
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1887–1898
November 7–11, 2021. c©2021 Association for Computational Linguistics

1887

Self-training Improves Pre-training for Few-shot Learning in Task-oriented
Dialog Systems

Fei Mi1, Wanhao Zhou2, Fengyu Cai2, Lingjing Kong2, Minlie Huang3 and Boi Faltings2
1Huawei Noah’s Ark Lab

2LIA, EPFL
3CoAI, DCST, Tsinghua University

mifei2@huawei.com, aihuang@tsinghua.edu.cn
{wanhao.zhou,fengyu.cai,lingjing.kong,boi.faltings}@epfl.ch

Abstract

As the labeling cost for different modules in
task-oriented dialog (ToD) systems is expen-
sive, a major challenge is to train different mod-
ules with the least amount of labeled data. Re-
cently, large-scale pre-trained language mod-
els, have shown promising results for few-shot
learning in ToD. In this paper, we devise a self-
training approach to utilize the abundant unla-
beled dialog data to further improve state-of-
the-art pre-trained models in few-shot learning
scenarios for ToD systems. Specifically, we
propose a self-training approach that iteratively
labels the most confident unlabeled data to train
a stronger Student model. Moreover, a new
text augmentation technique (GradAug) is pro-
posed to better train the Student by replacing
non-crucial tokens using a masked language
model. We conduct extensive experiments and
present analyses on four downstream tasks in
ToD, including intent classification, dialog state
tracking, dialog act prediction, and response se-
lection. Empirical results demonstrate that the
proposed self-training approach consistently
improves state-of-the-art pre-trained models
(BERT, ToD-BERT) when only a small number
of labeled data are available.

1 Introduction

Large-scale pre-trained language models, such as
BERT (Devlin et al., 2019), UniLM (Dong et al.,
2019), GPT (Radford et al., 2018), GPT-2 (Radford
et al., 2019), and GPT-3 (Brown et al., 2020), have
shown great few-shot or zero-shot learning abilities
in various NLP tasks with the help of task-agnostic
language knowledge learned via pre-training tasks.
In task-oriented dialog (ToD) systems, the labeling
cost is very high such that the size of well-labeled
data is often small. Therefore, few-shot learning
in ToD is important and valuable in many practical
applications. Many attempts (Peng et al., 2020b,a;
Wu et al., 2020) have been proposed to leverage
large-scale pre-trained language models to improve

few-shot learning in ToD. Specifically, a model pre-
trained on general text corpora is further trained on
public ToD datasets.

Although the size of labeled data is often small, a
practical ToD system de facto has many unlabeled
dialog data. Therefore, utilizing unlabeled data to
improve a ToD system is practically important. In
this paper, we take a semi-supervised self-training
(ST) perspective to iteratively train a better Stu-
dent model using unlabeled data (Scudder, 1965;
Yarowsky, 1995). ST has been successfully applied
to a variety of tasks, including image classification
(Yalniz et al., 2019; Xie et al., 2020; Zoph et al.,
2020), automatic speech classification (Synnaeve
et al., 2019; Kahn et al., 2020; Park et al., 2020;
Likhomanenko et al., 2020), sequence generation
(He et al., 2020), and natural language understand-
ing (Du et al., 2020).

We are going to study this research question: can
self-training provide complementary benefits on top
of the strong pre-training models for few-shot learn-
ing in ToD? Recently, Xie et al. (2020); Zoph et al.
(2020) studied a similar question in the context of
image classification, showing that ST effectively
refines pre-training models. Du et al. (2020) also
recently showed the benefit of ST over pre-training
for general natural language understanding. Yet,
their main proposal is to crawl a large amount of
similar unlabeled data from the web.

In this paper, we propose a self-training ap-
proach based on iterative pseudo-labeling (Lee,
2013). It first trains a Teacher on the labeled sam-
ples. The Teacher then iteratively generates pseudo-
labels for the most confident subset of unlabeled
samples to train a better Student. To train a more ro-
bust Student during self-training, we propose a data
augmentation technique called GradAug. GradAug
first “masks” a fraction of tokens of a dialog input.
Then, it reconstructs the corrupted text with a pre-
trained masked language model of BERT. Different
from Ng et al. (2020), the probability of masking

1888

a token is conditioned on the gradient of the corre-
sponding token embedding w.r.t. the downstream
task. In this way, GradAug prevents replacing to-
kens that are critical for a downstream task.

The main contribution of this paper is three-fold:

• This is the first attempt to study the effect of
self-training on top of existing strong pre-trained
models for ToD in few-shot learning scenarios.

• We propose a self-training method to gradually
train a stronger Student by iteratively labeling
the most confident unlabeled data and a new text
augmentation technique (GradAug).

• We conduct extensive experiments on four down-
stream tasks in ToD, including intent classifica-
tion, dialog state tracking, dialog act prediction,
and response selection. Empirical results demon-
strate that self-training consistently improves
state-of-the-art pre-trained models (BERT, ToD-
BERT Wu et al. (2020)).

2 Related Work

2.1 Pre-training for ToD Systems

Budzianowski and Vulic (2019) first applied GPT-
2 to train a response generation model by taking
the system belief state, database entries, and last
dialog turn as input. Henderson et al. (2019) pre-
trained a response selection model for ToD by first
pre-training on general-domain conversational cor-
pora (Reddit). Ham et al. (2020); Hosseini-Asl
et al. (2020); Peng et al. (2020a) proposed to train
GPT-2 on different sub-tasks (dialog state tracking,
dialog act prediction, and response generation) as
a sequence prediction problem.

Recent studies have shown that large-scale pre-
trained language models are good few-shot learners
(Brown et al., 2020). Several studies have also con-
firmed these findings for ToD. For the task of gener-
ating responses conditioned on a semantic represen-
tation, GPT-2 was leveraged by Peng et al. (2020b)
to improve few-shot learning. Peng et al. (2020a)
utilized GPT-2 for few-shot end-to-end response
generation from dialog contexts. T5 (Raffel et al.,
2020) is also recently applied to few-shot ToD by
Lin et al. (2021) for dialog state tracking and by
Kale and Rastogi (2020) for natural language gen-
eration. Wu et al. (2020) improve a BERT model
for few-shot learning on four downstream tasks.

2.2 Self-training

The first focus of self-training is designing bet-
ter policies to label unlabeled samples. Zhang
and Zhou (2011) evaluated the confidence via a
statistic-based data editing technique. Lee (2013)
designed an annealing function that gradually in-
creases the loss of labeled samples during training.
Amiri (2019) utilized a Leitner queue (Dempster,
1989) to gradually put confident samples in the
front. Niu et al. (2020) selected the most confident
samples with prediction loss below some thresh-
old. Kumar et al. (2010); Ma et al. (2017); Li et al.
(2019); Mukherjee and Awadallah (2020) proposed
to learn sampling weights for unlabeled data to con-
trol the selection process. Reinforcement learning
(RL) methods (Chen et al., 2018; Wu et al., 2018;
Ye et al., 2020) designed an additional Q-agent as
the sample selector. Nevertheless, methods using
learnable weights or RL provide marginal benefits
compared to the elevated optimization cost. As
designing new sample selection schemes is not our
primary focus, we will go for a simple and effective
pipeline described in Section 4.1. Specialized ex-
plorations on this topic are orthogonal to the focus
of this paper and will be left as future work.

The second focus of self-training is to improve
the robustness of the Student model trained from
potentially noisy pseudo-labeled samples. Data
augmentation techniques are widely used. In com-
puter vision, recent works demonstrated the ben-
efit of different stochastic augmentation tricks,
including input transformations (Laine and Aila,
2017; Xie et al., 2020; Zoph et al., 2020), dropout
(Laine and Aila, 2017; Xie et al., 2020; Zoph et al.,
2020), adversarial samples (Miyato et al., 2019),
and Mixup (Berthelot et al., 2019, 2020). Text
augmentation is more challenging because of the
complex syntactic and semantic structures. Miyato
et al. (2017) utilized adversarial training to apply
perturbations to word embeddings. Wei and Zou
(2019) proposed EDA using basic synonym replace-
ment, random insertion, swap, and deletion. Ku-
mar et al. (2019) proposed to maximize a monotone
sub-modular function to obtain diverse paraphrases.
Xie et al. (2019) proposed UDA applying back-
translation (Edunov et al., 2018) and word replace-
ment using a Tf-Idf metric. He et al. (2020) studied
the effect of dropout compared to back-translation
during self-training for the neural sequence gener-
ation task. Chen et al. (2020) proposed MixText
that utilizes Manifold Mixup (Verma et al., 2019)

1889

to interpolate hidden layers corresponding to se-
mantic representations of BERT. Ng et al. (2020)
proposed SSMBA utilizing the masked language
model of BERT to replace words. In experiments,
we compare the proposed GradAug technique with
state-of-the-art text augmentation methods.

3 Background of Using Pre-trained
Models for Downstream Tasks in ToD

In this section, we first briefly overview the pipeline
of utilizing large-scale pre-trained models for four
common downstream tasks (intent classification,
dialog state tracking, dialog act prediction, and re-
sponse selection) in ToD. We denote the input and
label of different downstream tasks as x and y, and
a prediction model is denoted as ŷx = F (x). F
can often be decomposed into two parts. The first
part is a feature extractor h = A(x) ∈ Rl which
computes a hidden representation h of x, and the
second part is an output network for prediction.
Large-scale pre-trained language models serve as
feature extractor A to compute a hidden represen-
tation for an input. For example, we use the [CLS]
embedding of BERT as the hidden representation
h when BERT is adopted as A. Different output
networks are designed for different downstream
tasks, and the details following ToD-BERT (Wu
et al., 2020) are described below.

Intent classification. This is a multi-class classi-
fication problem to predict the single intent label y
of an input utterance x. The model computes the
probability over I possible intents as:

pint = Softmax(W1 ·A(x)) ∈ RI , (1)

where W1 ∈ RI×l is a trainable weight matrix,
and the model is optimized by the standard cross-
entropy loss compared to the ground truth.

Dialog state tracking. It is a multi-class classi-
fication problem based on a predefined ontology.
Unlike intent classification, the dialog history (a
sequence of utterances) is used as the input x. For
each (domain, slot) pair, the model predicts a score
over all potential slot values. For the i-th slot value
vji of the j-th pair, the cosine similarity score com-
pared to the input x is computed as follows:

sji = Cosine(Gj(A(x)), A(v
j
i)) ∈ R1, (2)

whereGj is the slot projection layer of the j-th pair,
and the number of layers |G| equals the number of
(domain, slot) pairs. The model is trained with the
cross-entropy loss summed over all the pairs.

Dialog act prediction. This is a multi-label clas-
sification problem to predict dialog act (DA) intents
for the next system response. The model takes a
dialog history as input x and predicts a Bernoulli
outcome for each possible DA intent as:

a = Sigmoid(W2 ·A(x)) ∈ RN , (3)

whereW2 ∈ RN×l is a trainable weight matrix, and
N is the number of possible DA intents. Values in
a are between [0, 1], and the model is optimized by
a binary cross-entropy loss w.r.t. the ground truth.
A threshold of 0.5 is applied during inference.

Response selection. This task predicts the most
relevant system response from a candidate pool.
A dual-encoder model (Henderson et al., 2019) is
adopted to compute the similarity between the input
dialog history x and the i-th candidate response ci:

ri = Cosine(A(x), A(ci)) ∈ R1. (4)

During training, we randomly sample 20 negative
responses for each ground truth response. A cross-
entropy loss is applied aiming to rank the ground
truth highest.

4 Self-training

In this section, we introduce our self-training (ST)
algorithm. The overall ST algorithm is introduced
in Section 4.1, and a new text augmentation method
(GradAug) for ST to train a more robust Student is
elaborated in Section 4.2.

4.1 Overall ST Algorithm

During training, two data pools are maintained and
denoted as U (unlabeled data) and L (labeled data).
Two versions of the model are maintained, Teacher
(F T) and Student (FS). Before the iterations of ST
start, the Teacher is first trained on the initial small
number of labeled data L to “warm up”.

Pseudo-Labeling. In the beginning of an ST it-
eration, the Teacher first makes predictions on U .
For every data input x ∈ U , the Teacher predicts
the label of x as ŷx = F T (x). We set the predicted
score of the prediction ŷx as the confidence score
sx for this prediction. When there is only a single
label in the prediction ŷx (c.f. intent classification,
response selection), sx is the prediction score cor-
responding to the predicted label. When there are
multiple labels in the prediction ŷx (c.f. dialog
state tracking, dialog act prediction), sx takes the

1890

Figure 1: Pipeline of one ST iteration. The Teacher first
generates predictions for data in U . Then, the Selec-
tor chooses the most confident samples based on the
Teacher’s predictions and assign pseudo labels to them
before appending to L. Afterwards, L is augmented by
“GradAug” to train a Student. Lastly, the trained Student
becomes the Teacher in the next iteration. Multiple iter-
ations are computed till the Student converges.

mean of the prediction scores corresponding to the
predicted labels. In each iteration, the Selector
chooses top-k instances from U with the highest
confidence scores, and assigns the corresponding
predictions ŷx as labels to them. These labeled
instances will be moved from U to L.

Iterative Student training. The updated L is
used to train a stronger Student model. We applied
dropout (Srivastava et al., 2014) and a new text aug-
mentation technique (GradAug) introduced later in
Section 4.2 which augments L to LAug. At the end
of each iteration, the Teacher model is overridden
by the current Student to be used in the next itera-
tion. We reinitialize the Student in every iteration
to avoid over-fitting the initial and earlier data in
L in multiple training iterations. As noted by Xie
et al. (2020); Du et al. (2020), the Student should
have an equal or larger capacity than the Teacher
to gradually learn from L with increasing size. In
this paper, we set the Student the same size as the
Teacher, and we demonstrate in experiments that
consistent improvements can be achieved without
increasing model capacity.

Details of our ST algorithm are described in Al-
gorithm 1, and the pipeline of one ST iteration (i.e.,
the “While” loop in Algorithm 1) is visualized in
Figure 1.

4.2 Text Augmentation (GradAug)

Next, we propose a novel text augmentation tech-
nique called “GradAug” for data in L to train
a more robust Student. Our method employs
the masked language model (MLM, Devlin et al.

Algorithm 1 Self-training (ST) for ToD

Input: Labeled data: L, Unlabeled data: U ,
Teacher: F T , Student: FS , Number of pseudo-
labeled data in an iteration: k, Number of aug-
mentations per input: q

Output: A trained Student FS

1: Initialize F T and train F T on L
2: while FS not good enough & U 6= Ø do
3: Initialize FS , L′ ← Priority_list()
4: for x ∈ U do
5: Compute prediction label ŷx = F T (x)
6: Compute confidence score sx
7: L′.insert({x, ŷx, sx})
8: end for
9: L′ ← L′.top(k)

10: L← L ∪ L′, U ← U\L′
11: LAug ← GradAug(L,F T , q)
12: Train FS on LAug with dropout
13: F T ← FS

14: end while

(2019); Liu et al. (2019)), which is a common pre-
training strategy for BERT-like architectures. In
MLM, some tokens are replaced by the special to-
ken [MASK], and the model is asked to reconstruct
the original tokens from the context.

To utilize a pre-trained MLM (e.g. BERT) for
text augmentation, the first step is to decide which
tokens to mask. Random sampling is used by
the original BERT framework and a recent text
augmentation method (SSMBA, Ng et al. (2020)).
However, if some crucial tokens are masked, the se-
mantics might change after the reconstruction. For
example, if the important token “status” in Figure 2
is masked, top predictions from the MLM of BERT
includes “purpose”, “cost”, and “route”, which will
potentially change the original semantics.

Gradient-based token masking. Instead of ran-
domly masking tokens, we compute a masking
probability p = [p1, ..., pn] for an input x of n
tokens. For input x with token embedding matrix1

X = [X1, ..., Xn]
ᵀ ∈ Rn×d and label y, the impor-

tance of tokens in x to the label y is computed by
a saliency map (Simonyan et al., 2014) m:

m =
[
M(X1), . . . ,M(Xn)

]ᵀ ∈ Rn,

M(Xi) = 1ᵀ

(
∂F Ty (X)

∂Xi

)
∈ R1,

(5)

1We use the token embeddings of BERT-like architectures,
rather than position or segmentation embeddings.

1891

Figure 2: An illustrative example of GradAug. First, the
smooth saliency M̃ is computed for each token, and we
highlight important tokens in blue for the intent label
“flight_status”. Less important tokens are more likely to
be masked. Then, the masked token (“american”) is re-
constructed by the MLM of BERT and the replacement
token “scheduled” does not change the semantics of the
original sentence.

where F Ty (X) is the Teacher model’s prediction
score for the label y. M(Xi) measures the impor-
tance of the i-th token by accumulating the gradi-
ents of all elements in its embedding Xi ∈ Rd by
differentiating F Ty (X) w.r.t. Xi. The intuition is
that tokens with large gradients are important to the
label y. However, previous studies (Sundararajan
et al., 2017; Smilkov et al., 2017) pointed out that
raw gradients can be very noisy and may sharply
fluctuate locally. To this end, we compute a smooth
saliency measure (Smilkov et al., 2017) M̃(Xi) for
the i-th token as:

M̃(Xi) =
1

m

m∑
j=1

M(X̃j
i) ∈ R1,

X̃j
i = Xi + zj ,

(6)

where m Gaussian noises zj ∼ N (0,Σ) ∈ Rd

with mean 0 and diagonal co-variance matrix Σ
are added to Xi to calculate m regular saliency
measures, which average to the smooth saliency
M̃(Xi) for Xi. The probability pi of masking the
i-th token is inversely correlated to M̃(Xi) as:

pi ∝
1

M̃(Xi)β
, (7)

where β controls the flatness of the distribution p,
and p is normalized by its sum. As the probabil-
ity pi to mask a token xi is inversely correlated
to its importance M̃(Xi) to a downstream task,
more important tokens are less likely to be masked.
We sample 15% 2 tokens of x based on p and re-
place them by [MASK] to corrupt x to x′. As F T

is updated in each ST iteration, p is dynamically
calculated in each ST iteration.

2This is the default ratio used by BERT and SSMBA.

Algorithm 2 GradAug

Input: Labeled data: L, Teacher: F T , Number of
augmentations per input: q

Output: Augmented labeled data LAug
1: Initialize LAug ← L
2: for {x, y} ∈ L do
3: Compute masking probability p using F T

4: for j ∈ 1 . . . q do
5: x′ ←Mask tokens of x based on p
6: x̂← Predict masked tokens by MLM
7: LAug.append({x̂, y})
8: end for
9: end for

Reconstruction using MLM. To reconstruct the
masked tokens in x′, we utilize a pre-trained MLM
to predict the [MASK] tokens. For stochastic pur-
poses suggested by Fan et al. (2018), we recon-
struct each [MASK] by sampling 1 token from
10 most likely tokens according to their predicted
probabilities. Afterwards, we get a paraphrased
x̂ of the original x as an augmentation. As our
gradient-based masking scheme avoids replacing
tokens crucial to the meaning of x, the label of x̂ is
preserved the same as x.

An illustrative example of GradAug is given
in Figure 2, and the detailed procedure applying
GradAug on L is described in Algorithm 2.

5 Experiments

5.1 Dataset Description

We evaluate four different datasets for four down-
stream tasks as in Wu et al. (2020).

OOS (Larson et al., 2019) is a benchmark dataset
for intent classification in ToD. It consists of 150
in-domain intents and 1 out-of-scope intent. The
full dataset contains 15,100/3,100/5,500 samples
for train/validation/test, and all data are balanced
across 151 different intents.

MWOZ (Eric et al., 2020) is evaluated in three
downstream tasks, including dialog state track-
ing, dialogue act prediction, and response predic-
tion. It contains 8,420/1,000/1,000 dialogues for
train/validation/test. For dialog act prediction, we
remove the domain information from original la-
bels as in Wu et al. (2020), resulting 13 DA intents.

DSTC2 (Henderson et al., 2014) and GSIM
(Shah et al., 2018) are two corpus used in
dialog act prediction and response selection
tasks. DSTC2 contains 1,612/506/1,117 dia-

1892

Data Model Acc. Acc. Acc. Recall
(all) (in) (out) (out)

1%

BERT 36.5% ± 2.7% 44.6% ± 3.3% 81.8% ± 0.8% 0.4% ± 0.2%
BERT-ST 70.1% ± 2.2% 82.2% ± 3.7% 84.3% ± 1.0% 15.5% ± 1.3%
ToD-BERT 39.0% ± 1.3% 47.1% ± 0.7% 82.0% ± 0.4% 2.3% ± 0.3%
ToD-BERT-ST 75.8% ± 1.7% 87.8% ± 1.5% 85.5% ± 0.7% 21.9% ± 0.9%

10%

BERT 73.6% ± 1.9% 87.4% ± 2.1% 83.9% ± 0.5% 11.7% ± 1.1%
BERT-ST 80.6% ± 1.7% 94.3% ± 1.5% 84.9% ± 0.6% 17.1% ± 0.9%
ToD-BERT 75.5% ± 1.0% 89.4% ± 0.8% 84.1% ± 0.7% 13.3% ± 1.4%
ToD-BERT-ST 85.3% ± 0.9% 94.7% ± 0.7% 89.4% ± 0.6% 42.8% ± 1.7%

Full* BERT 84.9% 95.8% 88.1% 35.6%
ToD-BERT 86.6% 96.2% 89.9% 43.6%

Table 1: Results of intent classification. Bold numbers indicate ST improves the corresponding pre-trained model.
Results with * are taken from Wu et al. (2020).

logues for train/validation/test; GSIM contains
1,500/469/1,039 dialogues for train/validation/test.
DA intent labels of DSTC2 and GSIM are mapped
to universal dialogue acts (Paul et al., 2019), result-
ing in 19 and 13 DA intents respectively.

5.2 Experiment Settings

We randomly sample 1% or 10% of the training
data to serve as the initial labeled data L, while the
remainders are used as unlabeled data U . We report
mean and standard deviation with three different
random seeds for each experiment to reduce data
sampling variance. We also report the upper bound
of pre-trained models without ST using all labeled
training data, referred to as “Full”.

We test two pre-trained models: (i). uncased
base BERT with 110M parameters; (ii). ToD-
BERT 3 (Wu et al., 2020) that is further pre-trained
on 9 public ToD datasets on top of BERT. When ST
is applied to them, the corresponding MLM is used
by GradAug to reconstruct masked tokens. Basic
model parameters of the first 3 downstream tasks
are set the same as Wu et al. (2020). In response
selection, we reduced training batch size from 25
to 20 to fit our computation constraint.

BERT and Tod-BERT without ST are trained on
the initial labeled data L until validation perfor-
mance does not improve for 20 epochs 4. For ST,
when the Student is trained on LAug in one ST iter-
ation (c.f. Algorithm 1 line 12), we apply early stop
until validation performance does not improve for
10 epochs. Moreover, the best Student across mul-
tiple ST iterations is selected based on validation
performance (c.f. Algorithm 1 line 2). It means
that the best Student model does not necessarily

3We used their joint version (ToD-BERT-jnt) pre-trained
with the MLM and “response contrastive loss” objectives.

4Our different (often better) results compared to the ToD-
BERT paper mainly come from this stricter early stop criteria.

Data Model Joint Acc Slot Acc

1%

BERT 8.0% ± 1.1% 84.3% ± 0.6%
BERT-ST 8.8% ± 0.6% 84.5% ± 0.4%
ToD-BERT 8.4% ± 0.5% 85.7% ± 0.4%
ToD-BERT-ST 9.9% ± 0.3% 86.5% ± 0.2%

10%

BERT 21.2% ± 0.5% 92.0% ± 0.3%
BERT-ST 23.9% ± 0.3% 92.4% ± 0.5%
ToD-BERT 25.5% ± 0.6% 93.4% ± 0.2%
ToD-BERT-ST 28.3% ± 0.4% 93.7% ± 0.1%

Full* BERT 45.6% 96.6%
ToD-BERT 48.0% 96.9%

Table 2: Results of dialog state tracking. Bold num-
bers indicate ST improves the corresponding pre-trained
model. Results with * are taken from Wu et al. (2020).

use up all unlabeled data. Other hyper-parameters
of ST selected base on validation performance are
reported in Appendix A.3.

5.3 Main Results of Four Downstream Tasks
Intent classification. Results of intent classifi-

cation on OOS are presented in Table 1 with ac-
curacy of all 151 intents; 150 in-domain intents;
the out-of-scope intent, and the recall of the out-
of-scope intent. ST significantly improves the pre-
trained BERT and ToD-BERT. When only 1% la-
beled data are used, ST achieves 33.6% and 36.8%
higher accuracy on all 151 intents for BERT and
ToD-BERT respectively. For 10% labeled data, the
above two margins are 7.0% and 9.8%. Further-
more, ST largely improves the recall of the out-
of-scope intent, indicating that it is more robust to
out-of-scope intents with noisy distributions.

Dialog state tracking. Results of dialog state
tracking on MWOZ are presented in Table 2. Two
common evaluation metrics (Budzianowski et al.,
2018; Wu et al., 2019) are used: slot accuracy and
joint goal accuracy. Slot accuracy is computed for
each individual state (domain, slot, value) to check
whether the value is correctly predicted. Joint goal
accuracy checks whether the predicted states ex-
actly matches the ground truth states. We could

1893

Data Model MWOZ DSTC2 GSIM
micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1

1%

BERT 83.5% ± 0.7% 61.2% ± 1.5% 79.1% ± 1.4% 26.8% ± 0.4% 70.3% ± 1.3% 27.9% ± 0.7%
BERT-ST 82.7% ± 0.5% 64.2% ± 0.8% 81.4% ± 0.7% 27.3% ± 0.2% 73.0% ± 0.8% 29.8% ± 0.4%
ToD-BERT 85.8% ± 0.2% 67.0% ± 0.6% 80.9% ± 0.7% 25.3% ± 0.4% 86.5% ± 3.0% 36.6% ± 2.1%
ToD-BERT-ST 86.9% ± 0.4% 71.8% ± 0.3% 82.7% ± 0.8% 28.5% ± 0.4% 92.6% ± 1.1% 40.8% ± 0.9%

10%

BERT 89.8% ± 0.2% 77.8% ± 0.3% 88.9% ± 0.7% 35.7% ± 1.3% 97.1% ± 0.3% 44.1% ± 0.2%
BERT-ST 89.5% ± 0.1% 79.2% ± 0.6% 92.3% ± 0.6% 38.4% ± 1.0% 97.6% ± 0.2% 44.6% ± 0.4%
ToD-BERT 90.0% ± 0.2% 78.4% ± 1.0% 90.6% ± 2.1% 38.8% ± 1.9% 98.6% ± 0.2% 44.9% ± 0.2%
ToD-BERT-ST 90.2% ± 0.2% 79.6% ± 0.4% 92.9% ± 0.8% 40.5% ± 0.9% 99.3% ± 0.3% 45.6% ± 0.4%

Full* BERT 91.4% 79.7% 92.3% 40.1% 98.7% 45.2%
ToD-BERT 91.7% 80.6% 93.8% 41.3% 99.5% 45.8%

Table 3: Results of dialog act prediction. Bold numbers indicate ST improves the corresponding pre-trained model.
Results with * are taken from Wu et al. (2020).

Data Model MWOZ DSTC2 GSIM
Recall@1 Recall@3 Recall@1 Recall@3 Recall@1 Recall@3

1%

BERT 7.3% ± 1.4% 19.5% ± 3.2% 3.5% ± 0.6% 9.8% ± 1.5% 4.0% ± 0.6% 11.4% ± 1.0%
BERT-ST 23.8% ± 1.4% 46.1% ± 0.7% 36.7% ± 0.4% 51.1% ± 1.3% 11.1% ± 0.8% 24.2% ± 0.6%
ToD-BERT 37.5% ± 1.9% 63.0% ± 1.1% 35.7% ± 0.9% 53.8% ± 0.7% 11.4% ± 1.1% 24.1% ± 0.9%
ToD-BERT-ST 43.5% ± 0.7% 66.3% ± 0.6% 48.0% ± 0.5% 64.6% ± 0.3% 27.8% ± 1.0% 42.9% ± 0.8%

10%

BERT 26.1% ± 3.0% 56.5% ± 3.5% 27.7% ± 2.1% 42.9% ± 3.4% 13.4% ± 0.6% 28.3% ± 1.7%
BERT-ST 43.1% ± 1.1% 66.1% ± 1.3% 53.7%± 2.0% 67.1% ± 2.9% 22.3% ± 0.4% 40.4% ± 0.9%
ToD-BERT 47.2% ± 1.1% 69.4% ± 1.1% 51.3% ± 0.7% 66.0% ± 0.49% 28.5% ± 0.7% 47.8% ± 1.0%
ToD-BERT-ST 60.2% ± 1.3% 81.9% ± 1.6% 58.8% ± 0.8% 72.2% ± 1.1% 41.8% ± 0.9% 64.9% ± 1.4%

Full BERT 47.5% 75.5% 46.6% 62.1% 13.4% 32.9%
ToD-BERT 66.9% 89.1% 59.5% 73.1% 43.0% 65.3%

Table 4: Results of response selection. Bold numbers indicate ST improves the corresponding pre-trained model.

see that ST consistently improves both BERT and
ToD-BERT. E.g., ST has 1.5% and 2.8% joint goal
accuracy improvement over ToD-BERT when 1%
and 10% labeled data are used respectively. Similar
margins can be observed for ST on top of BERT.

Dialog act prediction. Experiments are con-
ducted on three datasets and results are reported in
Table 3. We report micro-F1 and macro-F1 scores
for this multi-label classification task. Again, the
benefit of ST can be observed by the improvement
for both BERT and ToD-BERT. When 10% labeled
data are used, BERT and ToD-BERT perform simi-
larly to their upper bound (Full), and the improve-
ment margin of ST is limited. When 1% labeled
data are used, more notable margins of ST can be
seen on the two simpler datasets (DSTC2, GSIM)
and the macro-F1 score of MWOZ.

Response selection. Results of response se-
lection on three datasets are reported in Table 4.
We randomly sample 100 responses as negative
responses and report Recall@1&3 (Henderson
et al., 2019) indicating whether the true response
is ranked in the top-1 or top-3 predicted responses.
When 1% labeled data are used, ST achieves 6%,
12.3%, and 16.4% higher Recall@1 accuracy over
ToD-BERT on three datasets respectively. For 10%
labeled data, the three margins above are 13.0%,

7.5%, and 14.4% respectively. Larger improve-
ments can be observed for ST on top of BERT.

Altogether, our experiments on four different
downstream tasks reveal that:

• Self-training provides complementary benefits
on top of pre-training. ST consistently improves
both BERT and ToD-BERT on all four down-
stream tasks with only 1% and 10% labeled data.

• Self-training is on par with customized pre-
training for ToD. BERT performs worse than
ToD-BERT, yet BERT-ST achieves compara-
ble or even better performance than ToD-BERT
which is heavily pre-trained on ToD corpora.

• Self-training bridges the gap between few-shot
learning and full supervision. BERT and ToD-
BERT with 10% labeled data perform much
worse than models using all labeled data (“Full”)
for intent classification and response selection.
ST largely improves performances in these two
cases with results comparable to “Full”.

• The benefit of self-training is evident on two sim-
pler single-label prediction tasks (intent classifi-
cation, response selection), indicated by 6-37%
gain with 1% labeled data; 7-15% gain with 10%
labeled data. The margin is smaller on two other
more challenging multi-label prediction tasks.

1894

IC RS
Acc. (all) Recall@3

ToD-BERT-ST 85.3% 64.9%
w/o Smooth Saliency 81.9% 64.4%
w/o Augmentation 80.4% 54.8%
w/o Pseudo-Labeling 76.9% 49.7%
ToD-BERT 75.5% 47.8%

Table 5: Ablation study of ST for intent classification
(IC) on OOS and response selection (RS) on GSIM.

5.4 In-depth Analyses of Self-training

In this section, we provide in-depth analyses of
the proposed self-training approach. As case stud-
ies, we limited our discussion on intent classifica-
tion (IC) on OOS and response selection (RS) on
GSIM using ToD-BERT-ST with 10% labeled data.
Reported results are accuracies on all intents and
Recall@3 respectively.

Ablation study. In Table 5, we compare three
simplified versions of ToD-BERT-ST to understand
the effects of different components. We can ob-
serve that: (i) Masking tokens using the smooth
saliency computed in Eq. (6) for GradAug is bene-
ficial because replacing it by the vanilla saliency in
Eq. (5) (“w/o Smooth Saliency”) degrades the per-
formance by 3.4% and 0.5% on IC and RS. (ii)
Training a more robust Student using data aug-
mented by GradAug is advantageous because drop-
ping this augmentation step (“w/o Augmentation”)
impairs performance by 4.9% and 10.1%. (iii) The
Pseudo-Labeling operation to iteratively label un-
labeled data is important for ST, indicated by the
8.4% and 15.2% performance drop of “w/o Pseudo-
Labeling” that only applies GradAug to the initial
labeled data without utilizing unlabeled data.

Comparison to other Selectors in ST. In Table
6, we compare our scheme of selecting samples
with top-k confident predictions from U in each
iteration with (i) Random-k: randomly select k
samples; (ii) Least-k: select samples with least-
k confident predictions (iii) Select-all (Xie et al.,
2020; Du et al., 2020): label all samples of U in
an iteration and relabel them in the next iteration.
We could see that “Random-k” and “Least-k” per-
form worse than ours, yet they both outperform
“Select-all” by large margins. It means that the
initial Teacher trained on limited labeled data is
not good enough to assign reliable labels to a large
number of unlabeled data.

IC RS
Acc. (all) Recall@3

Top-k (Ours) 85.3% 64.9%
Random-k 84.0% 64.1%
Least-k 82.7% 61.4%
Select-all 76.0% 50.8%

Table 6: Comparison to other Selectors in ST for intent
classification (IC) on OOS and response selection (RS)
on GSIM.

IC RS
Acc. (all) Recall@3

GradAug (Ours) 85.3% 64.9%
SSMBA (Ng et al., 2020) 84.6% 64.2%
MixText (Chen et al., 2020) 83.6% 62.7%
UDA (Xie et al., 2019) 82.5% 62.2%
EDA (Wei and Zou, 2019) 77.2% 57.6%
w/o Augmentation 80.4% 54.8%

Table 7: Comparison to other text augmentation meth-
ods to train the Student for intent classification (IC) on
OOS and response selection (RS) on GSIM.

Comparison to other text augmentation meth-
ods. In Table 7, we compare GradAug with four
representative text augmentation methods to aug-
ment L. We follow the default setting of these
techniques and apply them to our ST pipeline to
generate three paraphrases for each input as in
GradAug. We could see that GradAug consistently
outperforms the current state-of-the-art (SSMBA,
MixText, UDA), and it outperforms EDA by large
margins. As EDA might easily change the input se-
mantics, it even performs worse than using no data
augmentation for intent classification. This result
reinforces the importance of preserving semantics
during augmentation for ToD.

6 Conclusion

We study using self-training to improve the strong
pre-trained models for few-shot learning tasks in
ToD. An iterative self-training method with a new
text augmentation technique (GradAug) is pro-
posed to gradually train a stronger Student model
using unlabeled data. Extensive empirical results
on four downstream tasks in ToD demonstrate the
consistent improvements of self-training on top of
pre-trained models. Our findings on using self-
training to improve learning from limited labeled
data may inspire future studies towards building
more sample-efficient and scalable ToD systems.

1895

References
Hadi Amiri. 2019. Neural self-training through spaced

repetition. In NAACL-HLT (1), pages 21–31. Associ-
ation for Computational Linguistics.

David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
2020. Remixmatch: Semi-supervised learning with
distribution matching and augmentation anchoring.
In ICLR.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin Raffel.
2019. Mixmatch: A holistic approach to semi-
supervised learning. In NeurIPS, pages 5050–5060.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Pawel Budzianowski and Ivan Vulic. 2019. Hello, it’s
GPT-2 - how can I help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. In NGT@EMNLP-IJCNLP, pages 15–22.
Association for Computational Linguistics.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - A large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP, pages 5016–
5026. Association for Computational Linguistics.

Chenhua Chen, Yue Zhang, and Yuze Gao. 2018. Learn-
ing how to self-learn: Enhancing self-training using
neural reinforcement learning. In IALP, pages 25–30.
IEEE.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
text: Linguistically-informed interpolation of hidden
space for semi-supervised text classification. In ACL,
pages 2147–2157. Association for Computational
Linguistics.

Frank N Dempster. 1989. Spacing effects and their
implications for theory and practice. Educational
Psychology Review, 1(4):309–330.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171–4186. As-
sociation for Computational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,

and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In NeurIPS, pages 13042–13054.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaud-
hary, Onur Celebi, Michael Auli, Ves Stoyanov, and
Alexis Conneau. 2020. Self-training improves pre-
training for natural language understanding. CoRR,
abs/2010.02194.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In EMNLP, pages 489–500. Association for
Computational Linguistics.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Kumar Goyal, Peter Ku, and Dilek Hakkani-Tür.
2020. Multiwoz 2.1: A consolidated multi-domain
dialogue dataset with state corrections and state track-
ing baselines. In LREC, pages 422–428. European
Language Resources Association.

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018.
Hierarchical neural story generation. In ACL (1),
pages 889–898. Association for Computational Lin-
guistics.

DongHoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and
Kee-Eung Kim. 2020. End-to-end neural pipeline
for goal-oriented dialogue systems using GPT-2. In
ACL, pages 583–592. Association for Computational
Linguistics.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In ICLR.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In SIGDIAL Conference, pages 263–272.
Association for Computational Linguistics.

Matthew Henderson, Ivan Vulic, Daniela Gerz, Iñigo
Casanueva, Pawel Budzianowski, Sam Coope, Geor-
gios Spithourakis, Tsung-Hsien Wen, Nikola Mrksic,
and Pei-Hao Su. 2019. Training neural response se-
lection for task-oriented dialogue systems. In ACL
(1), pages 5392–5404. Association for Computational
Linguistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. CoRR,
abs/2005.00796.

Jacob Kahn, Ann Lee, and Awni Hannun. 2020. Self-
training for end-to-end speech recognition. In
ICASSP, pages 7084–7088. IEEE.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

1896

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha P. Talukdar. 2019. Submodular
optimization-based diverse paraphrasing and its ef-
fectiveness in data augmentation. In NAACL-HLT
(1), pages 3609–3619. Association for Computational
Linguistics.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable models.
In NIPS, pages 1189–1197. Curran Associates, Inc.

Samuli Laine and Timo Aila. 2017. Temporal ensem-
bling for semi-supervised learning. In ICLR (Poster).

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and out-
of-scope prediction. In EMNLP/IJCNLP (1), pages
1311–1316. Association for Computational Linguis-
tics.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in rep-
resentation learning, ICML, volume 3.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao
Zheng, Tat-Seng Chua, and Bernt Schiele. 2019.
Learning to self-train for semi-supervised few-shot
classification. In NeurIPS, pages 10276–10286.

Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn,
Gabriel Synnaeve, and Ronan Collobert. 2020. slim-
ipl: Language-model-free iterative pseudo-labeling.
CoRR, abs/2010.11524.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021. Leveraging slot descriptions for zero-shot
cross-domain dialogue statetracking. In NAACL-HLT
(1), pages 5640–5648. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Fan Ma, Deyu Meng, Qi Xie, Zina Li, and Xuanyi Dong.
2017. Self-paced co-training. In ICML, volume 70
of Proceedings of Machine Learning Research, pages
2275–2284. PMLR.

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. In ICLR (Poster).

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2019. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning. IEEE Trans. Pattern Anal. Mach.
Intell., 41(8):1979–1993.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. Uncertainty-aware self-training for text classi-
fication with few labels. CoRR, abs/2006.15315.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi.
2020. SSMBA: Self-supervised manifold based data
augmentation for improving out-of-domain robust-
ness. In EMNLP, pages 1268–1283. Association for
Computational Linguistics.

Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, Jing-
fang Xu, and Minlie Huang. 2020. A self-training
method for machine reading comprehension with soft
evidence extraction. In ACL, pages 3916–3927. As-
sociation for Computational Linguistics.

Daniel S. Park, Yu Zhang, Ye Jia, Wei Han, Chung-
Cheng Chiu, Bo Li, Yonghui Wu, and Quoc V. Le.
2020. Improved noisy student training for automatic
speech recognition. In INTERSPEECH, pages 2817–
2821. ISCA.

Shachi Paul, Rahul Goel, and Dilek Hakkani-Tür. 2019.
Towards universal dialogue act tagging for task-
oriented dialogues. In INTERSPEECH, pages 1453–
1457. ISCA.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin
Shayandeh, Lars Liden, and Jianfeng Gao. 2020a.
SOLOIST: few-shot task-oriented dialog with A
single pre-trained auto-regressive model. CoRR,
abs/2005.05298.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020b. Few-shot natural language generation for
task-oriented dialog. In EMNLP (Findings), pages
172–182. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Henry Scudder. 1965. Probability of error of some
adaptive pattern-recognition machines. IEEE Trans.
Inf. Theory, 11(3):363–371.

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and Gökhan
Tür. 2018. Bootstrapping a neural conversational
agent with dialogue self-play, crowdsourcing and
on-line reinforcement learning. In NAACL-HLT (3),
pages 41–51. Association for Computational Linguis-
tics.

1897

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In ICLR (Workshop Poster).

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B.
Viégas, and Martin Wattenberg. 2017. Smooth-
grad: removing noise by adding noise. CoRR,
abs/1706.03825.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In ICML,
volume 70 of Proceedings of Machine Learning Re-
search, pages 3319–3328. PMLR.

Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Edouard
Grave, Tatiana Likhomanenko, Vineel Pratap,
Anuroop Sriram, Vitaliy Liptchinsky, and Ronan Col-
lobert. 2019. End-to-end ASR: from supervised to
semi-supervised learning with modern architectures.
CoRR, abs/1911.08460.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better repre-
sentations by interpolating hidden states. In ICML,
volume 97 of Proceedings of Machine Learning Re-
search, pages 6438–6447. PMLR.

Jason W. Wei and Kai Zou. 2019. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. In EMNLP/IJCNLP (1),
pages 6381–6387. Association for Computational
Linguistics.

Chien-Sheng Wu, Steven Hoi, Richard Socher, and
Caiming Xiong. 2020. TOD-BERT: Pre-trained nat-
ural language understanding for task-oriented dia-
logues. In EMNLP, pages 917–929. Association for
Computational Linguistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In ACL (1), pages
808–819. Association for Computational Linguistics.

Jiawei Wu, Lei Li, and William Yang Wang. 2018. Re-
inforced co-training. In NAACL-HLT, pages 1252–
1262. Association for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Minh-Thang
Luong, and Quoc V. Le. 2019. Unsupervised data
augmentation. CoRR, abs/1904.12848.

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and
Quoc V. Le. 2020. Self-training with noisy student
improves imagenet classification. In CVPR, pages
10684–10695. IEEE.

I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar
Paluri, and Dhruv Mahajan. 2019. Billion-scale semi-
supervised learning for image classification. CoRR,
abs/1905.00546.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In ACL,
pages 189–196. Morgan Kaufmann Publishers / ACL.

Zhiquan Ye, Yuxia Geng, Jiaoyan Chen, Jingmin Chen,
Xiaoxiao Xu, Suhang Zheng, Feng Wang, Jun Zhang,
and Huajun Chen. 2020. Zero-shot text classification
via reinforced self-training. In ACL, pages 3014–
3024. Association for Computational Linguistics.

Min-Ling Zhang and Zhi-Hua Zhou. 2011. Cotrade:
Confident co-training with data editing. IEEE Trans.
Syst. Man Cybern. Part B, 41(6):1612–1626.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.
2020. Rethinking pre-training and self-training. In
NeurIPS, volume 33.

1898

Task Dataset Ratio of Labeled Data Initial Samples in L Hyper-parameter k

Intent classification OOS
1% 151 500
10% 1510 1510

Dialog state tracking MWOZ
1% 567 200
10% 5672 2000

Dialog act prediction

MWOZ
1% 482 500
10% 4824 2000

DSTC2
1% 116 200
10% 1160 500

GSIM
1% 66 100
10% 664 500

Response selection

MWOZ
1% 482 500
10% 4824 4500

DSTC2
1% 100 100
10% 1006 700

GSIM
1% 66 80
10% 664 500

Table 8: Dataset specifications for experiments in different downstream tasks and the hyper-parameter k (the right-
most column) indicating the number of pseudo-labeled data in each self-training iteration in different experiments
for four downstream tasks.

Appendix
A Reproducibility Checklist

A.1 Code

Our code will be available at https://github.
com/MiFei/ST-ToD soon.

A.2 Dataset Specifications for Different Tasks

The exact dataset scales regarding the initial 1% or
10% labeled data in different few-shot learning sce-
narios for different downstream tasks are reported
in Table 8 in the column headed with “Initial Sam-
ples in L”.

A.3 Hyper-parameters of ST

Source Definition Value
q Alg. 2 # of augmentations per input 3
β Eq. 7 flatness of distribution p 1.0
m Eq. 6 # of Gaussian noises 20
Σ Eq. 6 diagonal co-variance matrix 1e-4·I

Table 9: Hyper-parameters of ST that are shared across
different downstream tasks and datasets.

The number (k) of pseudo-labeled data in each
ST iteration in each experiment setting is reported
in the rightmost column of Table 8. Other hyper-
parameters of ST are reported in Table 9, and they

are shared across different downstream tasks and
datasets.

An exhaustive search on ST hyper-parameters is
not conducted because it is very expensive to finely
tune large pre-trained models on all four down-
stream tasks for different datasets. Therefore, we
fix q,m and manually tune other hyper-parameters
within reasonable ranges around current values in-
dicated in Table 8 and Table 9. We could expect
that even better results of ST can be achieved with
a thorough hyper-parameter search by researchers
or practitioners without computation constraints.
To provide more insight, we found that setting k
too small compromises computation time, while
setting it too large compromises performance.

All experiments are conducted using a single
GPU (GTX TITAN X), and eight GPUs are used
in total.

https://github.com/MiFei/ST-ToD
https://github.com/MiFei/ST-ToD

