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Abstract

For voice assistants like Alexa, Google Assis-
tant and Siri, correctly interpreting users’ in-
tentions is of utmost importance. However,
users sometimes experience friction with these
assistants, caused by errors from different sys-
tem components or user errors such as slips
of the tongue. Users tend to rephrase their
query until they get a satisfactory response.
Rephrase detection is used to identify the
rephrases and has long been treated as a task
with pairwise input, which does not fully uti-
lize the contextual information (e.g. users’ im-
plicit feedback). To this end, we propose a con-
textual rephrase detection model ContReph
to automatically identify rephrases from multi-
turn dialogues. We showcase how to leverage
the dialogue context and user-agent interaction
signals, including user’s implicit feedback and
the time gap between different turns, which
can help significantly outperform the pairwise
rephrase detection models.

1 Introduction

Large-scale conversational AI based dialogue sys-
tems like Alexa, Siri, and Google Assistant, are
getting more and more prevalent in real-world ap-
plications to help users across the globe. Natu-
ral Language Understanding (NLU) technology is
an established component that produces seman-
tic interpretations of a user request. Improving
the accuracy of the NLU component is a key con-
sideration for satisfactory end-to-end user experi-
ence, especially when the NLU component misin-
terprets the semantics due to ambiguity or errors
that come from the previous component (e.g., Auto-
matic Speech Recognition). For instance, the ASR
system may incorrectly recognize “play jacking
the ball” as “ play jack in the fall”. These errors
accumulate and introduce friction in the dialogue
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Figure 1: Difference between the contextual rephrase
detection and pairwise approach. Pair-wise rephrase
detection model computes the similarity score for each
pair that appears in the multi-turn dialogue, and selects
the maximum score among them for the rephrase pre-
diction. In this case, the pair-wise model without con-
sidering context information incorrectly predicts “play
tyler hero explicit by jack harlow” as the rephrase of
user’s defective request “play tyler hero explicit” since
it has highest similarity score.

conversation. Fixing these frictions would help
users to have a better experience, and engage more
with the AI agents.

Previous works (Yuan et al., 2021; Chen et al.,
2020; Park et al., 2020) focus on friction reduction
in the ASR and NLU components using Query
Rewriting (QR) (Grbovic et al., 2015). These
approaches reformulate the ASR transcription of
user’s query, such that it conveys the same mean-
ing/intent, to minimize user dissatisfaction. An
important aspect of the QR approaches is to detect
user rephrase of a previous query that leads to a
satisfactory response. However, these approaches
focus only on the pairwise semantic similarity of
queries, which does not consider the corresponding
user feedback, with proper dialogue context. As
shown in Fig. 1, dissatisfied users might provide
implicit feedback, i.e., they rephrase the previous
query (e.g. the first user request “play tyler hero
explicit” in the left of Fig. 1) multiple times unless
the agent does the needful. If we only consider the
semantic similarity between different queries from
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pairwise-based models, the system may choose an
unsuitable query “play tyler hero explicit by jack
harlow” to correct the problematic request. The
dialogue context includes additional information
like previous turns, the responses of the dialogue
agent, and time differences between user queries.
By leveraging this context, we can detect the cor-
rect rephrase - “play tyler hero by jack harlow”,
with a much higher probability.

In this paper, we propose an automatic user
rephrase detection approach ContReph, which
leverages implicit user feedback and dialogue con-
text in a multi-turn dialogue setting. ContReph
detects if any of the user queries in the dialogue
session is rephrased, and then extracts the most
probable rephrase span that led to a satisfactory
response from the dialogue agent. Specifically, we
input the full dialogue session to the model, in-
cluding agent’s responses and capture time gaps
between user queries using a novel time-difference
encoding scheme. We evaluate the performance
of our proposed framework by conducting an ex-
tensive set of experiments on production data of a
large scale dialogue agent and showcase the effec-
tiveness of our approach against existing methods.
Although, in this work, we focus on rephrase detec-
tion only, the rephrases identified by our approach
can directly be used as query rewrites for reducing
friction in dialogue systems.

2 Related Work

2.1 Query Rewriting in Dialogue Systems

Query Rewriting (QR) in dialogue systems aims
to correct the ASR interpretation of user’s queries
to deal with errors across the entire dialogue sys-
tem pipeline in a single generalized framework.
Existing QR approaches tend to apply neural em-
bedding and retrieval based approaches (Yuan et al.,
2021; Chen et al., 2020), generation-based ap-
proaches (He et al., 2016; Dehghani et al., 2017)
and Absorbing Markov Chain (AMC) (Ponnusamy
et al., 2020). Chen et al. (2020) apply the language
model to pre-train query embeddings on historical
user conversation data, Yuan et al. (2021) leverage
Graph Neural Networks (Kipf and Welling, 2017)
for the same, and then fine-tune on QR training
set that consists of (source query, rephrase) pairs.
To generate such training set without human an-
notations, they rely on pairwise rephrase detection
models to identify rephrase pairs in historic dia-
logue sessions. Ponnusamy et al. (2020) propose

AMC to identify rephrases within multi-turn dia-
logues and treat the rephrases directly as rewrites
instead of training a neural model. However, the ap-
proach is purely statistical and ignores the semantic
relevance between the source query and rephrase,
which has been proven effective across different
datasets and tasks (Conneau and Kiela, 2018; Gao
et al., 2021). Our work alleviates this problem by
using the BERT model incorporated with dialogue
context information.

2.2 Rephrase Detection

Given a pair of sentences P and Q, existing
rephrase/paraphrase detection approaches estimate
the probability distribution Pr(y|P,Q), where y =
1 if P and Q are rephrases, and y = 0 otherwise.
Typically, these approaches use encoders to embed
P and Q, followed by semantic or syntactic simi-
larity measurement. For example, BiMPM (Kim
et al., 2019) uses BiLSTM layers for encoding the
sentences, and performs a bilateral matching to
compute Pr(y|P,Q). Gao et al. (2021) propose
SimCSE, which leverages the contrastive learning
framework and is shown to produce superior sen-
tence embeddings, from either unlabeled or labeled
data. However, the existing approaches are lim-
ited by the information they can exploit, especially
for dialogue sessions, where a lot of contextual
information is available. Hence, we extend these
approaches from pairwise to dialogue context level,
as described in the next section.

3 Method

3.1 Notations and Problem Definition

We consider a dataset D of M multi-turn dialogue
sessions, such thatD = {Si}Mi=1, and every session
S is an ordered set of N turns: S = {(Qi, Ri)}Ni=1.
Here i indicates the index of turn, and each turn i
consists of a pair (Qi, Ri), where Qi is the user’s
query and Ri is the agent’s response to query Qi.
Any two successive turns have a time gap of less
than a minute. Given a dialogue session S and
a source turn, i.e., input pair of query and re-
sponse (Qi, Ri), the goal of our model is to predict
whether Qi is rephrased in any of the following
turns (Qj , Rj)| i < j ≤ N . If so, the model should
predict the span of Qj and return null otherwise.

3.2 Model Architecture

Fig. 2 shows the architecture of our model - Con-
tReph. We adopt BERT (Devlin et al., 2019) for
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Figure 2: A brief description of our model, ContReph,
which is fine-tuned on a pre-trained model for predict-
ing the start and end positions of the rephrase part in
the contextual input. The bottom of the figure shows
the construction of contextual text into model.

encoding dialogue sessions. We flatten the dia-
logue session into one sequence and feed it to a
pre-trained BERT, to compute the dialogue ses-
sion embedding. We introduce two special tokens:
‘[USER]’ and ‘[AGENT]’, which are used to prefix
the user query and agent response in the contextual
input, respectively. We cast rephrase detection as
a span prediction problem where we predict the
probability of start and end span locations on each
token’s position, using the embedding output of the
final BERT layer. We introduce a start vector WS

and an end vector WE . Assuming the final hidden
vector for the ith input token as Ti ∈ RH , the prob-
ability of token i being the start/end of the rephrase
span is computed after applying a softmax on the
dot product between Ti and WS (or WE) over all
of tokens:

PS
i =

expTi·WS∑
m expTm·WS

;PE
i =

expTj ·WE∑
m expTm·WE

The score of a candidate span from position i to
position j is defined as: sij = WS · Ti +WE · Tj ,
where i < j. We use snone = WS · TCLS +WE ·
TCLS to represent the score of no-rephrase span.
We set threshold τ to decide whether to predict no-
rephrase or not. If maxj>i sij > snone + τ , then
we regard the maximum score span as the rephrase
span and null otherwise.

Time difference encoding: In addition to cap-
turing the full dialogue context when making a
rephrase prediction, ContReph also considers the
time difference between multiple turns. This is
an important factor as users are more likely to in-
terrupt the agent and rephrase their query sooner
than later, if they don’t get the right response. We

Has-Rephrase No-Rephrase
(Source turn)
[USER] Open the blinds
[AGENT] I didn’t find a device named blinds

[USER] Open the blind
[AGENT] I can’t find blind.

[USER] Open the right blind. (Rephrase)
[AGENT] Done.

[USER] How far is twin lakes iowa from here ?
[AGENT] Sorry, I couldn’t find what you’re looking for.

[USER] How far is fort dodge iowa from here ?
[AGENT] Fort Dodge is 351.8 mi away by car

[USER] How far is storm lake iowa from here ?
[AGENT] Storm Lake is 413.1 mi away by car.

Table 1: Examples of dialogue sessions.

capture the time differences using time-bin token
embeddings. Consider a source turn (including a
request and a response) tsrc = (Qsrc, Rsrc), for
which we want to detect a rephrase in the session.
We refer to its timestamp as ωsrc. We calculate
the time difference ∆i = ωi − ωsrc, where ωi is
the timestamp of a turn ti, for all the turns in the
session. ∆i ∀i ∈ [1, n] are then mapped to their
respective time-bin tokens. These time-bin tokens
represent equal sized intervals in ∆’s range of [-60,
60] seconds. We then map these tokens to their
embeddings. As shown in Fig. 2, the correspond-
ing time-bin token embeddings are added to each
token of the turn at the input layer of the model,
depending on the turn’s bin.

4 Experiments

4.1 Data

Machine-Annotated set: We sample multi-turn
dialogue sessions between users and a large scale
conversational AI agent from anonymous historic
interactions. We use an existing model based
on Absorbing Markov Chain (AMC) (Ponnusamy
et al., 2020) to discover rephrase turns in these ses-
sions, and only keep the instances where the AMC
model is highly confident in predicting a rephrase
(if the session has one) and a no-rephrase. Based
on this, we divide the dataset into two types: Has-
Rephrase and No-Rephrase, respectively. We
split this dataset into train, validation and test sets,
with the statistics shown in Table 2. Since this
dataset is labeled using a model, we refer to it as
Machine-Annotated set. We use the training split
to fine-tune our model ContReph and other base-
lines (Section 4.3). An example of this dataset with
labels is shown in Table 1.

Human-Annotated set: For a more comprehen-
sive evaluation of ContReph with other baselines,
we construct another test set where the rephrases
are identified by human annotators. We sample his-
toric sessions and keep only those sessions where
AMC model predicted a no-rephrase, but human
annotators labeled rephrases with high confidence.
We refer to this one as Human test set. This is a
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Machine-Annotated set Human set
Train Validation Test Test

Has-Rephrase No-Rephrase Has-Rephrase No-Rephrase Has-Rephrase No-Rephrase Has-Rephrase
317931 282069 50897 49103 407544 394051 5463

Table 2: No. of instances (dialogue sessions) in different datasets.

Approach
Machine-Annotated test set Human test set

Has-Rephrase(%) All(%) No-Rephrase(%) Has-Rephrase (%)
EM TR EM TR EM TR EM TR

Existing Work (Pairwise-based approach)
SimCSE-unsup [10,15] [15,20] [50,55] [10,15] [90,95] [5,10] [10,15] [10,15]
SimCSE-sup 46.26 48.57 24.31 23.91 1.59 -1.6 28.92 30.08
BERT-NSP 67.09 73.80 37.1 34.54 6.08 -6.08 29.56 30.87
DPR 9.03 10.21 2.50 7.29 -4.26 4.26 18.28 19.23

Our work (Context-based approach)
ContReph w/o time 76.16 77.93 41.50 36.14 6.75 -6.77 56.08 57.04
ContReph 78.25 79.73 43.05 37.40 6.36 -6.35 57.45 58.26

Table 3: Evaluation performance from different approaches on both Machine-Annotated and Human test set. All
the numbers are absolute differences with respect to the baseline: “SimCSE-unsup”. For example, “46.26” denotes
“SimCSE-unsup metric + 46.26”. “[10,15]” denotes the exact score falls into between 10 to 15. The “TR” on No-
Rephrase dataset denotes the false trigger rate (lower is better).

more challenging test set as our AMC model failed
to predict the rephrases in this set. Moreover, its
domain distribution is different from training set as
it is sampled from a different time period.

4.2 Evaluation Metrics

We use the following evaluation metrics:
Exact Match (EM): For a Has-Rephrase in-

stance, this score is 1 if the predicted span exactly
matches the labeled rephrase, and is 0 otherwise.
For a No-Rephrase instance, the score is 1 if the
model predicts a null span, and 0 otherwise.

Trigger Rate (TR): Trigger Rate is the fraction
of instances on which the model makes a non-null
prediction.

4.3 Baselines and Experimental Setup

To evaluate the rephrase detection performance, we
compare our method with a few baselines which
are pairwise-based. BERT-NSP (Devlin et al.,
2019): we fine-tune BERT with the same training
split, then predict if the input pairs are rephrases.
DPR (Karpukhin et al., 2020): we follow a re-
cent retrieval model DPR to train a dual BERT
model with positive rephrase pairs and in-batch neg-
atives. SimCSE (Gao et al., 2021): we fully use the
training data to train both unsupervised (SimCSE-
unsup) and supervised (SimCSE-sup) models.

For ContReph, we choose the official pre-
trained BERT-base model1 and fine-tune on it.
Models are selected by early stopping on valida-

1https://github.com/google-research/bert

tion set. More implementation details and hyper-
parameters can be found in Appendix.

4.4 Results

In Table 32, we show evaluation of our ap-
proach against other baselines. ContReph consis-
tently achieves better performance on machine and
human-annotation test sets. It is better than the
state-of-the-art pairwise BERT-NSP method on hu-
man test set by 27.89% on EM score, and also im-
proves overall EM score by almost 6% on machine-
annotated set. This clearly shows the benefits of
capturing dialogue context. Moreover, removing
time difference encoding from ContReph leads to
a drop of 1.55% and 1.37% in EM score on ma-
chine and human-annotation test sets, respectively.
This proves that capturing time difference between
turns can further improve rephrase detection. We
notice that human test set is more challenging due
to different domain distribution, and hence EM
scores for it are much lower, compared to machine-
annotated set. BERT-NSP achieves the best results
amongst the baselines, which highlights the bene-
fits of utilizing transformer’s self-attention mecha-
nism across the queries: it encodes the two queries
as a single sequence with a separator, while other
baselines encode the queries independently with
BERT and then apply a similarity function. Note
that ContReph utilizes the self-attention mecha-
nism across all turns of the dialogue.

2Due to business reasons, the rough range of “SimCSE-
unsup” performance and absolute difference are indicated in
the table. All numbers are statistically significant.
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5 Conclusion and Future Work

In this paper, we presented a novel approach for
detecting user rephrases in multi-turn dialogue sys-
tems. Users tend to rephrase their queries until they
get the desired response from AI agents. Our sys-
tem can detect these rephrases with a high accuracy
using the dialogue context and significantly outper-
forms other approaches that consider queries in a
pair-wise manner only. The output of our model is
a crucial step towards building self-learning mecha-
nisms in dialogue agents to fix issues with minimal
human intervention.

For future work, we plan to leverage contrastive
learning strategies as a post-training step, which
could help us obtain better query representations,
before we do fine-tuning for rephrase detection. We
also want to deploy the detected rephrases as query
rewrites to gauge how much we can improve the
UX of a real world dialogue system.
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A Appendix

A.1 Implementation Details

Baselines For the BERT-NSP baseline, similar
with the BERT next sentence prediction task (De-
vlin et al., 2019), we fine-tune the BERT model
with a binary classification objective. We break
down all the Has-Rephrase and No-Rephrase ses-
sions into (query, rephrase) pairs with a 0-1 la-
bel (whether the rephrase is true or not). For the
DPR model, we follow the DPR (Karpukhin et al.,
2020) training scheme which compares all pairs
of questions and passages in a batch. We only
use the positive rephrase pairs extracted from Has-
Rephrase sessions, and use the cosine similarity
scores for cross entropy. The most recent base-
line is SimCSE (Gao et al., 2021), which is a sim-
ple contrastive learning framework but greatly ad-
vances the sentence embeddings. For the unsuper-
vised setting (SimCSE-unsup), we extract all the
queries from both Has-Rephrase and No-Rephrase
sessions as the unlabelled training data, and fol-
low Gao et al. (2021) to take an input sentence
and predict itself with a contrastive objective, with
only standard dropout used as noise. For the super-
vised setting (SimCSE-sup), we extract the positive
rephrase pairs from Has-Rephrase sessions, and use
the other queries from the same session as the hard
negatives. Moreover, in order to fully use the train-
ing data and make a fair comparison, we also use
the source query and itself as the positive pairs from
No-Rephrase session, with only standard dropout
used as noise. Other queries from the same session
were used as hard negatives. For the other model
configurations and related hyper-parameters, we
are consistent with the original works (Devlin et al.,
2019; Karpukhin et al., 2020; Gao et al., 2021). We
set the threshold to 0.70 for BERT-NSP, 0.75 for
DPR and 0.85 for the SimCSE models.

Our models We set a mini-batch size of 64 and
use Adam optimizer for optimization during the
fine-tuning for 10 epochs. We set an initial learn-
ing rate of 4 · 10−5. We select the threshold τ
for no-rephrase span prediction on the validation
set, following the same approach as Devlin et al.
(2019), and use this value on all the test sets. All
the experiments are performed with Nvidia V100
GPU.
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Figure 3: Validation set performance for Has-rephrase,
No-rephrase and overall EM score with different τ val-
ues.

A.2 Analysis
Effect of τ This is the major parameter that we
tune for determining whether the prediction should
be null or not (as described in Sec. 3.2). We change
τ in the range of 0.0 to 1.0, and evaluate the model
performance on validation set. Fig. 3 shows the
effect of changing τ on the Exact Match score for
Has-Rephrase, No-Rephrase and all the dialogue
sessions together. As we increase τ , the model pre-
dicts a null rephrase span more often and hence gets
better performance on the No-Rephrase set, and
vice-versa. To balance this trade-off, we choose
the value of τ that maximizes the EM score on
“All” validation set, i.e. looking at Has-Rephrase
and No-Rephrase together. We also ensure that our
data splits are balanced, i.e., contain almost equal
fraction of Has-Rephrase and No-Rephrase cases
(See Table 2).
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Figure 4: EM score on machine-annotated test set with
varying number of turns in the dialogue.

Number of turns in Dialogue Sessions We
show the performance variation with the number



1905

Type Dialog Source query Reference Model Prediction

Correct

USER: Put on man song
AGENT: This Old Man , by Cedarmont Kid.
USER: Put on the but i man song.
AGENT: Sorry, I didn’t get that.
USER: Put on a man song.
AGENT: Here’s a playlist you might like: Latin Hits
USER: Put on Iron Man song.
AGENT: Here’s Iron Man , by Black Sabbath

USER: Put on man song. USER: Put on Iron Man song. USER: Put on Iron Man song.

False trigger

USER: Play twenty one by polo g.
AGENT: 21 by polo g from Spotify.
USER: Play me something.
AGENT: Here’s a station you might like: Platinum Pop.
USER: Play baby something by polo g.
AGENT: Be something by polo g from Spotify.

USER: Play twenty one by polo g NULL USER: Play baby something by polo g.

No trigger

USER: What time is it now ?
AGENT: It’s 8:01 PM.
USER: Play simon time.
AGENT: From Time (feat. Jhene Aiko) by Drake.
USER: Play sign of the times.
AGENT: Sign of the Times by Harry Styles.

USER: Play simon time. USER: Play sign of the times. NULL

Wrong match

USER: Alarm ring
AGENT: Hmm, I don’t know that.
USER: Alarm rain.
AGENT: ...
USER: Arm ring
AGENT: Ring is armed in stay mode,
Side window was bypassed.

USER: Alarm ring. USER: Arm ring. USER: Alarm rain.

USER: Play can’t go on by Chicago
AGENT: I can’t find can’t go on by Chicago
USER: Play on my own by Chicago
AGENT: Here’s My Own Best Friend.
USER: Play will you still love me by Chicago
AGENT: Will You Still Love Me? , by Chicago

USER: Play can’t go on by Chicago
USER: Play will you

still love me by Chicago
USER: Play on my own by Chicago

Table 4: Case study for various types of correct and incorrect predictions from our ContReph model.

Dialog Source query Reference ContReph w/o Time ContReph
USER: Turn off appointment. AGENT: Which event would you like to delete?
USER: Nothing AGENT: Ok, canceled.
USER: Turn off table AGENT: Sorry, I didn’t get that. Turn off appointment. Turn off apartment Turn off alarm Turn off apartment
USER: Turn off apartment AGENT: OK.
USER: Turn off alarm AGENT: ...
USER: Play indie kid music. AGENT: The Scotts by the scotts, Travis Scott.
USER: Play indie music AGENT: Playing Indie music from Apple Music. Play indie kid music. Play indie music Play pride by kendrick lamar Play indie music
USER: Play pride by kendrick lamar AGENT: PRIDE, by Kendrick Lamar.

Table 5: Case study for ContReph vs ContReph w/o time.

of turns in the dialogue sessions in Fig. 4. The
number of turns has a significant effect on the EM
score, even if we balance the length distribution of
dialogues during training. This result shows that
for the sessions with more turns, the context can be
unrelated to the current request, and this unrelated
context can impact the accuracy negatively. Inter-
estingly, capturing the time difference between the
turns helps here, especially for the longer sessions.
With the temporal information, the model can au-
tomatically decide which context is irrelevant and
can thus ignore it.

A.3 Case Study

We show four scenarios in Table 4, where the
first one is a correct prediction and other three
are failure cases: 1) False-trigger, where the
model predicts that current query/request should
be rephrased, but actually the dialogue does not
contain a rephrase; 2) No-trigger, where the model
judges the request need not be rephrased, but ac-
tually the dialogue has a rephrase; and finally, 3)

wrong match, which means the model predicts a
wrong span. False triggering usually happens if the
user issues similar back-to-back queries with very
small time gaps in between. Wrong match mostly
happens if there are multiple successful rephrases
in the session.

We also show comparison between the predic-
tions of ContReph w/o Time and ContReph in Ta-
ble 5. In the first scenario, the user says “turn off
alarm” 20 seconds after “turn off apartment”. The
model without time tends to pick the last successful
query as rephrase, whereas ContReph is aware of
the fact that “turn off alarm” happened long after
“turn off apartment”, and hence picks the latter as
the rephrase.

The second scenario is similar where the user lis-
tens to Kendrick Lamar, 45 seconds after listening
to Indie Music. Hence, the request “Play pride by
kendrick lamar” is not a rephrase, but just another
song that the user listened to. ContReph, being
aware of the temporal information, picked the right
rephrase again, which is “Play indie music”.


