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Abstract

Automatically inducing high quality knowl-
edge graphs from a given collection of docu-
ments still remains a challenging problem in
AI. One way to make headway for this prob-
lem is through advancements in a related task
known as slot filling. In this task, given an
entity query in form of [ENTITY, SLOT, ?],
a system is asked to ‘fill’ the slot by generat-
ing or extracting the missing value exploiting
evidence extracted from relevant passage(s) in
the given document collection. The recent
works in the field try to solve this task in an
end-to-end fashion using retrieval-based lan-
guage models. In this paper, we present a
novel approach to zero-shot slot filling that ex-
tends dense passage retrieval with hard neg-
atives and robust training procedures for re-
trieval augmented generation models. Our
model reports large improvements on both T-
REx and zsRE slot filling datasets, improving
both passage retrieval and slot value genera-
tion, and ranking at the top-1 position in the
KILT leaderboard. Moreover, we demonstrate
the robustness of our system showing its do-
main adaptation capability on a new variant of
the TACRED dataset for slot filling, through a
combination of zero/few-shot learning. We re-
lease the source code and pre-trained models1.

1 Introduction

Slot filling is a sub-task of Knowledge Base Pop-
ulation (KBP), where the goal is to recognize a
pre-determined set of relations for a given entity
and use them to populate infobox like structures.
This can be done by exploring the occurrences of
the input entity in the corpus and gathering infor-
mation about its slot fillers from the context in
which it is located. A slot filling system processes
and indexes a corpus of documents. Then, when
prompted with an entity and a number of relations,

1Our source code is available at: https://github.
com/IBM/kgi-slot-filling

Figure 1: Slot Filling task

it fills out an infobox for the entity. Some slot fill-
ing systems provide evidence text to explain the
predictions. Figure 1 illustrates the slot filling task.

Many KBP systems described in the literature
commonly involve complex pipelines for named en-
tity recognition, entity co-reference resolution and
relation extraction (Ellis et al., 2015). In particu-
lar, the task of extracting relations between entities
from text has been shown to be the weakest com-
ponent of the chain. The community proposed dif-
ferent solutions to improve relation extraction per-
formance, such as rule-based (Angeli et al., 2015),
supervised (Zhang et al., 2017), or distantly su-
pervised (Glass et al., 2018). However, all these
approaches require a considerable human effort
in creating hand-crafted rules, annotating training
data, or building well-curated datasets for boot-
strapping relation classifiers.

Recently, pre-trained language models have been
used for slot filling (Petroni et al., 2020), opening
a new research direction that might provide an ef-
fective solution to the aforementioned problems.
In particular, the KILT benchmark (Petroni et al.,
2021), standardizes two zero-shot slot filling tasks,
zsRE (Levy et al., 2017) and T-REx (Elsahar et al.,
2018), providing a competitive evaluation frame-
work to drive advancements in slot filling. How-
ever, the best performance achieved by the current
retrieval-based models on the two slot filling tasks
in KILT are still not satisfactory. This is mainly

https://github.com/IBM/kgi-slot-filling
https://github.com/IBM/kgi-slot-filling
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due to the lack of retrieval performance that affects
the generation of the filler as well.

In this work, we propose KGI (Knowledge
Graph Induction), a robust system for slot fill-
ing based on advanced training strategies for both
Dense Passage Retrieval (DPR) and Retrieval Aug-
mented Generation (RAG) that shows large gains
on both T-REx (+38.24% KILT-F1) and zsRE
(+21.25% KILT-F1) datasets if compared to previ-
ously submitted systems. We extend the training
strategies of DPR with hard negative mining (Simo-
Serra et al., 2015), demonstrating its importance in
training the context encoder.

In addition, we explore the idea of adapting KGI
to a new domain. The domain adaptation process
consists of indexing the new corpus using our pre-
trained DPR and substituting it in place of the orig-
inal Wikipedia index. This enables zero-shot slot
filling on the new dataset with respect to a new
schema, avoiding the additional effort needed to re-
build NLP pipelines. We provide a few additional
examples for each new relation, showing that zero-
shot performance quickly improves with a few-shot
learning setup. We explore this approach on a vari-
ant of the TACRED dataset (Alt et al., 2020) that
we specifically introduce to evaluate the zero/few-
shot slot filling task for domain adaption.

The contributions of this work are as follows:

1. We describe an end-to-end solution for slot
filling, called KGI, that improves the state-of-
the-art in the KILT slot filling benchmarks by
a large margin.

2. We demonstrate the effectiveness of hard neg-
ative mining for DPR when combined with
end-to-end training for slot filling tasks.

3. We evaluate the domain adaptation of KGI
using zero/few-shot slot filling, demonstrat-
ing its robustness on zero-shot TACRED, a
benchmark released with this paper.

4. We publicly release the pre-trained models
and source code of the KGI system.

Section 2 present an overview of the state of
the art in slot filling. Section 3 describes our KGI
system, providing details on the DPR and RAG
models and describing our novel approach to hard
negatives. Our system is evaluated in Sections 4
and 5 which include a detailed analysis. Section 6
concludes the paper and highlights some interesting
direction for future work.

2 Related Work

The use of language models as sources of knowl-
edge (Petroni et al., 2019; Roberts et al., 2020;
Wang et al., 2020; Petroni et al., 2020), has opened
tasks such as zero-shot slot filling to pre-trained
transformers. Furthermore, the introduction of re-
trieval augmented language models such as RAG
(Lewis et al., 2020b) and REALM (Guu et al.,
2020) also permit providing textual provenance
for the generated slot fillers.

KILT (Petroni et al., 2021) was introduced with
a number of baseline approaches. The best per-
forming of these is RAG (Lewis et al., 2020b).
The model incorporates DPR (Karpukhin et al.,
2020) to first gather evidence passages for the
query, then uses a model initialized from BART
(Lewis et al., 2020a) to do sequence-to-sequence
generation from each evidence passage concate-
nated with the query in order to generate the answer.
In the baseline RAG approach only the query en-
coder and generation component are fine-tuned on
the task. The passage encoder, trained on Natural
Questions (Kwiatkowski et al., 2019) is held fixed.
Interestingly, while it gives the best performance
of the baselines tested on the task of producing slot
fillers, its performance on the retrieval metrics is
worse than BM25 (Petroni et al., 2021). This sug-
gests that fine-tuning the entire retrieval component
could be beneficial. Another baseline in KILT is
BARTLARGE fine-tuned on the slot filling tasks
but without the usage of the retrieval model.

In an effort to improve the retrieval performance,
Multi-task DPR (Maillard et al., 2021) used the
multi-task training of the KILT suite of benchmarks
to train the DPR passage and query encoder. The
top-3 passages returned by the resulting passage
index were then combined into a single sequence
with the query and a BART model was used to
produce the answer. This resulted in large gains in
retrieval performance.

DensePhrases (Lee et al., 2021) is a different
approach to knowledge intensive tasks with a short
answer. Rather than index passages which are then
consumed by a reader or generator component, it
indexes the phrases in the corpus that can be poten-
tial answers to questions, or fillers for slots. Each
phrase is represented by the pair of its start and end
token vectors from the final layer of a transformer
initialized from SpanBERT (Joshi et al., 2020).

GENRE (Cao et al., 2021) addresses the retrieval
task in KILT slot filling by using a sequence-to-



1941

sequence transformer to generate the title of the
Wikipedia page where the answer can be found.
This method can produce excellent scores for re-
trieval but it does not address the problem of pro-
ducing the slot filler. It is trained on BLINK (Wu
et al., 2020) and all KILT tasks jointly.

Open Retrieval Question Answering (ORQA)
(Lee et al., 2019) introduced neural information
retrieval for the related task of factoid question
answering. Like DPR, the retrieval is based on a bi-
encoder BERT (Devlin et al., 2019) model. Unlike
DPR, ORQA projects the BERT [CLS] vector to
a lower dimensional (128) space. It also uses the
inverse cloze pre-training task for retrieval, while
DPR does not use retrieval specific pre-training.

3 Knowledge Graph Induction

Figure 2 shows KGI, our approach to zero-shot slot
filling, combining a DPR model and RAG model,
both trained for slot filling. We initialize our mod-
els from the Natural Questions (Kwiatkowski et al.,
2019) trained models for DPR and RAG available
from Hugging Face (Wolf et al., 2020)2. We then
employ a two phase training procedure: first we
train the DPR model, i.e. both the query and con-
text encoder, using the KILT provenance ground
truth. Then we train the sequence-to-sequence gen-
eration and further train the query encoder using
only the target tail entity as the objective. It is
important to note that the same query encoder com-
ponent is trained in both phases.
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Figure 2: KGI Architecture

3.1 DPR for Slot Filling

Our approach to DPR training for slot filling is an
adaptation of the question answering training in the

2https://github.com/huggingface/
transformers

original DPR work (Karpukhin et al., 2020). We
first index the passages using a traditional keyword
search engine, Anserini3. The head entity and the
relation are used as a keyword query to find the top-
k passages by BM25. Passages with overlapping
paragraphs to the ground truth are excluded as well
as passages that contain a correct answer. The re-
maining top ranked result is used as a hard negative
for DPR training. This is the hard negative mining
strategy used by DPR (Karpukhin et al., 2020) and
Multi-DPR (Maillard et al., 2021).

head1 [SEP] relation1

head2 [SEP] relation2

head3 [SEP] relation3

Passage1
+

Passage1
-

Passage2
+

Passage2
-

Passage3
+

Passage3
-

p1
+ p1

- p2
+ p2

- p3
+ p3

-

q1

q2

q3

softmax
by row

positive hard negative batch negatives

Passage Encoder

Query Encoder

Figure 3: DPR Training

After locating a hard negative for each query,
the DPR training data is a set of triples: query,
positive passage (given by the KILT ground truth
provenance) and the hard negative passage. Figure
3 shows the training process for DPR. For each
batch of training triples, we encode the queries and
passages independently. The passage and query
encoders are BERT (Devlin et al., 2019) models.
Then we find the inner product of all queries with
all passages. The negatives for a given query are
therefore the hard negative and the batch negatives,
i.e. the positive and hard negative passages for
other queries in the batch. After applying a softmax
to the score vector for each query, the loss is the
negative log-likelihood for the positive passages.

Using the trained DPR passage encoder we gen-
erate vectors for the approximately 32 million pas-
sages in our segmentation of the KILT knowledge
source. Though this is a computationally expensive
step, it is easily parallelized. The passage-vectors
are then indexed with an ANN (Approximate Near-
est Neighbors) data structure, in this case HNSW
(Hierarchical Navigable Small World)(Malkov and
Yashunin, 2018) using the open source FAISS li-
brary (Johnson et al., 2017)4. We use scalar quanti-
zation down to 8 bits to reduce the memory size.

3https://github.com/castorini/anserini
4https://github.com/facebookresearch/

faiss

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/castorini/anserini
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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The query encoder is also trained for slot fill-
ing alongside the passage encoder. We inject the
trained query encoder into the RAG model for Nat-
ural Questions. Due to the loose coupling between
the query encoder and the sequence-to-sequence
generation of RAG, we can update the pre-trained
model’s query encoder without disrupting the qual-
ity of the generation.

Unlike previous work on zero-shot slot filling,
we are training the DPR model specifically for the
slot filling task. In contrast, the RAG baseline
(Petroni et al., 2021) used DPR pre-trained on Nat-
ural Questions, and Multi-DPR (Maillard et al.,
2021) trained on all KILT tasks jointly.

3.2 RAG for Slot Filling

Figure 4 illustrates the architecture of RAG (Lewis
et al., 2020b). The RAG model is trained to predict
the ground truth tail entity from the head and rela-
tion query. First the query is encoded to a vector
and the top-k (we use k = 5) relevant passages
are retrieved from the ANN index. The query is
concatenated to each passage and the generator pre-
dicts a probability distribution over the possible
next tokens for each sequence. These predictions
are weighted according to the score between the
query and passage - the inner product of the query
vector and passage vector.
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Figure 4: RAG Architecture

Marginalization then combines the weighted
probability distributions to give a single probabil-
ity distribution for the next token. This enables
RAG to train the query encoder through its impact
in generation, learning to give higher weight to
passages that contribute to generating the correct
tokens. Formally, the inputs to the BART model are
sequences (sj = pj [SEP] q) that comprise a query
q plus retrieved passage pj . The probability for
each sequence is determined from the softmax over
the retrieval scores (zr) for the passages. The prob-
ability for each output token ti given the sequence
sj is a softmax over BART’s token prediction log-
its. Therefore the total probability for each token
ti is the log-likelihood summed over all sequences,
weighted by each sequence’s probability.

P (sj) = softmax(zr)j

P (ti|sj) = softmax(BART(sj)i)ti

P (ti) =
∑
j

P (ti|sj) · P (sj)

Beam search is used at inference time to select
the overall most likely tail entity. This is the stan-
dard beam search for natural language generation
in deep neural networks (Sutskever et al., 2014),
the only difference is in the way the next-token
probabilities are obtained.

3.3 Dense Negative Sampling
As Figure 2 shows, the DPR question encoder is
trained both by DPR and later by RAG. To examine
the influence of this additional training from RAG
on the retrieval performance, we compare retrieval
metrics before and after RAG fine-tuning. Table
1 shows the large gains from training with RAG
after DPR. Note that RAG training is using the
weak supervision of the passage’s impact in pro-
ducing the correct answer, rather than the ground
truth provenance of DPR training. Since this is
likely a disadvantage, we explore the other key dif-
ference with DPR and RAG training: RAG uses
negatives drawn from the trained index rather than
from BM25.

T-REx zsRE
R-Prec R@5 R-Prec R@5

DPRNQ 19.50 29.80 45.49 60.77
DPRNQ+RAG 53.04 65.54 68.13 79.19

DPRBM25 49.02 63.34 94.55 98.17
DPRBM25+RAG 65.02 75.52 96.89 98.01

DPRDNS 42.62 55.09 97.53 99.30
DPRDNS+RAG 74.34 82.89 98.60 99.70

Table 1: Analysis of retrieval by DPR and RAG on Dev
sets

To replicate this feature of RAG in DPR, we
introduce hard negatives mined from the learned
index. Using the KILT trained DPR models, we
index the passages. Then we gather hard negatives
for DPR training, with one difference: rather than
locating the hard negative passages by BM25, we
find the passage by ANN search over the learned
dense vector index. We train for an additional
two epochs using these hard negatives. Table 1
shows the performance of the different approaches
to retrieval. DPRNQ is the DPR model pre-trained
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Instances Relations
Dataset Train Dev Test Train Dev Test

zsRE 148K 3724 4966 84 12 24
T-REx 2284K 5000 5000 106 104 104

Table 2: Slot filling datasets in KILT

on Natural Questions. DPRBM25 further trains
DPRNQ on the KILT data with BM25 hard nega-
tives. Rows with +RAG further train the question
encoder through RAG. The row DPRDNS (Dense
Negative Sampling) shows the performance of re-
trieval immediately after DNS training. Surpris-
ingly, this results in lower performance for T-REx
relative to DPRBM25. However, further training
the DNS model with RAG results in our best per-
formance for both T-REx and zsRE. Since RAG
does not update the context encoder, DNS training
is the only training for the context encoder when
negatives are drawn from the dense vector index.

After training with DNS the FAISS indexing
with scalar quantization becomes prohibitively
slow. We therefore remove all quantization and
use four shards (the index is split into four, with the
results of each query merged) for our experiments
with DNS enabled KGI.

4 KILT Experiments

Table 2 gives statistics on the two zero-shot slot
filling datasets in KILT. While the T-REx dataset is
larger by far in the number of instances, the train-
ing sets have a similar number of distinct relations.
We use only 500k training instances of T-REx in
our experiments to increase the speed of experi-
mentation.

Since the transformers for passage encoding and
generation can accept a limited sequence length,
we segment the documents of the KILT knowledge
source (2019/08/01 Wikipedia snapshot) into pas-
sages. The ground truth provenance for the slot
filling tasks is at the granularity of paragraphs, so
we align our passage segmentation on paragraph
boundaries when possible. If two or more para-
graphs are short enough to be combined, we com-
bine them into a single passage and if a single
paragraph is too long, we truncate it.

4.1 KGI Hyperparameters

We have not done hyperparameter tuning, instead
using hyperparameters similar to the original works

Hyperparameter DPR RAG
learn rate 5e-5 3e-5
batch size 128 128

epochs 2 1
warmup instances 0 10000
learning schedule linear triangular

max grad norm 1 1
weight decay 0 0

Adam epsilon 1e-8 1e-8

Table 3: KGI hyperparameters

on training DPR and RAG. Table 3 shows the hy-
perparameters used in our experiments. We train
our models on T-REx using only the first 500k
instances. For KGI1 we use the same hyperparam-
eters except that zsRE is trained for two epochs.
In both KGI systems we use the default of five
passages retrieved for each query for use in RAG.

4.2 Model Details

Number of parameters KGI is based on RAG
and has the same number of parameters: 2 ×
110M for the BERTBASE query and passage en-
coders and 400M for the BARTLARGE sequence-
to-sequence generation component: 620M in total.

Computing infrastructure Using a single
NVIDIA V100 GPU DPR training of two epochs
takes approximately 24 hours for T-REx and 2
hours for zsRE. Using a single NVIDIA P100
GPU RAG training for 500k T-REx instances takes
two days and 147k instances of zsRE takes 15
hours. The FAISS index on the KILT knowledge
source requires a machine with large memory, we
use 256GB memory - 128GB is insufficient for the
indexes without scalar quantization.

4.3 Slot Filling Evaluation

As an initial experiment we tried RAG with its de-
fault index of Wikipedia, distributed through Hug-
ging Face. We refer to this as RAG-KKS, or RAG
without the KILT Knowledge Source, as reported
in Table 4. Since the passages returned are not
aligned to the KILT provenance ground truth, we
do not report retrieval metrics for this experiment.

Motivated by the low retrieval performance re-
ported for the RAG baseline by Petroni et al. (2021),
we experimented with replacing the DPR retrieval
with simple BM25 (RAG+BM25) over the KILT
knowledge source. We provide the raw BM25
scores for the passages to the RAG model, to
weight their impact in generation. We also exper-
imented with the Natural Questions trained DPR,
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R-Prec R@5 Acc. F1
zsRE

RAG-KKS 38.72 46.94
RAG+BM25 58.86 80.24 45.73 55.18

RAG+DPRNQ 68.13 79.19 46.03 55.75
KGI0 96.24 97.53 69.58 77.24
KGI1 98.60 99.70 71.32 78.85

T-REx
RAG-KKS 63.28 67.67

RAG+BM25 46.40 67.31 69.10 73.11
RAG+DPRNQ 53.04 65.54 73.02 76.97

KGI0 61.30 71.18 76.58 80.27
KGI1 74.34 82.89 84.04 86.89

Table 4: Dev sets performance for different retrieval
methods

with only RAG training on KILT (RAG+DPRNQ).
We use the approach explained in Section 3 to

train both the DPR and RAG models. KGI0 is a
version of our system using DPR with hard negative
samples from BM25. The successor system, KGI1
incorporates DPR training using DNS.

The metrics we report include accuracy and F1
on the slot filler, where F1 is based on the recall and
precision of the tokens in the answer, allowing for
partial credit on slot fillers. Our systems, except for
RAG-KKS, also provide provenance information
for the top answer. R-Precision and Recall@5 mea-
sure the quality of this provenance against the KILT
ground truth provenance. Finally, KILT-Accuracy
and KILT-F1 are combined metrics that measure
the accuracy and F1 of the slot filler only when the
correct provenance is provided.

Table 4 reports an evaluation on the develop-
ment set, while Table 5 reports the test set per-
formance of the top systems on the KILT leader-
board. KGI0 and KGI1 are our systems, while
DensePhrases, GENRE, Multi-DPR, RAG for
KILT and BARTLARGE are explained briefly in
Section 2. KGI1 gains dramatically in slot filling
accuracy over the previous best systems, with gains
of over 14 percentage points in zsRE and even more
in T-REx. The combined metrics of KILT-AC and
KILT-F1 show even larger gains, suggesting that
the KGI1 approach is effective at providing justify-
ing evidence when generating the correct answer.
We achieve gains of 21 to 41 percentage points in
KILT-AC.

Relative to Multi-DPR, we see the benefit of
weighting passage importance by retrieval score
and marginalizing over multiple generations, com-

pared to the strategy of concatenating the top
three passages and running a single sequence-to-
sequence generation. GENRE is still best in re-
trieval for T-REx, suggesting that at least for a
corpus such as Wikipedia, generating the title of
the page can be very effective. A possible explana-
tion for this behaviour is that most relations for a
Wikipedia entity are mentioned in its correspond-
ing page.

4.4 Analysis

To explore the effect of retrieval on downstream per-
formance we consider two variants of our systems:
one using random passages from the index, forcing
the system to depend on implicit knowledge, and
the another using passages from the ground truth
provenance, to measure the upper bound perfor-
mance for the ideal retrieval system. Evaluation is
reported in Table 6 for 3 systems. By supplying
these systems with the gold standard passages, we
can see both the improvement possible through bet-
ter retrieval, and the value of good retrieval during
training. The best system, KGI1 is the most effec-
tive at generating slot fillers from relevant explicit
knowledge because it was trained on more cases
of justifying explicit knowledge. However, given
random passages it is the worst. It has sacrificed
some implicit knowledge for better capabilities in
using explicit knowledge.

As shown in Table 5, BARTLARGE , which is
the best implicit-knowledge baseline system for
KILT slot filling, is approximately 40 points lower
in in accuracy on T-REx if compared to KGI1. To
understand the impact of the explicit knowledge
provided by DPR, we examine the improvement
of KGI over BARTLARGE . We consider two main
hypotheses: 1) the value of explicit knowledge
depends on the relation, and 2) the value of explicit
knowledge depends on the corpus frequency of the
entities related.

To evaluate hypothesis 1, we consider the most
frequent 20 relations in the T-REx Dev set, each
occurring at least 40 times. The relations with the
lowest relative performance gain are taxonomy and
partonomy relations: TAXON-RANK, SUBCLASS-
OF, INSTANCE-OF, PART-OF and PARENT-TAXON

as well as LANGUAGES-SPOKEN,-WRITTEN-OR-
SIGNED and SPORT. This suggest that essential
properties of entities are well encoded in the lan-
guage model itself. Inspecting the LANGUAGES-
SPOKEN,-WRITTEN-OR-SIGNED we find that sur-
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R-Prec Recall@5 Accuracy F1 KILT-AC KILT-F1
zsRE

KGI1 98.49 99.23 72.55 77.05 72.31 76.69
KGI0 94.18 95.19 68.97 74.47 68.32 73.45

DensePhrases 57.43 60.47 47.42 54.75 41.34 46.79
GENRE 95.81 97.83 0.02 2.10 0.00 1.85

Multi-DPR 80.91 93.05 57.95 63.75 50.64 55.44
RAG (KILT organizers) 53.73 59.52 44.74 49.95 36.83 39.91

BARTLARGE N/A N/A 9.14 12.21 N/A N/A
T-REx

KGI1 74.36 83.14 84.36 87.24 69.14 70.58
KGI0 59.70 70.38 77.90 81.31 55.54 56.79

DensePhrases 37.62 40.07 53.90 61.74 27.84 32.34
GENRE 79.42 85.33 0.10 7.67 0.04 6.66

Multi-DPR 69.46 83.88 0.00 0.00 0.00 0.00
RAG (KILT organizers) 28.68 33.04 59.20 62.96 23.12 23.94

BARTLARGE N/A N/A 45.06 49.24 N/A N/A

Table 5: KILT leaderboard top systems performance on slot filling tasks

Passages RAGNQ KGI0 KGI1
Retrieved 70.58 76.58 84.04

Gold 88.66 89.46 90.20
Random 38.84 39.26 36.64

Table 6: T-REx Accuracy with Random and Gold Re-
trieval

face level information (i.e. French name vs. Rus-
sian name) is often sufficient for the correct predic-
tion.

In contrast, the relations that gain the most from
explicit knowledge are: PERFORMER, MEMBER-
OF-SPORTS-TEAM, AUTHOR, PLACE-OF-BIRTH,
COUNTRY-OF-ORIGIN, CAST-MEMBER, DIREC-
TOR. These relations are not central to the meaning
of the head entity, like the taxonomy and parton-
omy relations, and are not typically predictable
from surface-level features.

Regarding our second hypothesis, we might ex-
pect that more frequent entities have better repre-
sentations in the parameters of a pre-trained lan-
guage model, and that therefore the gain in perfor-
mance due to use of explicit knowledge will show
a strong dependence on the corpus frequency of the
head or tail entity.

To test it, we group the Dev instances in T-Rex
according to the decile of the head or tail entity
frequency. We compute a macro-accuracy, weight-
ing all relations equally. Figure 5 shows the macro-
accuracy of BARTLARGE and KGI1 for each decile
of head and tail entity frequency. Although there
is a general trend of higher accuracy for more fre-

quent tail entities and lower accuracy for more fre-
quent head entities, there is no pattern to the gain
of explicit knowledge over implicit knowledge from
entity frequency. There is a similar picture when
considering the decile of the minimum of the head
or tail entity frequency. This falsifies our second
hypothesis and suggests implicit knowledge is dis-
tinct in kind from explicit knowledge, rather than
merely under-trained for low frequency entities.
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Figure 5: Performance as a function of entity frequency

5 Domain Adaptation Experiments

In this section, we evaluate the domain adaptation
capability of KGI. For this purpose, we re-organize
a dataset specifically designed to evaluate standard
supervised relation extraction models, such as TA-
CRED, with the aim to create a zero-shot (and few-
shot) slot filling benchmark where the documents
are written with a different style than Wikipedia,
and the relations in the KG are different from those
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in Wikidata. In order to perform an in-depth com-
parison and analysis, we also propose a new set
of ranking baselines and use metrics which are
suitable to better evaluate the slot filling task in a
zero-shot setup.

5.1 Zero-shot TACRED
The TACRED dataset was originally proposed
by Zhang et al. (2017) with the goal to provide
a high-quality training set to supervise a relation
extraction model which is shown to be competitive
on TAC-KBP 2015 (Ellis et al., 2015). The target
KG schema consists of two infoboxes modeling the
person and organization entity types, with 41 rela-
tion types in total. For our experiments, we adopt a
revisited version of TACRED (Alt et al., 2020), in
which a second stage crowdsourcing is performed
to further improve the quality of the annotations
and resolve conflicts among relations.

In a typical supervised relation extraction setup,
a model is trained to predict (i.e. classify) the right
relation type given a textual passage and two en-
tity mentions as inputs. In this paper we used the
TACRED dataset as a slot filling benchmark, us-
ing the following procedure: 1) we first create the
corpus by merging all the plain textual passages
from the instances in the train, dev and test sets;
2) we collect the annotated triples, i.e. subject-
relation-object, from the test data to come up with
a ground-truth KG to be used for slot filling evalua-
tion5; 3) we remove all the triples from the original
test set where the subjects are pronouns. The result-
ing KG consists of 2673 slot filling test instances.
Similarly, we acquire a KG from the train/dev sets
to further fine-tune the KGI system as described in
the next section. To enable zero-shot experiments,
we also convert each relation label into a relation
phrase by removing the namespaces per: and org:,
and replacing the ‘_’ character with a space. Fi-
nally, for each pre-annotated entity in the corpus,
we pre-compute an inverted index consisting of a
list of co-occurring entities in the textual passages.
We use this inverted index to compare our model
with a set of ranking baselines.

An example of the obtained ground truth is illus-
trated in Table 7: given the query [Dominick Dunne,
employee of, ?], a slot filling system is supposed
to identify the missing slot with Vanity Fair, i.e.
the gold standard object in the KG, by retrieving it

579.5% of the overall instances are labeled as no relation.
We exclude these instances from the ground truth KG, but we
retain them in the textual corpus.

from the collection of passages.

5.2 Slot Filling Evaluation

Task Given a slot filling query (e, s, ?) and a list
of possible slot values [v1, ..., vn], where e is the
entity as subject, s is the slot/relation and vi are the
object candidates that co-occur with e in the corpus,
we can frame the zero-shot slot filling as a ranking
problem: argmaxi scoreM (e, s, vi). scoreM is a
function that takes as input a triple and provide
a score based on the model M . Turning the slot
filling into a ranking problem has two advantages:
1) we can compare the generative approach with
a new set of baselines, and 2) we can limit the
generation of the slot values to a pre-defined set of
domain specific entities.

Models In order to adapt KGI1, as pre-trained
on T-REx, to the TACRED corpus, we indexed the
textual passages using DPR, as described in Sec-
tion 3. Then we replaced the original Wikipedia
index with this new index. During the inference
step, we restrict the generation of the slot values
using the list of object candidates, i.e. the entities
which co-occur with the subject from the inverted
index, to facilitate comparability to a set of rank-
ing baselines. To this aim, we adopt the technique
described by Cao et al. (2021) to restrict the vocab-
ulary of tokens during the generation.

We use three baselines to compare with our ap-
proach for this zero-shot slot filling task. PMI is
implemented using the pointwise mutual informa-
tion between e and vi based on their co-occurrence
in the corpus. Also, we train a Word2Vec (Mikolov
et al., 2013) skip-gram model on the textual corpus,
and we use it to implement the scoring function
as cosine(e + s, vi), for each candidate filler vi.
It is based on the assumption that a relation s be-
tween two (multi)word embeddings e and v can be
represented as an offset vector (v − e) = s ⇐⇒
(e+s) = v (Rossiello et al., 2019; Vylomova et al.,
2016). Finally, GPT-2 computes the perplexity of
the fragment of text by concatenating the tokens in
e, s and each vi (Radford et al., 2019).

Metrics Due to the similarity of slot filling with
the knowledge base completion task, we use Mean
Reciprocal Rank (MRR) and HIT@k, with k = [1,
5, 10], as evaluation metrics (Bordes et al., 2013).
Note that HIT@1 has the same meaning of the
accuracy for the downstream task on KILT.
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Subject Relation/Slot Object Passage
Dominick Dunne per:employee_of Vanity Fair Dominick Dunne, the author, television personality and Vanity

Fair reporter who covered the trials of socialite Claus von Bulow.

Dominick Dunne per:age 83 Dominick Dunne, 83, a crime story author, in New York City.

Dominick Dunne per:siblings John Gregory Dunne Dominick Dunne, author of crime stories dies Born in 1925 in
Hartford, Connecticut, was part of a famous family that included
his brother, novelist and screenwriter John Gregory Dunne.

ALICO org:country_of_headquarters US AIA says IPO raised 205 billion US dollars AIG said Monday it
had also raised 162 billion dollars by selling unit American Life
Insurance Company (ALICO) to MetLife Inc.

ALICO org:top_members Christopher J. Swift Alico’s chief financial officer, Christopher J. Swift, added that
the bonds were issued by companies in many commercial sectors,
which diversified the portfolio.

ALICO org:parents AIG AIG said it had transferred ownership to the Federal Reserve
Bank of parts of two subsidiaries, ALICO which is active in life
assurance in the United States and AIA which provides life assur-
ance abroad.

Table 7: Examples of annotations from TACRED dataset for both person and organization infoboxes.

MRR HIT@1 HIT@5 HIT@10
PMI 20.20 10.89 26.49 37.30

Word2Vec 25.24 13.83 34.92 47.60
GPT-2 17.62 8.37 23.72 35.34

KGI1 0-shot 43.98 28.51 64.31 76.06
KGI1 1-shot 48.86 33.89 66.63 78.75
KGI1 4-shot 53.28 38.8 70.45 79.35

Table 8: Zero/few-shots results on TACRED

Hyperparameter RAG
learn rate 3e-6
batch size 1

epochs 3
warmup instances 0
learning schedule linear

max grad norm 1
weight decay 0

Adam epsilon 1e-8

Table 9: KGI1 hyperparameters for TACRED few-shot

Results Table 8 reports the results of our evalu-
ation. KGI1 achieves substantially better perfor-
mance than the aforementioned zero-shot base-
lines on all evaluation metrics. However, HIT@1
is ∼ 28% which is significantly lower compared
with the numbers reported on the datasets in KILT.
This begs the question, how to further improve
the transfer learning capabilities of these genera-
tive models? Interestingly, HIT@5/10 are high (i.e.
∼ 64%/76%). This indicates our approach would
be useful in a human-in-the-loop scenario by pro-
viding valuable candidates for the fillers that can
be further validated.

For this purpose, we also conduct few-shot ex-
periments to understand the robustness of KGI1 by
fine-tuning it with very limited amounts of train-
ing examples. We randomly pick n example(s) for
each relation type from the TACRED training set,

with n = [1, 4]. Table 9 gives our hyperparameters
for the TACRED few-shot experiments. We show
that our system benefits from additional domain
specific training data selected from TACRED. Just
using one example and four examples per relation,
HIT@1 improves ∼ 5 and ∼ 10 percentage points
respectively.

6 Conclusion

In this paper, we presented KGI, a novel approach
to zero-shot slot filling. KGI improves Dense Pas-
sage Retrieval using hard negatives from the dense
index, and implements a robust training procedures
for Retrieval Augmented Generation. We evaluated
KGI on both T-REx and zsRE slot filling datasets,
ranking at top-1 position in the KILT leaderboard
with a net improvement of +38.24 and +21.25 per-
centage points in KILT-F1, respectively. More-
over, we proposed and release a new benchmark
for zero/few-shot slot filling based on TACRED
to evaluate domain adaptation where our system
obtained much better zero-shot results compared
with the baselines. In addition, we have observed
significant improvement in results for KGI when
rapidly fine-tuned in a few-shot setting. This work
opens promising future research directions for slot
filling and other related tasks. We plan to apply
DPR with dense negative sampling to other tasks in
the KILT benchmark, including dialogue and ques-
tion answering. Likewise, an in-depth investigation
on more effective strategies for domain adaptation,
such as the combination of zero-shot and few-shot
learning involving human-in-the-loop techniques,
would be another interesting direction to explore.
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