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Abstract

Task-agnostic pretraining objectives like
masked language models or corrupted span
prediction are applicable to a wide range
of NLP downstream tasks (Raffel et al.,
2019), but are outperformed by task-specific
pretraining objectives like predicting extracted
gap sentences on summarization (Zhang et al.,
2020). We compare three summarization
specific pretraining objectives with the task
agnostic corrupted span prediction pretraining
in a controlled study. We also extend our
study to a low resource and zero shot setup, to
understand how many training examples are
needed in order to ablate the task-specific pre-
training without quality loss. Our results show
that task-agnostic pretraining is sufficient for
most cases which hopefully reduces the need
for costly task-specific pretraining. We also
report new state-of-the-art number for two
summarization tasks using a T5 model with
11 billion parameters and an optimal beam
search length penalty.

1 Introduction

Previous work mostly used task-agnostic pretrain-
ing methods like corrupted span prediction (T5;
Raffel et al., 2019), masked language model
(BERT; Devlin et al., 2018), denoising objective
(BART; Lewis et al., 2019 or a vanilla language
model (GPT; Radford et al., 2019). Intuitively it
makes sense to refine the pretraining to a setup that
closer resembles the downstream task. Wang et al.
(2020) demonstrate that task-specific priors into
BERT language model pretraining improves on
low-resource finetuning tasks. This is also done by
Zhang et al. (2020) with PEGASUS, where impor-
tant sentences are removed/masked from an input
document and are generated together as one output
sequence from the remaining sentences, to teach
summarization models to do better content selec-
tion and Narayan et al. (2021) proposed a content
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XSum

SOTA (Narayan et al., 2021) 47.80 / 25.06 / 39.76
PEGASUS (Zhang et al., 2020) 47.21 / 24.56 / 39.25

T5 base (ours; α = 0.9) 42.96 / 20.38 / 35.10
T5 xxl (ours; α = 0.8) 48.83 / 25.96 / 40.70

CNN/DMail

SOTA (Dou et al., 2020) 45.94 / 22.32 / 42.48
PEGASUS (Zhang et al., 2020) 44.17 / 21.47 / 41.11

T5 xxl (Raffel et al., 2019) 43.52 / 21.55 / 40.69
T5 base (ours; α = 0.9) 43.09 / 20.67 / 39.96
T5 xxl (ours; α = 0.8) 45.32 / 22.60 / 42.17

SAMSum
SOTA (Rohde et al., 2021) 53.01 / 28.27 / 48.84

T5 base (ours; α = 1.0) 49.38 / 24.16 / 44.88
T5 xxl (ours; α = 0.9) 53.10 /28.73 / 48.94

Table 1: Current state-of-the-art ROUGE-1 / -2 / -L
scores for summarization datasets and our results in the
T5 framework with optimal beam alpha. Raffel et al.
(2019) only report numbers for CNN/DailyMail.

planning pretraining objective with PEGASUS, by
pre-pending the output sequence with the entity
plans observed in it.

PEGASUS achieved state of the art ROUGE-1/-
2/-L scores (Lin, 2004) on BBC XSum (Narayan
et al., 2018) with 47.21 / 24.56 / 39.25 and
CNN/DailyMail with 44.17 / 21.47 / 41.11. These
numbers could not be matched by Raffel et al.
(2019) even when using a much larger model with
up to 11 billion parameters. This seems to support
the intuition that task specific pretraining is impor-
tant for the best performance. However, Raffel et al.
(2019) used a beam search length penalty (beam
alpha) of 0.6. We set the beam alpha parameter to
the optimal value and report new state of the art
results on XSum and SAMSum (Table 1).

Given these new results we want to answer the
questions if task-specific pretraining objectives are
still at an advantage. To avoid any influence of
hyperparameters, pretraining datasets, tokenization
or evaluation scripts we reimplement all experi-
ments in the same framework, namely the PEGA-
SUS framework.1 To our surprise, we found that
in a controlled comparison the task-agnostic pre-
training methods perform as good as task specific

1https://github.com/google-research/pegasus
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pretraining methods for large finetuning setups. We
further extend our study to a low resource and zero
shot setup, to understand how many training exam-
ples are needed in order to ablate the task specific
pretraining without quality loss. And finally we
want to see if our findings also translate to other
text generation tasks. We therefore pretrain a model
with corrupted text and evaluate it on grammatical
error correction.

2 Pretraining Models

We use a transformer architecture (Vaswani et al.,
2017) with 12 hidden layers, a hidden size of 768,
filter size 3072 and 12 attention heads, with a total
of 223M parameters. All models are pretrained
for 1.5 million steps on the C4 corpus (Raffel
et al., 2019) with a batch size of 16, Adafactor
(Shazeer and Stern, 2018), a learning rate of 0.01,
and maximum input-output lengths of 512 and 256,
in the PEGASUS framework. If not mentioned oth-
erwise we do not perform any hyperparameter tun-
ing but use the best performing hyperparameters
founded by Zhang et al. (2020). We do not explore
a pretraining plus prefinetuning setup in this paper
(Aghajanyan et al., 2021).

We now briefly explain the task-agnostic ob-
jective of corrupted span prediction and two task-
specific objectives, salient sentence selection for
summarization and text corruption for grammar er-
ror correction. Additionally, we also experimented
with the objectives of masking and predicting ran-
dom and lead sentences.

Corrupted Span Prediction (T5) This pre-
training objective is based on a span-prediction
task, an adaptation of masked-language objective
for autoregressive seq2seq models. As in BERT,
we mask out 15% of the input text. We allow mask-
ing on continuous spans of lengths 1, 2, 3, 4 and
5 with probabilities 0.1, 0.2, 0.4, 0.2, 0.1, respec-
tively. An example of span prediction:

Input: This is an [x] sentence [y] words.

Target: [x] example [y] with eight

Mask Salient Sentence (PEGASUS) We follow
Zhang et al. (2020) to select and mask whole sen-
tences from documents. The concatenated gap-
sentences can be seen as a pseudo-summary and
will serve as targets. To more closely approxi-
mate a summary, sentences that appear to be impor-
tant/principal to the document are selected. As a

proxy for importance ROUGE-1 F1 score between
the sentence and the rest of the document is used.

Mask Random Sentence (MRNDS) We also
pretrain a model with randomly select sentences
as gap-sentences. This can be seen as a sentence
level version of the masked language model (De-
vlin et al., 2018), a version of T5 that generates
whole sentences or as a simplification of PEGASUS

where the content selection aspect is missing.

Mask Lead Sentence (MLEADS) In this setup
we pretrain a model with the first m sentences of
a document as gap-sentences. This is motivated
by the fact that for some text snippets, for exam-
ple news, the most important information comes
at the beginning of a paragraph. This is a natu-
ral setup for summarization since it is known that
lead-sentences are a good baseline to compare sum-
marization models against.

Text Corruption (TEXTCOR) Analogous to
PEGASUS for summarization we pretrain a task
specific model for grammatical error correction.
To create pairs of broken and correct text snippets
we corrupt each sentence using a combination of
the following operations: a) drop tokens b) swap
tokens c) insert tokens d) replace tokens e) drop
characters f) swap characters g) insert characters h)
lower-case a word i) upper-case the first character
of a word. We limited our self to the fore men-
tioned purely unsupervised corruption techniques
and do not use more sophisticated methods like re-
placing words with common misspellings as done
by Náplava and Straka (2019).

3 Finetuning Experiments

All our experiments are done in the PEGASUS

framework. We validate that the numbers are
roughly identical with a comparable setup in T5.2

For this, numbers in Table 1 labeled T5 base ours
should match numbers in Table 2 labeled T5 Full.
Both experiments correspond to the same model
size conducted in different frameworks.

Datasets and Eval Metrics We measure the per-
formance on three commonly used summarization
benchmarks, namely CNN/DailyMail (Hermann
et al., 2015), BBC XSum, (Narayan et al., 2018)
and SAMSum (Gliwa et al., 2019) using ROUGE-1,

2https://github.com/google-research/text-to-text-transfer-
transformer
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0 10 100 1000 10000 Full

XSum (Lead-1: 16.30 / 01.61 / 11.95)

T5 13.57 / 03.50 / 11.10 ∗ 26.49 / 08.15 / 20.92 34.87 / 13.08 / 27.50 37.07 / 15.22 / 29.87 39.91 / 17.61 / 32.46 44.34 / 22.01 / 36.65
MRNDS 19.01 / 02.81 / 14.53 19.80 / 03.37 / 15.12 31.11 / 10.88 / 24.92 38.13 / 16.19 / 30.93 40.59 / 18.33 / 33.15 43.85 / 21.65 / 36.29

MLEADS 19.35 / 02.60 / 14.76 24.14 / 06.32 / 18.99 34.38 / 13.05 / 27.85 38.00 / 16.09 / 30.89 39.80 / 17.63 / 32.30 43.38 / 21.26 / 35.81
PEGASUS 19.04 / 03.05 / 13.76 23.45 / 06.05 / 17.90 33.77 / 12.95 / 27.16 38.26 / 16.46 / 31.02 41.06 / 18.65 / 33.54 44.15 / 21.87 / 36.58

CNN/DailyMail (Lead-3: 39.60 / 17.70 / 36.20)

T5 13.84 / 04.37 / 12.53 ∗ 24.00 / 09.13 / 22.08 31.88 / 13.99 / 29.55 35.90 / 16.58 / 33.31 39.84 / 18.75 / 36.99 43.59 / 21.42 / 40.56
MRNDS 32.86 / 12.40 / 29.57 35.30 / 14.35 / 31.81 35.53 / 15.65 / 32.53 38.06 / 17.44 / 34.94 41.16 / 19.12 / 38.09 43.59 / 21.18 / 40.40

MLEADS 39.68 / 17.82 / 36.07 39.68 / 17.82 / 36.07 o 39.68 / 17.82 / 36.07 o 39.68 / 17.82 / 36.07 o 40.45 / 18.79 / 37.48 43.18 / 20.83 / 40.07
PEGASUS 34.11 / 13.35 / 29.86 33.75 / 13.76 / 29.70 34.37 / 15.05 / 30.97 37.09 / 17.39 / 34.09 40.41 / 19.12 / 37.43 43.53 / 21.15 / 40.35

SAMSum (Lead-5: 31.94 / 09.91 / 27.03)

T5 04.00 / 00.65 / 03.75 ∗ 33.76 / 11.30 / 29.43 41.28 / 16.51 / 37.04 46.18 / 21.44 / 41.59 50.16 / 26.36 / 45.83 50.96 / 27.02 / 46.56
MRNDS 26.90 / 07.63 / 24.79 31.03 / 10.25 / 27.94 42.12 / 18.06 / 38.22 47.25 / 21.39 / 42.20 50.19 / 25.74 / 45.96 50.54 / 25.98 / 46.45

MLEADS 29.86 / 08.59 / 26.43 33.75 / 10.97 / 29.83 39.02 / 15.10 / 34.89 45.18 / 20.11 / 40.10 49.15 / 24.65 / 44.58 49.84 / 25.72 / 45.56
PEGASUS 22.78 / 05.80 / 20.60 29.76 / 09.83 / 26.61 38.94 / 15.62 / 34.77 46.45 / 21.15 / 41.29 50.15 / 25.98 / 45.80 50.21 / 26.34 / 46.18

Table 2: ROUGE-1 / -2 / -L scores in summarization datasets. Results are shown on their full test sets using only 10,
100, 1000 and 10000 training examples, and the whole training set (all). We also report on zero-shot results. We
report Lead-1 baseline for BBC from (Narayan et al., 2018) and Lead-3 baseline for CNN/DailyMail from (Rothe
et al., 2020). For SAMSum, we achieve the best lead scores when we select top 5 sentences for each input. Result
in gray are worse than the lead sentence baseline. Best results in each block are bolded. Results marked with ∗ are
not comparable, see text. For results marked with o, the untrained checkpoint at step 0 was performing best on the
development set.

-2 and -L as metric. The datasets differ in the de-
gree of abstraction and summarization length. The
summaries of CNN/DailyMail are more of extrac-
tive nature and have an average length of 3 sen-
tences. The summaries of BBC XSum are single-
sentences and more abstractive. The SAMSum
summaries consist of 2-3 meeting minutes. Finally,
the CNN/DailyMail, BBC XSum and SAMSum
datasets have 287k/13.4k/11.5k, 204k/11.3k/11.3k
and 14.7k/818/819 training/development/test ex-
amples, respectively. We finetune our pretrained
models on the full datasets and subsampled ver-
sions with 10, 100, 1,000 and 10,000 examples.

During finetuning, we use maximum in-
put/output lengths of 1024/128 for CNN/DailyMail,
1024/64 for XSum and 512/128 for SAMSum. All
models were finetuned with a batch size of 256.
The best model was selected based on the ROUGE-
L performance on the full development set. During
inference, all models were decoded with a beam
alpha of 0.8 and a beam size of 5. Results shown
in Table 2 are the average performance of 5 mod-
els trained with different samples, as low resource
setups are known to have high-variance.

Results We found that the performance of the
span prediction objective is always better or on
par with the performance of the salient sentence
prediction objective for all three datasets when
using the whole training set. Linguistically, it
might be more interesting to generate full sen-

tences than spans, but empirically, we found no
evidence to support that the mask salient sentence
pretraining is better at content selection than the
corrupted span pretraining for summarization. In
fact, we found that constraining pretraining to
task-specific information such as the most impor-
tant information at the beginning of a paragraph
(MLEADS; CNN/DailyMail), makes it hard to gen-
eralize across datasets and leads to inferior per-
formance compared to pretraining by generating
random sentences (MRNDS).

For low-resource setups results varied a bit de-
pending on the task. For abstractive datasets such
as XSum and SAMSum, T5 achieved better perfor-
mance than PEGASUS with as little as 10 or 100
examples. With 1000 and 10000 examples, results
from both models were on par for SAMSum, but
PEGASUS reported better than T5 for XSum. For
CNN/DailyMail, PEGASUS continuously outper-
formerd T5 for all low-resource setups. On the
other side CNN/DailyMail is not ideal for evaluat-
ing low-resource models due to the extractive na-
ture of summaries; one can simply perform well by
selecting the first few sentences. The Lead baseline
and MLEADS are on par and outperform the other
methods, while MLEADS does not use any training
data when 1000 examples or less are provided.

Zero-Shot We also assess how well pretrained
models perform out-of-the-box on different gener-
ation tasks (zero-shot). For this we simply infer
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Figure 1: Comparison of how models adapt to target
lengths from zero-shot to low-resource cases. We plot
the average summary lengths for different models. We
report results on XSum, similar patterns were found on
CNN/DailyMail and SAMSum.

on the test sets using different pretrained check-
points without any finetuning. Results in Table 2
are not surprising that the sentence-level pretrain-
ing in MRNDS, MLEADS and PEGASUS are better
than T5 in producing well-formed summaries; also
it is probably not fair to evaluate T5 for zero-shot
summarization as T5 models are pretrained to gen-
erate masked spans and not full sentences.

Length comparisons It has been argued that
ROUGE tends to prefer longer summaries, so we
wanted to investigate if (a) model leverages this
phenomenon and (b) if it is unfair to compare differ-
ent pretraining methods trained on self-supervised
targets with different length distributions. As de-
picted in Figure 1, for the zero-shot case we ob-
serve very different average lengths in predicted
summaries for different models, with PEGASUS

being closest to the target lengths. However, by
1000 training examples, all models start generating
summaries of comparable lengths.

4 Grammatical Error Correction

We further investigate if our findings translate to
other generation tasks. Here, we focus on the
task of grammatical error correction, but also other
important aspects of text generation show benefit
from task specific pretraining and are still underex-
plored; e.g., improving evaluations (Sellam et al.,
2020), factuality (Chen et al., 2020) or planning for
grounded generation (Narayan et al., 2021).

Datasets and Eval Metrics For Grammatical Er-
ror Correction we fine-tune our pre-trained models
on the FCE (Yannakoudakis et al., 2011) and W&I
(Bryant et al., 2019) corpora. We evaluate on the
standard benchmark of CoNLL-14, using CoNLL-
13 as the development set. Reported numbers in

10 100 1000 10000 all

T5 19.54 28.43 39.36 51.08 55.07
TEXTCOR 21.71 30.86 49.40 55.94 59.67

MRNDS 03.78 03.78 03.78 31.24 39.63

Table 3: F0.5 scores on CoNLL-14 for the grammatical
error correction task.

Table 3 are F0.5 scores (Dahlmeier and Ng, 2012)
computed by the M2 scorer.3

Results As shown in Table 3 TEXTCOR outper-
forms T5 on all dataset sizes. The results also show
that an unrelated task-specific pretraining objective
hurts performance even when training on the full
dataset. This is notable as for example the MRNDS
pretraining is not that far of from a normal language
model pretraining and should learn a reasonable
amount about language and well formed sentences.

Zero Shot In contrast to summarization, no easy
baseline exists for grammatical error correction. A
simple copy baseline would give us a high word
overlap like BLEU or ROUGE, but on our main
metric F0.5 this only gets a score of 4.24. Our pre-
trained TEXTCOR model achieves an F0.5 score
of 18.64, precision 40.94 and recall 5.87. The T5
model needs only 10 training examples to achieve
the same F0.5 score (Table 3). We hypothesize that
zero shot performance of the TEXTCOR pretrain-
ing could be greatly improved by tuning the hyper-
parameters of the text corruption to better match
distribution the CoNLL dev and test sets. However,
this would limit the scope the pretrained model
even further as this distribution would not translate
to other datasets or related tasks, like correcting
OCR (optical character recognition) or ASR (auto-
matic speech recognition) errors.

5 Conclusion

We evaluated several pretraining techniques on two
different text generation tasks, summarization and
grammatical error correction. Our findings are that,
while pretraining for summarization is very im-
portant, we found no evidence that task specific
pretraining improved on common benchmarks for
abstractive datasets, even in a low resource setting.
On extractive datasets, task specific pretraining
showed benefits but the results are below a sen-
tence selection baseline, questioning the practical
usefulness. Given the trend to larger neural network

3https://github.com/nusnlp/m2scorer
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models with significant costs to train them, we rec-
ommend to use a task agnostic pretraining regime.
Corrupted span prediction is currently our most suc-
cessful candidate, with state-of-the-art results on
two investigated summarization benchmarks. But
we are curious if even more flexible pretraining
technique will emerge. For grammar error correc-
tion, task specific pretraining was showing superior
performance, especially in a low resource setting.
We therefore believe that, task-specific pretraining
or prefinetuning can still be useful for important
aspects of text generation.
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