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Abstract

Pre-trained LMs have shown impressive per-
formance on downstream NLP tasks, but we
have yet to establish a clear understanding of
their sophistication when it comes to process-
ing, retaining, and applying information pre-
sented in their input. In this paper we tackle
a component of this question by examining ro-
bustness of models’ ability to deploy relevant
context information in the face of distracting
content. We present models with cloze tasks
requiring use of critical context information,
and introduce distracting content to test how
robustly the models retain and use that critical
information for prediction. We also systemati-
cally manipulate the nature of these distractors,
to shed light on dynamics of models’ use of
contextual cues. We find that although models
appear in simple contexts to make predictions
based on understanding and applying relevant
facts from prior context, the presence of dis-
tracting but irrelevant content has clear impact
in confusing model predictions. In particular,
models appear particularly susceptible to fac-
tors of semantic similarity and word position.
The findings are consistent with the conclusion
that LM predictions are driven in large part by
superficial contextual cues, rather than by ro-
bust representations of context meaning.

1 Introduction

In recent years, pre-trained language models (LMs)
have taken NLP by storm. As we work to inter-
pret the impressive performance of these models, a
persistent question is the extent to which LMs are
doing something like language “understanding”.
Do these models robustly extract the nuances of
information conveyed in text, or is their strong per-
formance driven by more superficial mechanisms?

In this paper we focus on examining a particular
aspect of “understanding” in pre-trained LMs: how
robustly these models process, retain, and apply
new facts presented in their inputs. We assume that
a fundamental aspect of language “understanding”

will be the capacity to represent and accumulate
information from the meaning of the input text. So
if we input “Sebastian lives in France, and Rowan
lives in Indonesia.”, we would expect a model that
understands language to form (or update) repre-
sentations for these imaginary entities Sebastian
and Rowan, such that those representations contain
the information that Sebastian lives in France, and
that Rowan lives in Indonesia. While recent work
has studied models as knowledge bases, testing
their ability to reproduce facts encountered during
training, in this paper we are asking an importantly
different question—not about what models mem-
orize during training, but about how sophisticated
they are in processing and representing information
from new input text after training.

To test LMs’ ability to process and retain infor-
mation from context, we design cloze tasks that in-
corporate a piece of critical information in context,
and then prompt the model to complete a statement
related to that information. To test the robustness
of the processes informing these predictions, we
introduce distracting but irrelevant content in the
contexts, and test whether the models maintain cor-
rect predictions in the face of these distractions.
Additionally, to explore further the nature of mech-
anisms informing model predictions, we systemat-
ically vary the nature of the distracting content—
manipulating how many distractor words we use,
how semantically related they are to critical words,
and their relative positions in the sentence.

We apply these tests to a range of recent pre-
trained LMs and examine the impacts of our ma-
nipulations on model performance. The results in-
dicate clearly that distracting content in the context
is effective in undermining model predictions, and
variation of distractor types suggests that models
are particularly sensitive to influences of semantic
similarity and relative word position. Overall, the
results support the conclusion that predictions in
pre-trained LMs are driven in large part by super-



1584

ficial contextual cues, rather than by robust repre-
sentations of relevant facts from context. We make
all data and code available for further testing.1

2 Related Work

Prior work has tested LMs as knowledge bases us-
ing cloze-style probes (Petroni et al., 2019; Jiang
et al., 2020). As a starting point we rely on models’
ability to display this type of knowledge, but our
question differs importantly from that work: we are
not asking whether models can recall facts about
the real world from training—rather, we are trying
to gauge the extent to which models form robust
representations of new information presented in in-
put after training. Somewhat more similar to ours
is work like Elazar et al. (2021), which explores
the consistency of models’ generation of facts in
the face of rephrasing of prompts. The basic intu-
ition behind this work—that LMs’ ability to make
intelligent-looking predictions can be sensitive to
the particulars of the context—is one that we also
use as we ask more specific questions about mod-
els’ processing of information in their input.

A good deal of prior work has focused on test-
ing for linguistic knowledge in language models
(Rogers et al., 2020). Much of this work has
prioritized testing syntax in pre-trained LMs via
agreement tests (Linzen et al., 2016; Gulordava
et al., 2018). Others expand to broader sets of
syntactic phenomena (Wilcox et al., 2018; Futrell
et al., 2019; Warstadt et al., 2020) and seman-
tic/pragmatic phenomena (Ettinger, 2020). Other
work has studied syntactic and semantic informa-
tion in contextualized embeddings from these mod-
els (Hewitt and Manning, 2019; Tenney et al., 2018;
Klafka and Ettinger, 2020). We take one step up
from examination of these abstract linguistic capac-
ities, with a focused examination of models’ ability
to use such linguistic scaffolding to process and
retain new information described in text.

Our use of attractors to test model robustness
takes inspiration from use of attractors within syn-
tactic testing contexts (Linzen et al., 2016; Gulor-
dava et al., 2018), but we focus on semantic rela-
tionships in defining attractors, and use the attrac-
tors to investigate different aspects of models’ pro-
cessing. Some scattered work has explored more se-
mantic types of attractors for testing LMs—in par-
ticular, there is work looking at whether presence

1https://github.com/lalchand-pandia/
Sorting-Through-The-Noise

of certain context words will prime corresponding
targets in context. Such work has experimented
with contextual factors like distance between prime
and target (Kassner and Schütze, 2020), as well as
contextual constraint (Misra et al., 2020). We build
on this existing work with a more systematic ex-
ploration of impacts of different types of attractors,
and with a more targeted goal of testing models’
robustness in processing new facts from context.

In focusing on models’ ability to extract, retain,
and deploy information conveyed in text, our work
also relates to tasks in reading comprehension ques-
tion answering (Rajpurkar et al., 2018; Kočiskỳ
et al., 2018; Mostafazadeh et al., 2017; Yang et al.,
2018; Richardson et al., 2013). Some such work,
like the bAbI dataset (Weston et al., 2016) and
CBT (Hill et al., 2016), use insertion of additional
material to make the tasks generally more difficult—
a tactic that also parallels the related method of ad-
versarial testing (Jia and Liang, 2017; McCoy et al.,
2019; Nie et al., 2020). There are important simi-
larities in the questions and strategies of these prior
works and ours, but we differ in focusing specifi-
cally on information processing in LMs, rather than
performance of models supervised for a particular
downstream task. Unlike those works, our goal
is to shed light on robustness of language “under-
standing”, and nature of prediction mechanisms,
that arise as a result of LM-based pre-training.

3 Methods

We design our tests in the form of cloze tasks, so
as to test the pre-trained LMs in their most natural
setting, without interference from fine-tuning.
We start from a simple base context, in which
the model is given a background fact about an
imaginary entity, and then is asked to complete a
related statement about the entity. For instance:

Sebastian lives in France. The capital of Se-
bastian’s country is [MASK]

We will refer to “France” here as the criti-
cal background word, and the correct completion
“Paris” as the target word. For all of our test items,
we establish a baseline competence in our tested
models, such that all models successfully prefer
the correct target completion over a set of closely
related completions (to be outlined shortly) within
this simple base context. In this way, we establish
that the models have the relevant “world knowl-

https://github.com/lalchand-pandia/Sorting-Through-The-Noise
https://github.com/lalchand-pandia/Sorting-Through-The-Noise
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Base context

Zero attractor Sebastian lives in France. The capital of Sebastian’s country is ____

Multiple-entity attractor setting

B-type attractors Sebastian lives in France, Rowan lives in Indonesia, and Daniel lives in Chile.
The capital of Sebastian’s country is ____

T-type attractors Sebastian lives in France, Rowan lives in Jakarta, and Daniel lives in Santiago.
The capital of Sebastian’s country is ____

Unrelated attractors Sebastian lives in France, Rowan drives a car, and Daniel writes poetry. The
capital of Sebastian’s country is ____

Single-entity attractor setting

B-type attractors Sebastian lives in France, and has visited Indonesia and Chile. The capital of
Sebastian’s country is ____

T-type attractors Sebastian lives in France, and has visited Jakarta and Santiago. The capital of
Sebastian’s country is ____

Unrelated attractors Sebastian lives in France, drives a car, and writes poetry. The capital of
Sebastian’s country is ____

Table 1: Example items from dataset. For both multiple-entity and single-entity attractor settings, we give examples
in the two-attractor condition—but note that the full dataset varies number of attractors from zero to three. B-type
attractors refer to attractors in the same semantic class as the critical background word, and T-type attractors refer
to attractors in the same semantic class as the target word.

edge” for this prediction—and then we set aside
the issue of world knowledge, to focus on examin-
ing robustness of information processing.

Of course, if a model is able to predict “Paris”
in this base example, this could be attributable to a
number of causes. On one hand, it could be taken
as evidence that the model was able to store a repre-
sentation of Sebastian as a resident of France, and
then when queried about a related statement, the
model was able to make use of that stored infor-
mation to generate a correct prediction. Alterna-
tively, there may be more superficial explanations
for the model’s success in this completion: for in-
stance, the model may simply be reacting to the fact
that “France” was recently mentioned, and now the
prompt is asking for a capital. What if “Indonesia”
had also been mentioned? Would the model still
recognize that “Paris” is the correct completion?

To tease apart these classes of explanation, we
introduce distracting content in the sentences, and
test how this content impacts models’ outputs. Fol-
lowing the number agreement literature (Linzen
et al., 2016), we refer to these inserted items as
attractors. In a system that robustly represents and
retains the critical background information from
context, attractor content should not prevent the
model from continuing to prefer the correct target
completion. If the attractor content does change the

models’ preferences, then we can infer that more
superficial predictive mechanisms are likely at play.

3.1 Attractor manipulations

Beyond simply testing whether the model can be
distracted from giving a correct prediction, we also
vary the nature of the attractors so as to better under-
stand the specific mechanisms underlying model
predictions. We start by selecting attractors with a
semantic relation either to the critical background
word (e.g., another country), or to the target word
(e.g., another capital). We refer to these as B-type
and T-type attractors, respectively. These semanti-
cally related attractors allow us to test the hypoth-
esis that models rely on coarse-grained semantic
similarities to inform predictions. If this is the case,
then we expect the presence of irrelevant but seman-
tically related material to be particularly disruptive
to models’ predictions. To contrast with the seman-
tically related attractors, we also include unrelated
attractors that are not semantically related to the
critical background fact or the target.

We present each of these attractor types in two
forms. In the first, attractors are listed as addi-
tional properties of the key entity (that is, the entity
involved in the critical background fact). This al-
lows us to test whether models can sort through
different facts about an entity and retrieve the rel-
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evant fact for prediction. This is the single-entity
setting. In the second form, attractors are each as-
sociated with a different entity, allowing us to test
whether models can form and sort through different
entity/property links, to retrieve the relevant fact
for prediction. This is the multiple-entity setting.

Table 1 shows examples of the attractor types
and conditions. While the table shows only exam-
ples with two attractors, we also vary the number of
attractors so as to examine the impact of including
more versus less distracting content in context. We
vary the number of attractors from zero to three.

3.2 Dataset construction
Because our manipulations require control of nu-
merous variables, we generate our test items syn-
thetically. Synthetic data has limitations, of course,
but it also has the important advantage of allowing
full control over the nature of the items, so we con-
sider it an important complementary approach to
use of naturally-occurring datasets. All sentences
generated for our dataset are in English.

The strongest constraint on our design of these
items was the need for sets of strongly linked,
paired components (e.g., countries and capitals).
We need paired items for generating our prediction
tasks—for instance, in Table 1, we rely on the rela-
tionship between countries and capitals—and the
relationship in each pair must be strong enough that
all models make successful predictions in the base
context. Furthermore, we need sets of such pairs
so as to insert semantically related attractors—of
the same type as the critical background word or
the target word—in the contexts.

We identify four item sets that meet our criteria:
countries and capitals, professions and associated
objects, monuments and associated countries, and
sports and associated scoring metrics. We then
create templates to support predictions for each of
the sets. We test various phrasings for our base
contexts, and select those that show optimal per-
formance across models (c.f. Jiang et al., 2020).2

In keeping with prior LM analysis literature, we
define successful prediction in relative terms: mod-
els are considered successful on an item if in the
base context they assign higher probability to the
correct target completion over any of the other tar-
get words in the same set (e.g., when “Paris” is the
correct target, models are considered successful if

2For example, Sebastian works as a florist . For his job,
Sebastian sells [MASK] is a better query than Sebastian is a
florist . For his job, Sebastian sells [MASK]).

they prefer “Paris” over any other capitals in the
set). Appendix Table 2 lists all of the items from
our sets, along with their selected base contexts.

To construct the remainder of the dataset, we
start with the base contexts and then sample from
attractors of the appropriate types and sets. For
additional variety, we select randomly from a sam-
ple of six entity names, and we also insert variable
amounts of additional semantically unrelated ma-
terial (sang in a choir, has a sister, etc) between
the key entity and critical background fact. In all,
the dataset includes 40,928 items. In semantically
related attractor conditions, multi- and single-entity
settings each have 12,896 instances, and in seman-
tically unrelated attractor conditions, multi- and
single-entity settings each have 7,568 instances.

4 Experiments

4.1 Models

We apply our tests to examine three classes of pre-
trained LMs, testing various size settings within
each class. For the models analyzed in this paper,
we use the implementation of Wolf et al. (2020).

BERT (Devlin et al., 2019) We experiment with
two variants: BERTBASE (110M parameters), and
BERTLARGE (340M parameters). For both, we use
the uncased version.

RoBERTa (Liu et al., 2019) We experiment
with RoBERTaBASE (125M parameters) and
RoBERTaLARGE (355M parameters).

GPT-2 (Radford et al., 2019) We test
GPT2SMALL (117M parameters), GPT2MEDIUM
(345M parameters), GPT2LARGE (774M parame-
ters) and GPT2XL (1558M parameters).

4.2 Input representation

For our inputs, we add a start of sentence token
([CLS] for BERT and <s> for RoBERTa and GPT2).
The two sentences of a given item are separated
by a separator token, and the final masked word
is denoted by [MASK] for BERT and <mask> for
RoBERTa. GPT2 does not require a masked to-
ken. The special tokens are chosen based on the
implementation of Wolf et al. (2020).

5 Results

We begin by examining model prediction accuracy
when attractors are semantically related to the criti-
cal background word or the target word. We define



1587

0 1 2 3
number of attractors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

Multiple Entity

0 1 2 3
number of attractors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

Single Entity

BertBase BertLarge RobertaBase RobertaLarge GPT2Small GPT2Medium GPT2Large GPT2XL

Figure 1: Accuracy by number of attractors, with semantically related attractor type

accuracy as percentage of instances in which mod-
els assign higher probability to the correct target
than to any alternatives in the corresponding se-
mantic set. This serves as the most direct test of
the anticipated potential impact of our semantically
related attractors, as it directly assesses whether
presence of an irrelevant word (e.g., “Indonesia”),
which is semantically related to the critical back-
ground or target, and which invites a competing
prediction (“Jakarta”), will cause models to prefer
that competing prediction over the correct target.

Figure 1 breaks down accuracy by number of
attractors, for multiple- and single-entity settings.
For the sake of space, we merge B-type and T-type
attractors, which show largely similar patterns.3

We see in Figure 1 that addition of just a single
semantically related attractor has clear impact on
model performance, with models preferring the cor-
rect completion substantially less often than when
no such attractors are present. RoBERTaLARGE
shows the strongest resistance to this effect, but
still shows clear disruption from the first attractor.

As we insert additional attractors, for both condi-
tions we see that rather than further hindering per-
formance, for a couple of models accuracy actually
improves. While we are not certain what drives this
pattern, we speculate that a possible cause could be
that models may learn to pay less attention to con-
tent that takes the form of lists. This is consistent
with the fact that improvement with more attractors
is mitigated in the multiple-entity setting, when at-

3See Appendix Figures 6-7 for B-type and T-type results.

tractors take the form of more complex statements,
rather than lists of single words.

5.1 Impact on probabilities

Since our definition of accuracy doesn’t indicate
impact of attractors on absolute target probabilities,
we also examine how target probabilities change
from base contexts to attractor contexts. We
calculate relative probability as in Eq. 1, where w
is the candidate target word, cattr is the relevant
attractor context, and cbase is the base context:

P (w|cattr)
P (w|cbase)

(1)

Figure 2 shows these relative probabilities aggre-
gated by number of attractors.4 Consistent with
the accuracy results, we see that in both settings,
addition of just one semantically related attractor
causes a dramatic drop in probability of the target
relative to its base context level. This effect is espe-
cially uniform in the single-entity setting—in the
multiple-entity setting, GPT2SMALL shows less dra-
matic impacts with the first attractor. Also in keep-
ing with the accuracy results, addition of further
attractors does comparatively little damage beyond
that of the first attractor, with relative probabilities
remaining fairly stable with more attractors in the
single-entity setting, and continuing to reduce, but
very gradually, in the multiple-entity setting.

4Values in the zero-attractor condition are not always 1
because the zero-attractor condition includes variants of the
base context using the additional, semantically unrelated inter-
vening material described in Section 3.2.
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Figure 2: Relative probability by number of attractors, with semantically related attractor type

5.2 Semantically unrelated attractors

The prior sections show that semantically related at-
tractors, even if they are irrelevant for a prediction,
have clear impacts on model outputs. To what ex-
tent is this effect driven by the relationship between
the attractors and the critical sentence components?
In this section we show results of adding attractors
that are meaningful, but unrelated to the critical
background word or the target. Examples are given
in Table 1, and more in Appendix Table 3.

Our above definition of accuracy becomes less
relevant with unrelated attractors, since accuracy
was defined in terms of competition within seman-
tic sets. Appendix Figure 8 shows accuracy results
for semantically unrelated items, and confirms that
models remain at very high accuracy when attrac-
tors are not semantically related to our chosen sets.
Notably, however, there is a gradual but non-trivial
drop in accuracy for most models, suggesting that
in some cases even these semantically unrelated
attractors are enough to confuse models into prefer-
ring an incorrect, semantically related completion.

More appropriate to examine here are the im-
pacts of the semantically unrelated attractors on
models’ target probabilities relative to the base
probability. These are shown in Figure 3. We see
that unrelated attractors do have non-trivial impact
on target probabilities, with fairly smooth reduc-
tion in relative probability as more attractors are
added. This suggests that whether or not attractors
are semantically related to the critical background
fact or target, their presence still affects models’

confidence about the correct target, despite the fact
that these attractors are irrelevant to the prediction.

Importantly, a key difference that we see be-
tween semantically related attractors and semanti-
cally unrelated attractors is in the dramatic dip—in
both accuracy and relative probability—with addi-
tion of the first semantically related attractor. This
dip is missing when attractors are semantically un-
related to the critical background or target. It seems,
then, that when the context contains an attractor oc-
cupying a similar location in the semantic space rel-
ative to facts being invoked for prediction, models
are highly sensitive to even a single such item, and
models’ ability to make correct predictions is signif-
icantly hindered. Subsequent semantically related
items show greatly diminished impacts, suggesting
that addition of a single semantically related word
achieves roughly ceiling impact on predictions. By
contrast, if instead the distracting material occu-
pies a more distant position in the semantic space,
this material can still hinder models’ predictions,
but it does so less dramatically. The continually
increasing impact with larger numbers of unrelated
attractors also suggests that unlike the effects of
semantically related attractors, the effects of seman-
tically unrelated attractors on prediction are more
gradual and additive in nature.

Taken together, the results presented in these
sections suggest that model predictions are signif-
icantly informed by superficial contextual cues,
rather than by robust representations based on
meaning of prior context. Differences between at-
tractor types furthermore suggest that models rely
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Figure 3: Relative probability by number of attractors, with semantically unrelated attractor type

heavily on coarse-grained semantic similarity cues
to identify relevant context words for prediction.

6 Varying position of information

In this section we explore the effects of further
varying entity and attractor position, to better un-
derstand how the models utilize positional cues.

6.1 Separating key entity and critical fact
In the previous section, all attractors occur after
the critical background fact has been stated. What
will happen if attractors fall between the key entity
and the critical fact about that entity? Inserting
attractors between these two components allows
us to test the hypothesis that models might rely on
proximity between the key entity and the critical
fact in order to form a link (albeit, based on the
above results, a brittle link) between the two. We
use the same attractor sets, and simply adjust our
templates to change the position of the attractors.
We focus on semantically related attractors for this
section. Appendix Table 4 gives some examples.

The results of this analysis are shown in Figure 4.
On the whole, the patterns are quite similar to when
attractors occur after the critical background fact.
In both single- and multiple-entity settings we see
the clear dip in accuracy after a single attractor.
The multiple-entity setting produces a bit more
spread between models, suggesting in particular
that RoBERTaLARGE thrives—in fact, improves—
despite the key entity being separated from the crit-
ical fact, while GPT2MEDIUM performs very poorly.
We also see that many models improve with more

attractors, suggesting again some effect in which
models may learn to down-weight content in lists.

On the whole, the results suggest that regardless
of whether attractors intervene between the key
entity and key fact, or between the key fact and
the target position, outcomes are similar: just a
single semantically related attractor in the context
will significantly disrupt models’ ability to make
a correct prediction. These results also suggest
that models don’t put heavy reliance on proximity
between the key entity and the critical fact. While
this could suggest that the models are robust in
forming entity-fact links, it could also indicate that
the models aren’t really forming those links at all.

6.2 Varying key entity position

In all of our test items up to this point, the key en-
tity has also been the first entity mentioned. In this
section we test the impact of prompting a predic-
tion about an entity that is not the first mention. We
do this by taking our existing multiple-entity items,
and adapting them so that the entity queried at the
target position is one of the later-mentioned entities,
rather than the first-mentioned entity (e.g. Sebas-
tian lives in France, and Rowan lives in Indonesia.
The capital of Rowan’s country is [MASK]).

Figure 5 shows the results. We see that, with the
exception of GPT2SMALL, the dramatic dip on the
first attractor is no longer present. Instead, we see
steady decrease in accuracy with more attractors.
What causes this change? The major difference
in the one-attractor condition here, relative to our
previous settings, is that the key entity and critical
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Figure 4: Accuracy by number of attractors, with attractors intervening between key entity and critical fact
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Figure 5: Accuracy by number of attractors, with key entity occurring later in sentence

background fact now both occur closer to the target
position than the attractor does. Thus, the observa-
tion that this more distant attractor has less effect
on predictions suggests that in addition to semantic
similarity, model predictions are also strongly im-
pacted by recency—that is, a semantically related
attractor has dramatic impact on prediction accu-
racies, but only if it occurs after the critical back-
ground entity. This pattern of results also suggests
that models may learn to link entity mentions pri-
marily with words occurring after those mentions,
and not before. It is easy to see how such a heuris-
tic may arise, as entity descriptors will more fre-
quently follow the entity mention—however, this

assumption is not foolproof, and it does not help
with distinguishing relevant versus irrelevant words
that occur after the entity mention. In aggregate,
these results further support the conclusion that su-
perficial cues exert significant influences on model
predictions, with these latter results suggesting a
key role for word position relative to the key entity.

We note that RoBERTaLARGE again stands out
as by far the most robust to these attractor effects,
though it shows a notable decrease nonetheless.

7 Discussion

The experiments above were designed to do two
things. The first purpose was to test whether pre-
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trained LMs show evidence of robustly process-
ing and storing new facts from input context. To
test this, we inserted irrelevant, distracting con-
tent in addition to critical context information, to
see whether model predictions would be affected.
The results of these experiments show clearly that
model predictions are indeed impacted by this ir-
relevant content, rather than remaining consistent
on the basis of the critical contextual information.

The second goal of these experiments was to
explore the specific types of cues affecting model
predictions, by varying the nature of distracting
content. Through these manipulations, we find
influences of both semantic similarity and word
position as superficial cues informing model pre-
dictions. In particular, we find that insertion of a
single semantically related attractor has a dramatic
effect on predictions, with the first such attractor
reaching roughly ceiling impact. Unrelated attrac-
tors also influence predictions, with more gradual,
additive impacts. Effects of semantic similarity
interact additionally with effects of relative word
position, with semantically related attractors show-
ing much reduced influence when occurring prior
to the key entity mention. These trends suggest
that models rely on heuristics involving semantic
similarity to critical words, and relative position of
entity and descriptor words, for determining which
elements of context are relevant for a prediction.

While it should not come as a shock that lan-
guage models use superficial contextual cues for
prediction, findings of this kind must serve as re-
ality checks as we consider the capacity of these
models for language “understanding”. We have
made the simple assumption that “understanding”
will involve robustly representing and retaining in-
formation from prior context, and generating pre-
dictions accordingly. The results presented here
suggest that this criterion is not met. Additionally,
the results of these experiments take steps toward
understanding the precise strategies that models do
use in generating predictions, beginning to sketch
out a picture in which models rely substantially
on coarse-grained semantic similarity and word
position cues to identify relevant contextual words.

We do note that of the models tested,
RoBERTaLARGE frequently distinguishes itself as
least susceptible to our attractors—though it shows
disruption all the same. Since this model is pre-
trained on a larger dataset than other models tested
here, size of pre-training data is a likely contributor

to the model’s superior performance. Additionally,
we find that within a given training regime, larger
models mostly perform more robustly than smaller
models, suggesting that model size is also a con-
tributor in interaction with factors like training data
size. We leave for future work the investigation of
whether the comparatively strong performance of
RoBERTaLARGE reflects truly more robust repre-
sentations in that model—or use of superficial cues
not yet targeted in the present work.

These findings also have implications for study-
ing mechanistic connections between pre-trained
language models and language processing in hu-
mans. Studies of human sentence processing have
shown comparable susceptibility to interference
from irrelevant context elements, depending on se-
mantic and syntactic properties (Van Dyke, 2007;
Parker and Phillips, 2017; Dillon et al., 2013). Sys-
tematic comparison of interference effects in hu-
mans and in language models stands to shed light
on mechanistic similarities and differences in the
ways that these language processing systems han-
dle information from prior context.

8 Conclusion

We have presented results manipulating inputs of
pre-trained LMs, to test the ability of such models
to represent and retain information conveyed by in-
put text. Our results show that though models may
appear to handle information correctly in simple
settings, these correct predictions are easily broken
by insertion of distracting material in the context.
Systematic manipulation of the distracting content
further indicates key roles for semantic similarity
and relative word position in models’ selection of
relevant contextual cues for prediction. Overall, the
results suggest that LM predictions are driven more
by coarse-grained superficial cues than by extrac-
tion of robust meaning information from context.
The results serve as a reality check for considera-
tions of the extent to which LMs “understand” their
input, and lay groundwork to understand the mech-
anisms that do drive predictions in these models.
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Base context target

Sebastian lives in France. The capital of Sebastian’s country is ____ Paris
Rowan lives in Chile. The capital of Rowan’s country is ____ Santiago
Rowan lives in China. The capital of Rowan’s country is ____ Beijing
Rowan lives in Finland. The capital of Rowan’s country is ____ Helsinki
Rowan lives in Indonesia. The capital of Rowan’s country is ____ Jakarta
Jake lives in Poland. The capital of Jake’s country is ____ Warsaw
Jake works as a florist. For his job, Jake sells ____ flowers
Jake works as an optician. For his job, Jake sells ____ glasses

Jake works as a baker. For his job, Jake sells ____ bread
Daniel works as a butcher. For his job, Daniel sells ____ meat
Daniel works as a fisherman. For his job, Daniel sells ____ fish
Daniel works as a painter. For his job, Daniel sells ____ paintings
Daniel visited the Taj Mahal. The country Daniel traveled to was ____ India
Daniel visited the Pyramid of Giza. The country Daniel traveled to was ____ Egypt
Jack visited the Eiffel Tower. The country Jack traveled to was ____ France
Jack visited the Tower of Pisa. The country Jack traveled to was ____ Italy
Jack visited the Machu Picchu. The country Jack traveled to was ____ Peru
Jack visited the Kremlin. The country Jack traveled to was ____ Russia

Jack played football. In his game, Jack scored a ____ touchdown
Jack played baseball. In his game, Jack scored a ____ run
Daniel played soccer. In his game, Daniel scored a ____ goal
Sebastian played cricket. In his game, Sebastian scored a ____ century

Table 2: Base context for the dataset

Context target

John lives in Chile and writes poetry. The capital of John’s country is ____ Santiago
John lives in Chile, writes poetry, and drives a car. The capital of John’s country
is ____

Santiago

John lives in Chile, writes poetry, and drives a car. The capital of John’s country
is ____

Santiago

John lives in Chile, writes poetry, drives a car, and slept late last week. The
capital of John’s country is ____

Santiago

John works as a florist and Jack writes poetry. For his job, John sells ____ flowers
Jake visited the Eiffel Tower, Rowan drives a car, and Jack sits by the lake. The
country Jake traveled to was ____

France

Sebastian played football, writes poetry, slept late last week, and sits by the lake.
In his game, Sebastian scored a ____

touchdown

Table 3: Examples from semantically unrelated attractors
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Context target

Daniel knows that Jack lives in Beijing and he himself lives in Chile. The capital of
Daniel’s country is ____

Santiago

Daniel knows that Jake likes to buy glasses and Rowan likes to buy meat and he
himself works as a florist. For his job, Daniel sells ____

flowers

Joe wants to visit the Eiffel Tower, the Pyramid of Giza, and the Machu Picchu and
has only visited the Taj Mahal. The country Joe traveled to was ____

India

Rowan knows that his friends scored a goal and a century and he himself played
football. In his game, Rowan scored a ____

touchdown

Table 4: Examples from separating key entity and critical fact
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Figure 6: Accuracy vs number of attractors, with B type
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Figure 7: Accuracy vs number of attractors, with T type
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Figure 8: Accuracy vs number of attractors with semantically unrelated attractors


