmarks). As we are interested in sys-
tem descriptions for non-experts, we restrict our
analysis to abstracts which describe systems in-
tended for use by laypeople. This set contains
55 abstracts, describing diverse systems from au-
tomated language learning games, to news aggre-
gators, to specialized search engines for medical
topics.

We first collect expert opinions on how the ab-
stracts conform to the aforementioned dimensions
of transparency to analyze the quality of our au-
tomated metrics. Then, we collect salient layper-
son opinions of trust, understanding, and fairness
to demonstrate a pilot study of how transparency
drives user attitudes.

4.2 Connecting Objective with Subjective

Our first pilot study seeks to determine the extent
to which our objective measures faithfully model
experts’ subjective notions of transparency. To do
this we must first pose a set of precise questions
for subjectively assessing disclosive transparency.
We identify three largely disjoint dimensions of dis-
closive transparency that each follow directly from
a key question an implementer might ask when
initially trying to understand a description:

Task Transp.: What task does this system solve?

Function Transp.: What components does this
system contain, and how do they work?

Data Transp.: What are the inputs and outputs
of this system? What kind of data collection and
storage is required to train and operate it?
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Transparency Variance PCC p
Task 0.428 0.508 0.001
Function 0.506 0.319 0.085
Data 0.488 0.368 0.016

Table 1: Inter-rater reliability assessed using vari-
ance, average pairwise Pearson’s correlation coefficient
(PCC) and p-value for subjective transparency scores.

Each of these questions concerns some kind of
information contained in i. They can be posed as
survey questions by appending “to what extent does
the description explain...” to the start.

We consider task transparency interesting be-
cause members of the general public are often
learning of new system application areas in which
emerging technologies such as NLP can be applied,
and without communicating the parameters of the
task a system is solving clearly, users cannot un-
derstand it. Function transparency is perhaps the
most natural dimension, as discussing the “how”
of a system is fundamental to explaining how it
works. Finally, we consider data transparency be-
cause many public discussions of AI ethics center
on the use and misuse of data, and it is a central
focus of regulatory discussions of AI.

4.2.1 Collecting the Subjective Ratings
Four NLP Ph.D. students provided five-point Lik-
ert opinion scores of the task, function, and data
transparency levels for each abstract in the *ACL
Corpus. To ensure consistency across the raters we
analyzed average abstract-wise variance, as well as
the average pairwise inter-rater Pearson correlation
coefficient (PCC) and p-value for each of the three
transparency categories. Table 1 demonstrates the
high inter-rater reliability of the scores, with each
average variance < 0.55 on the 5-point scale.

Each abstract in the dataset is assigned subjec-
tive task, function, and data transparency scores by
averaging the four opinion ratings.

4.3 Pilot Study of User Attitudes

In this section we briefly outline how we assess
user opinions regarding the system descriptions.

Starting from the aforementioned dimensions of
transparency—task, function, and data—we find
three sets of user concerns orthogonal to these di-
mensions. These are “understanding,” “fairness,”
and “trust.” Together these form “user response
variables” such as task understanding, function fair-
ness, or data trust, which can be posed as questions
about what the user believes or understands.

To measure how user attitudes and confusion
correlate with description transparency, we simu-
late a user survey study using Amazon Mechanical
Turk (AMT). Each abstract was shown to 10 crowd
workers selected from a set of majority English-
speaking locales (US, CA, AU, NZ, IE, UK), who
were instructed to read the abstract and answer
two sets of multiple-choice questions. The first
set, opinion prompts, consists of five-point Likert
scale subjective attitude questions; the second set,
of retention questions, reveals how well the users
can recall phrases from the abstract they just read.
See Appendix B for survey methodology details.

5 Results

To study the correlations both between pairs of
subjective variables and between our objective met-
rics and the subjective responses, we use Pearson’s
correlation coefficient (PCC).

In subsection 5.1 we study how the objective
transparency metrics connect to expert opinion rat-
ings along the three dimensions of transparency
identified in subsection 4.2. These are the results
from the first pilot study, testing if our objective
metrics capture the subjective notions of disclosive
transparency as understood by experts.

In subsection 5.2 we present the results from the
second pilot study, and analyze relationships that
appear between our objective transparency metrics,
the subjective transparency ratings, and user opin-
ion responses. In particular, we seek to determine
if our objective measures can be used as suitable
proxy for the subjective expert opinions in model-
ing user responses to transparency.

In this section we have scatter plots containing
several overlapping (x,y) coordinates. We opt to
represent these points where multiple identical sam-
ples are present by varying both marker color and
size to convey the relative quantities of repeats.

5.1 Objective vs Subjective Transparency

Table 2 shows the Pearson’s correlations and p-
values for the objective style-appropriateness and
replicability transparency metrics and the subjec-
tive expert transparency ratings, and between the
objective metrics themselves.

The style-appropriateness (S-A) metric clearly
captures information about task transparency, ex-
hibiting a positive statistically significant correla-
tion. However, the S-A metric exhibits no signifi-
cant trends with data or function transparency.
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(b) PCC = 0.276
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(c) PCC = 0.279

Figure 3: The trigram recovery and sentence-affinity rate replicability metrics behave very similarly on model-
ing expert function transparency opinions. Data transparency opinions are also captured by both metrics with
statistically significant correlations.

Objective Metric Subj. Variable PCC p
S-A Task Transp. 0.366 0.006
S-A Function Transp. -0.061 0.656
S-A Data Transp. -0.030 0.827
Replicability (TR) Task Transp. 0.150 0.275
Replicability (TR) Function Transp. 0.309 0.022
Replicability (TR) Data Transp. 0.279 0.039
Replicability (AR) Task Transp. 0.245 0.071
Replicability (AR) Function Transp. 0.276 0.042
Replicability (AR) Data Transp. -0.200 0.143
Replicability (TR) S-A 0.200 0.142
Replicability (AR) S-A -0.331 0.014

Table 2: Pairwise analysis of objective style-
appropriateness and replicability and expert subjective
transparency scores.

On the other hand, the replicability metric does
exhibit statistically significant relationships with
clear positive correlations to both function and data
transparency, for trigram recovery, and with Func-
tion transparency alone for sentence affinity rate;
neither exhibit statistically significant relationships
with task transparency. Finally, the replicability
and S-A metrics do not exhibit a significant corre-
lation with each other.

Taken together, these results suggest that the
replicability and S-A metrics capture subjective
notions of transparency. Furthermore, they cap-
ture complementary elements of transparency, ex-
hibiting no significant correlation to each other,
while significantly explaining variance in different
dimensions of subjective transparency.

Figure 3 shows how our replicability trigram
information recovery score is positively correlated
with both expert function and data transparency
ratings, however, this relationship is less strong
with task transparency. Meanwhile, the S-A log-
likelihood ratio score captures user opinions of
both function and task understanding, but is not
predictive of retention score (Figure 5).

Affinity Score: High
Best Match Sentence: “… we apply a
pairwise-based [ML] tool, Support Vector
Machine for Ranking (SVMrank) to
estimate the complexity of the example
sentences using Japanese-Chinese
homographs as an important feature”

Affinity Score:
Best Match Sentence: “We
hypothesize that the longer-term
impact of the app will be to help
users become better, more confident
readers with an increased stamina
for extended reading.”

Figure 4: Demonstrating interpretability of the
BERTscore affinity replicability metric.

While the relationship between replicability and
function transparency was expected, the connection
between S-A and task transparency was surprising
at first. We think this is driven by a tendency for
more detailed, transparent descriptions of a given
task to more heavily utilize common language and
analogies—after all, tasks such as translation, news-
reading, and language learning all exist in the real
world as topics of everyday discussion.

Figure 4 shows the sentence affinity rate curves
for two abstracts in the *ACL Demo Corpus. This
demonstrates the interpretability of the affinity rate
replicability score—the top curve has several peaks
of particularly high BERTscore, which match to
specific, technical sentences in the abstract pro-
viding concrete detail on how the system works.
Meanwhile, the bottom curve has few high-scoring
peaks, the highest of which match to one of the
vague sentences in the source abstract. In other
words, descriptions with more specific technical
detail in the abstract score higher on our objec-
tive transparency measures, as desired.
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Abstract Rating Response Variable PCC p
Task Transp. Function Underst. 0.400 0.003
Task Transp. Task Underst. 0.487 0.000
Task Transp. Task Trust 0.327 0.015
Func. Transp. Function Fairness 0.176 0.199
Funct. Transp. Task Fairness -0.236 0.083
Data Transp. Function Underst. 0.292 0.030

Table 3: Pairwise correlations between abstract-
averaged subjective transparency scores and user re-
sponse variables.

5.2 Transparency and Response Variables

To relate the abstract-level objective and subjective
transparency ratings to the response variables, we
assess pairwise PCC between pairs of (transparency
label, response variable) across the 55 abstracts.
Table 3 contains a sample of pairwise correlation
analyses of expert subjective transparency opinions
and the user response variables.

Of the statistically significant correlations be-
tween subjective scores we observe, the positive re-
lationship between expert-rated average task trans-
parency and average user self-reported task un-
derstanding is the strongest. Similarly, there is
a strong, statistically significant positive correla-
tion between task transparency and self-reported
function understanding. However, we were sur-
prised to find that our expert-rated average func-
tion transparency does not exhibit a statistically
significant correlation with either of the aforemen-
tioned understanding variables. Figure 6 depicts
the positive correlations of these two response vari-
ables with task transparency.

In other words, users believe they understand
not only the task, but the function of the system be-
ing described better, the more well-motivated and
transparent the discussion of the task is. However,
transparency in describing the function of the sys-
tem will not lead to users to think they understand
either aspect better. This result was surprising.

As function transparency captures “how the sys-
tem works,” while task transparency is concerned
with “what the system does,” it is probably the case
that understanding the task is a necessary prereq-
uisite for understanding the system function. This
could explain the connection between task trans-
parency and user function understanding. However,
this connection is illusory: for example, a detailed
description of the problem of translating French to
Arabic contains no information about the attention
mechanisms used by the underlying transformer.

Objective Metric Response Var. PCC p
S-A Func. Underst. 0.347 0.009
S-A Task Underst. 0.383 0.004
Replicability (TR) Func. Fairness 0.285 0.035
Replicability (TR) Task Fairness -0.351 0.009
Replicability (AR) Task Fairness -0.258 0.0573
Replicability (TR) Data Trust 0.242 0.075
Replicability (TR) Task Trust 0.286 0.034

Table 4: Pairwise correlations objective transparency
metrics and user response variables.

6 Related Work

Most previous work on explainability and intelligi-
bility in transparency focuses on “explanations that
are contrastive and sequential rather than purely
subjective” (Miller, 2019). Furthermore, prior stud-
ies regarding transparency have tended to focus on
transparency in post-facto user judgments of auto-
mated systems following their use. For example,
Kizilcec (2016) and Wang et al. (2020) both studied
how system users viewed the fairness of a system
that judged them. In both studies, the authors found
that while transparency affects perceived fairness,
the strongest predictor of perceived fairness was
final outcome favorability.

Work in explainable AI (XAI) intersects with
disclosive transparency when asking what kinds
of explanations are preferred by users. Several
studies have directly asked users of experimental
XAI systems to respond to (Bhatt et al., 2019; Kaur
et al., 2020; Hong et al., 2020) the quality and ef-
fects of the explanations. Judging how well system
function descriptions are motivated by explainable
outputs is thus a promising direction.

Many solutions intended to remedy ethical con-
cerns of machine learning include a disclosive com-
ponent. Lim et al. (2009) studied how novice end-
users can understand the function in context of
intelligible systems. Similarly to us, they derive
explanations from fundamental questions of “what,”
“why,” and “how” that resolve the gulf of evaluation
and gulf of execution in the user, as put forward by
(Norman, 1988).

While we are primarily concerned with disclo-
sure to laypeople, disclosure between practitioners
has been a key thrust of work in recent years. Dis-
closing potential deficiencies, biases, failure points,
and intended use cases for datasets (Holland et al.,
2018; Bender and Friedman, 2018; Gebru et al.,
2018), pretrained models (Mitchell et al., 2019),
and full systems (Arnold et al., 2019) is crucial in
ensuring the ethical construction and deployment
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Figure 5: The style-appropriateness log-likelihood ratio clearly captures user opinions of function and task under-
standing, while not capturing their real trends in retention.
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Figure 6: Task transparency drives a statistically significant positive trend in (a) average user function understand-
ing and (b) average user goal understanding, but neither (c) function nor goal understanding has a trend against
function transparency.

of systems that utilize machine learning while min-
imizing the risk of potential harms. All of these
proposals focus heavily on outlining best practices
to ensure that various sources of bias are accounted
for and made available to system builders and deci-
sion makers before harms are perpetuated.

Lipton (2018) introduced simulatability, the ca-
pacity for a user to comprehend all constituent op-
erations of a model by manually performing them,
as fundamental to transparency. This relies on a
notion of decomposability (Lou et al., 2012). Intel-
ligibility is both an end in itself and a useful tool
for ensuring buy-in from stakeholders such as users
(Muir, 1994) and management (Veale et al., 2018).
Knowles (2017) deal with designing systems that
use intelligibility to convey evidence of trustwor-
thiness under uncertain scenario, and frame intelli-
gibility as the degree to which the system’s under-
lying logic can be conveyed to users.

7 Conclusions

Our replication-based framework allows us to
tackle the problem of characterizing disclosive
transparency in NLP system descriptions. We
developed style-appropriateness and replicability

metrics using neural language models, which cap-
ture multiple subjective dimensions of transparency.
We ran a pilot study characterizing layperson re-
sponses to varying levels of transparency in sys-
tem descriptions, demonstrating the value of the
conceptual framework and the concrete tools pro-
posed. We release all code, data, and annotations
online at https://github.com/michaelsaxon/

disclosive-transparency/.
Three natural directions for future work follow

these results. The automated transparency metrics
can remove the costly expert annotator constraint,
enabling scaled up transparency-user opinion re-
lationship studies. More sophisticated conditional
abstract-to-full text inversion models can be di-
rectly swapped in with the replicability metric to
produce better automated transparency scores. Fi-
nally, the metrics can be used to guide NLG pro-
cesses, perhaps to enable transparency-constrained
abstractive summarization or style transfer.
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9 Ethical Considerations

Table 4 demonstrates that increased replicability
scores are associated with decreasing opinions of
the ethics of the underlying task (increasing dis-
agreement with the statement “I believe this system
is made to solve an ethical task”) but increasing
opinions of function fairness (increasing disagree-
ment with “I am concerned about the fairness of
this system”). This was a surprising result that we
are interested in attempting to replicate on larger
corpora. With this relatively small sample size, it
is hard to interpret why these conflicting trends in
ethical opinions might arise.

This negative relationship between replicability
and task ethics could be an artifact of the data used
to train the abstract-to-full text inversion model
underpinning the replicability metric. It might be
the case that there is higher public awareness and
controversy toward ML tasks that are more well-
represented in the arXiv inversion dataset. How-
ever, this result might also represent a genuine ethi-
cal quandary for further research in transparency.

Much of Section 1 focused on making the
case for why measuring transparency is important.
However, if it really is the case that increased mea-
surable disclosive transparency drives decreasing
trust in system ethics, it’s conceivable that system
providers or governments could become less in-
clined to disclose. We would consider this a neg-
ative outcome. However our results so far do not
overwhelmingly suggest this relationship exists.

Another potential limitation of this study is that
layperson end-users are not the target audience of
these NLP conference abstracts. The decision to
use academic writings as stimuli was driven by the
availability of (short description, long description)
pairs consisting of the abstracts and their corre-
sponding full texts. However, we believe the short
description/long document pairing is applicable to
a number of fields, including terms of service as dis-
cussed in Section 2, and to other types of systems
described in non-academic, but still technical text,
such as patent disclosures and instruction manuals.

Finally, as attitudes toward privacy, fairness, and
ethics can be culturally variable, we note that our

survey results were sourced from crowd workers in
majority-English speaking countries and may not
be broadly representative.
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A The Replication Room

Many insights that drove the aforementioned met-
rics sprang from a thought experiment inspired by
Searle (1980) called a “replication room.”

Imagine a room in which a person sits with
access to a hypothetically comprehensive set of

domain-specific and general resources on machine
learning (ML), natural language processing (NLP),
software engineering, programming languages,
which collectively enable them to look up any ap-
plicable term of art or find instructions on imple-
menting any standard component or system. In this
replication room, this implementer receives system
descriptions e from which they are tasked with pro-
ducing a functionally analogous reproduction of
the system i being described.

Under this scenario, clearly no system descrip-
tion can be less transparent than a blank piece or
paper or completely unrelated text. In any of these
edge scenarios, the description provides no clues
about the system the implementer is intended to
reproduce, and their chance of success is nothing
but the prior over all possible implementable sys-
tems. Thus, in a channel communication sense no
information is conveyed.

On the other hand, a system description from
which every detail is accounted for would repre-
sent a maximum transparency scenario. A com-
plete printout of all elements of the source code
and all setup/training steps, or a detailed tutorial,
or even the full text of an academic system de-
scription paper could be sufficient for a successful
reproduction. In these cases, no further information
content would increase the level of transparency, as
all information needed is included.

We dub the degree to which a system description
contains the necessary information to perform a
replication its replicability. Replicability as a no-
tion of transparency is incomplete, however, as it
makes no assumptions about the degree to which
the supporting materials might be used, or the kind
of person who is performing the replication.

Another component is the style-appropriateness
of the description. In short, the style of language
in the description, the overall quality of writing
and ease of reading, the level of reliance on unex-
plained technical jargon, and various other factors
all impact the degree to which a layperson would
require use of the assistive materials, or the level
of expertise that would be required for a replica-
tion to be successfully carried out without using
the assistive materials. More precisely, the style-
appropriateness of the description is tied to the
degree to which domain knowledge about the AI
problem area is necessary to reconstruct i from
the conventional meaning s in Bender and Koller
(2020)’s framework.
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B Details from Crowd Worker Survey

Each crowd worker was shown a survey containing
a system description abstract with instructions to
provide their level of agreement on a five-point Lik-
ert opinion scale (strongly disagree, disagree, neu-
tral, agree, strongly agree) to a set of six prompts in-
tended to assess their level of “task understanding,”
“task fairness,” “function understanding,” “function
fairness,” “function trust,” and “data trust.” The
prompts provided for each opinion value are pro-
vided in Table 5. After the users completed the six
opinion questions they were instructed to press a
button to hide the abstract, after which the retention
questions were revealed. Each subject was com-
pensated with $0.10 USD per survey, and subjects
averaged a Human Intelligence Task (HIT) com-
petition time of 35 seconds. This translates to an
average hourly compensation of $10.29 per hour.

B.1 Opinion Prompts

Opinion Value Prompt
Task Understanding I understand what this system

is meant to do.
Task Fairness I believe this system is made to

solve an ethical task.
Function Understanding I understand how this system

works.
Function Fairness I am concerned about the fair-

ness of this system.
Function Trust I think this system can accu-

rately perform its task.
Data Trust I think this system will protect

my privacy and data.

Table 5: The prompts provided to assess the six user
opinion values. Crowd workers provide five-point scale
agreement opinions to each statement.

All of the above opinion prompts—except
for function fairness—produce outputs where
“strongly agree” corresponds to a positive position,
such as confidence in one’s own understanding or
in the performance of the system. Thus, we regu-
larize the reverse the polarity of the function fair-
ness scores by reversing the order of numerical
assignment to responses, assigning 5 to “strongly
disagree” with being concerned about fairness, 4
to “disagree,” etc.

While we are only interested in subjective user
opinions about trust and fairness, for understanding
we seek to analyze the “truth,” as users might be
overconfident in their pure opinions. To do this we
must develop some feasible objective measure—for
this study we use retention as a proxy for under-
standing.

Response Variable Avg. Abstract-wise Variance
Func. Undst. 1.17
Task Undst. 0.700
Func. Fair. 1.25
Task Fairness 1.22
Data Trust 0.73
Task Trust 0.71

Table 6: User agreement for the user responses using
assessed average per-abstract response variance for the
subjective metrics.

B.2 Retention Evaluation

Out of a desire for some objective assessment of
user confusion, we additionally ask participants to
recall whether a set of phrases did or did not appear
in the abstract they just read. The simple metric
of retention accuracy reveals both how carefully
a participant read the abstract and how much they
maintained it in their memory—while these ques-
tions fail to directly capture user understanding in
the way that a conceptual quiz would, they can
be generated automatically and consistently across
topic areas.

After completing the opinion question section of
the survey, crowd workers are instructed to press a
“Hide Passage” button. Once the button is pressed,
the system description abstract is greyed out, and a
set of five retention questions is revealed. Each ab-
stract has its own set of retention questions, which
are randomly generated prior by sampling sen-
tences either from the abstract or from the other
abstracts in the dataset.

C Supplementary Analysis of User
Responses

C.1 User Opinion Agreement

Although the opinion scores are subjective, and
we don’t necessarily expect agreement, some mea-
sure of agreement in opinions between users on
abstracts is desirable to further support the validity
of our abstract-wise correlation analysis. We are
unable to use PCC as a measure of inter-rater relia-
bility here because no two abstracts were rated by
the same 10 crowd workers. Thus, we are restricted
to analyzing the average within-abstract variance
of each response variable. Table 6 contains the av-
erage abstract-wise variance for each of the opinion
response variables.

C.2 Task Domain as a Confounder

For each abstract we collect topical keywords to
handle the potential confound of differing user
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Figure 7: Distribution of topical keywords possessed
by at least five abstracts.

Response Keyword 1 Keyword 2 t p
Func. Fair. News LangLearn -3.268 0.005
Func. Fair. Science LangLearn -2.231 0.043
Task Fair. News Search 2.338 0.029
Task Fair. News Writing 2.472 0.032
Data Trust News Science -2.307 0.035
Data Trust Science Search 2.807 0.011
Task Trust Science Writing 2.368 0.037

Table 7: Pairwise Student’s t-test statistics for keyword
domain classes of abstracts.

opinions by problem domain, to enable analysis
for whether the broad problem area a system is in-
tended to solve (e.g., newsreaders, language learn-
ing apps, translation tools) is a confounder driving
positive or negative user attitudes. Figure 7 depicts
the top keywords in our dataset.

Because we are evaluating user attitudes toward
a diverse set of systems in distinct task domains,
differences in popular perceptions toward the var-
ious tasks might bias user opinions. To ascertain
if this is the case, we perform pairwise Student’s
t significance tests across all pairs of keywords
present in 5 or more different abstracts, on each of
the subjective response variables. Table 7 contains
the pairs of keywords that have statistically signifi-
cant differences between their distributions and the
response variables along which these differences
occur.

Of these, the most significant difference was be-
tween news and language learning abstracts on
function fairness. Figure 8 depicts the distributions
of the two sets on function fairness. It shows that
the users tend to believe systems developed to aid
in language learning are less prone to unfair bias
than news reading, summarization, and synthesis
applications. This difference could be driven by
genuine differences in attitudes toward the compo-
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Figure 8: Separation of mean function fairness opin-
ion distributions between news- and language learning-
related abstracts, (t = −3.3, p = 0.005).

nents, subtasks, and processes used to build these
systems, but there’s a chance it is driven by societal
attitudes toward learning and news instead.

Unfortunately, these pairwise keyword attitude
difference tests are severely limited by small sam-
ple sizes. It is likely that more interesting analysis
could be performed on a larger dataset.

D arXiv Dataset Preparation

After sampling .tex files from the aforementioned
ranges, they were converted into training data ac-
cording to the following procedure:
1. If the manuscript is stored across multiple .tex

files, collate them into a single one by replacing
all \input and \insert commands with their cor-
responding file text.
2. Split the resulting file using the \begin{} and
\end{} tags for abstract and document.
3. Using the pylatexenc python package2 use the
latex_to_text() command to convert the abstract
and document latex code into unicode.
4. Remove all redundant whitespace, tabs, and new
line characters, and convert all resultant text to
lower case.

E Regarding use of PCC

We use PCC rather than rank-correlation coeffi-
cients such as Spearman’s because we are inter-
ested in evaluating whether our metrics can implic-
itly capture relative deltas opinions in order to be a
useful proxy for the opinions themselves in future
work.

2https://pylatexenc.readthedocs.io/en/

https://pylatexenc.readthedocs.io/en/
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Opinion Questions

Please provide your agreement with the following questions on a five-point scale from “I
strongly agree” to “I strongly disagree.”

I understand what this system is meant to do.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

I understand how this system works.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

I think this system can accurately perform its task.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

I think this system will protect my privacy and data.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

I am concerned about the fairness of this system.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

I believe this system is made to solve an ethical task.
◯ Strongly Disagree ◯ Disagree ◯ Neutral ◯ Agree ◯ Strongly Agree

After you have completed the opinion questions, press “Hide Passage” to reveal the re-
tention questions.

Hide Passage

Figure 9: The opinion questions section of the survey shown to Mechanical Turk crowdworkers.
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Figure 10: Scatterplots for other sets of bivariate analyses. Rows 1 and 2 compare the Replicability Metric to
other response variables, rows 3 and 4 compare the S-A Metric to other response variables, and row 5 compares
subjective expert transparency ratings to other response variables.


