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Abstract

Discourse segmentation, the first step of dis-
course analysis, has been shown to improve
results for text summarization, translation and
other NLP tasks. While segmentation mod-
els for written text tend to perform well, they
are not directly applicable to spontaneous, oral
conversation, which has linguistic features for-
eign to written text. Segmentation is less stud-
ied for this type of language, where annotated
data is scarce, and existing corpora more het-
erogeneous. We develop a weak supervision
approach to adapt, using minimal annotation, a
state of the art discourse segmenter trained on
written text to French conversation transcripts.
Supervision is given by a latent model boot-
strapped by manually defined heuristic rules
that use linguistic and acoustic information.
The resulting model improves the original seg-
menter, especially in contexts where informa-
tion on speaker turns is lacking or noisy, gain-
ing up to 13% in F-score. Evaluation is per-
formed on data like those used to define our
heuristic rules, but also on transcripts from two
other corpora.

1 Introduction

Discourse analysis, focusing on pragmatic aspects
of text interpretation, especially aspects ranging
beyond the level of the sentence, is a long standing
domain of Natural Language Processing (NLP), of
growing importance for many tasks in NLP such as
Machine Translation (MT) (Chen et al., 2020) and
summarization (Louis et al., 2010; Xu et al., 2020).

The first level of discourse analysis consists in
segmenting a discourse into basic units, which gen-
erally correspond to roughly clause-level units of
text whose contents provide the arguments to dis-
course relations such as Explanation, Elaboration,
and Contrast (Mann and Thompson, 1987; Prasad
et al., 2008; Asher and Lascarides, 2003). Tak-
ing the resulting discourse segments as input for
tasks such as summarization/sentence compression

can improve performance over sentence-based ap-
proaches (Li et al., 2020; Sporleder and Lapata,
2005; Xu et al., 2020). Segmentation is also cru-
cial for downstream tasks that exploit discourse
relations (Chen et al., 2020; Louis et al., 2010; Xu
et al., 2020).

Because automatic segmentation on text-based
corpora tends to yield good results (above 90% F-
score on segment boundary recognition, depending
on the language, cf. Zeldes et al., 2019), the seg-
mentation task is often neglected in favor of the
prediction of discourse relations. State of the art
discourse segmenters, however, generally take sen-
tence boundaries as given, and often benefit from
other forms of punctuation, as well as the well-
formed sentences found in text-based corpora.

Such systems provide a less stable foundation for
discourse parsing of spoken conversations, which
is necessary to improve, e.g., real time recommen-
dations from voice assistants and meeting summa-
rization, and to develop more advanced assistants
including robots/cobots with conversational capa-
bilities. In these cases, we need to work directly on
the audio signal or transcript, and cannot assume
sentence boundaries or punctuation (at least not
human-corrected punctuation). And the utterances
might be far less well formed, as in the following
example (translated from our data, see Section 4) in
which a speaker interrupts his own thought to ask
a question about the name of a town—a question
that he ends up answering himself with “no”.

(1) so then i did uh we went through uh through
uh well uh benghazi is that what it’s called
that little town there no uh...

Segmentation of such data becomes a more com-
plicated task that requires fine-tuning to discursive
properties particular to spoken conversation as well
as reliance on acoustic features.

Annotated conversation data is relatively scarce,
however, especially for languages other than En-
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glish, and existing corpora span a range of different
contexts: meetings, written chat, user/system inter-
actions, etc. To address data scarcity, we introduce
a method to transfer the knowledge of a segmenter
trained on well-prepared, written text to an oral
context, with specific supervision given by a latent
model bootstrapped by manually defined heuristic
rules, as in (Ratner et al., 2020). The rules exploit
lexical, syntactic and acoustic features to help iden-
tify segment boundaries. This should provide a
more general framework than oral segmentation
efforts dedicated to specific tasks like MT (Iranzo-
Sánchez et al., 2020) or than lexically-based un-
supervised approaches (Galley et al., 2003). The
contributions of this paper are thus:1

• a method to transfer a supervised model based
on prepared, written text to spontaneous, mul-
tiparty oral conversation using multimodal fea-
tures and little manual annotation;

• evaluation of the new segmentation model
with different input information, on in-domain
and out-of-domain data sets, showing large
improvements on the written text segmenter;

• a corpus of 7.5 hours of multiparty, spo-
ken conversation in French with gold tran-
scripts, and manual segmentation annotations
on (small) development and test sets.

2 Related work

The first automated attempts at predicting discourse
structure and discourse segmentation with a rule-
based approach can be attributed to (Marcu, 2000).
Until recently, discourse segmentation had been
generally ignored in discourse parsing, although
there were some studies based mostly on statisti-
cal models using lexical/syntactic features (Soricut
and Marcu, 2003; Fisher and Roark, 2007; Hernault
et al., 2010; Joty et al., 2015) and the rule-based ap-
proach of (Tofiloski et al., 2009). These approaches
are restricted to sentences, however, thus assuming
that sentence boundaries are given.

Recently, interest in discourse segmentation was
renewed with neural-network sequential classifi-
cation using contextual embeddings (Wang et al.,

1The code and a reproduction notebook are avail-
able at https://github.com/linto-project/
linto-dialogue-act-segmentation, along with
the manual transcriptions of the conversations and the dev/test
set manual segmentations.

2018; Lukasik et al., 2020), though still at the sen-
tence level.

The shared task at the Disrpt 2019 workshop
introduced a more general evaluation framework,
with multilingual data and segmentation at the level
of full texts, with a subtask that did not assume
sentence boundaries (Zeldes et al., 2019). The
best system, which also used a sequential model
over contextual embeddings (Muller et al., 2019),
showed the best performance both with and without
sentence boundary information.

In work on oral conversation, segmentation has
often been approached not as a discourse prob-
lem, but as a problem of recognizing “sentences”
in order to predict punctuation marks with ngram
models and audio features, either to enrich auto-
matic speech transcripts (Batista et al., 2012) or
to improve MT (Fügen et al., 2007; Zhang and
Zhang, 2020; Wang et al., 2019). Arguably the
relevant units for MT are what (Fügen et al., 2007)
vaguely call “semantic boundaries”. These units
are less fine-grained than the segments needed for
discourse analysis, however.

(Ang et al., 2005) is one of the first works to
simultaneously address dialogue act (DA) segmen-
tation and classification for speech in multiparty
meetings (where for the purposes of this paper, we
can consider a dialogue act as just a dialogue spe-
cific term for a discourse segment). They found
that a simple prosodic model aided performance
over lexical information alone, especially for seg-
mentation. They used pause information for seg-
mentation, and added duration, pitch, energy and
spectral tilt features for classification.

(Quarteroni et al., 2011) used conditional ran-
dom fields to simultaneously segment and label
conversations, trained on the Switchboard corpus,
with a per-token classification accuracy around
70% (a token is either a segment boundary or not).

More recent approaches make use of neu-
ral networks. (Zhao and Kawahara, 2018) pro-
posed a joint segmentation-tagging model using
bi-directional Long Short Term Memory layers, in
the form of a word sequence tagger for segmenta-
tion and a sentence classifier for dialogue act tag-
ging. (Dang et al., 2020) proposed an end-to-end
speech-to-dialogue-act recognizer in the form of
a single attention-based neural network trained to
perform word-level ASR and fine-tuned to perform
DA segmentation and classification. Both previ-
ous studies use the Switchboard corpus, which, by

https://github.com/linto-project/linto-dialogue-act-segmentation
https://github.com/linto-project/linto-dialogue-act-segmentation
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discourse corpora standards, provides a large anno-
tated dataset (1k conversations, 200k dialogue acts,
1.3M tokens) for English. Evaluation measures in
speech-oriented work focus either on words (be-
longing to the right segment or not) or exact seg-
ment boundaries of varying types that differ from
conventions for written-text segmentation, making
direct comparisons difficult.

Our approach is based on the data-programming
paradigm (Ratner et al., 2016), a weak supervision
framework that has been applied mainly to informa-
tion extraction problems in NLP, but also recently
to discourse analysis (Badene et al., 2019), specif-
ically for discourse structure prediction. We are
unaware of similar work on discourse segmenta-
tion or on multi-modal text/speech classification
problems. The novelty of the data-programming
approach is that it requires only a fraction of the
data to be manually annotated, for designing heuris-
tics and for evaluation, and is arguably easier to
adapt to new data.

3 The data-programming approach

The data-programming approach (Ratner et al.,
2016, 2020) can be decomposed into three steps:
(1) LABELING FUNCTIONS: by studying only a
small (possibly annotated) development set, experts
design a set of heuristic rules or labeling functions
(LFs) that will be used to automatically label new
data. LFs can exploit heterogeneous information
sources: other heuristic rules, external knowledge
sources, models trained on a similar problem with
different data or a different domain, etc. The LFs,
which produce “noisy” annotations, need not apply
labels to all data points; that is, they may abstain.

(2) LABEL MODEL: the LFs are applied to a new
data set for which we have no annotation. The pre-
dictions of each LF, represented as a label matrix,
are then used to train a model of the joint distribu-
tion of the accuracy of the different LFs and the
(unseen) true labels, based on the LFs’ agreement
and disagreements on the instances they label. This
is similar to majority voting, with LFs also being
weighted by their estimated accuracies.

Step (2) is the crucial part of the approach. For
the full formal description, we refer to (Ratner et al.,
2020, pp 6-7), but in sum: for each LF λj and each
instance xi, define the label matrix as Λ = [λj(xi)],
and the vector of the unknown true labels for xi as
Y = [yi]. The label model is an estimate pw(Λ, Y )
of their joint probability. It depends on two factors,

the label propensity (Lab) of an LF, i.e. how often
it assigns a label, and its accuracy (acc)2:
φLabi,j (Λ, Y ) = 1{Λi,j 6= 0}
φacci,j (Λ, Y ) = 1{Λi,j = yi}

The model is then a log-linear model on the con-
catenated factor φi for each instance:

pw(Λ, Y ) ∝ exp(
∑
i

wTφi(Λ, yi))

This is learned without access to Y by minimiz-
ing the negative marginal log likelihood given the
observed Λ:

ŵ = argmin
w

(− log
∑
Y

pw(Λ, Y ))

The predictions pŵ(Y |Λ) can then serve as proba-
bilistic labels, yielding a labeled “train” set.

(3) FINAL MODEL: The train set labeled by the label
model in step (2) is used to train a supervised model
appropriate for the task. If the model does not
accommodate probabilistic supervision, one can
apply a threshold on the positive class to produce
hard labels. An unseen test set is usually annotated
manually for evaluation (see Section 4).

We use the snorkel library,3 which provides im-
plementations of the various steps of data program-
ming, e.g. a framework to develop and evaluate
LFs and to train a label model.

While manually designing LFs still requires
some human effort and expertise, it has proven to
be less labor-intensive and more reliable than mas-
sive data annotation on some tasks (Ratner et al.,
2020, user study, pp 16-17) and has other benefits:
it does not depend on the size of a data set, it is ar-
guably easier to adapt to a different context (and to
some extent a different language), and, as we show
below, does not require the final supervised model
to have access to all of the information initially
exploited by LFs. In our case, this means that the
annotations are generated by LFs that exploit both
textual and acoustic features, but the final model is
only trained on transcribed text.

4 Data

Our research aims to improve the conversational
capacities of automated assistants in French. As
such, we develop our segmentation model using

2The full model can learn dependencies between LFs; we
opted to ignore these based on results on the development set.

3snorkel.org

snorkel.org
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a new corpus of around 7.5 hours (7hr, 40min) of
multiparty conversations in French.

The interactions come from real meetings
recorded in an industrial setting and can be di-
vided into three types: (i) presentations: one per-
son presents their work and other participants (7-12
participants (p)) ask questions during or after the
presentation; (ii) weekly update meetings (4-5p):
participants present their work from the previous
week to a manager, field questions, and describe
their next steps; and (iii) informal discussions (4-
6p): about work related topics or more personal
topics, such as vacation plans. The corpus contains
a total of 11 meetings ranging in length from 8.5
minutes (type (iii)) to 84 minutes (type (i)).

The entire corpus was transcribed, first auto-
matically and then corrected by hand, so as to in-
clude any word that can be heard on the transcript.
Speaker turns—maximal, continuous sequences of
words that can be attributed to a single speaker—
—were also manually corrected. Transcripts were
aligned with the audio files using JTrans (Cerisara
et al., 2009) to produce time stamps for each word.

The interactions, as is typical of meetings and
informal conversations, were not prepared in ad-
vance, leading to disfluencies, such as hesitations
(uh, euh, etc.), repetitions, self corrections (“j’ai
fait euh on est”≈ I did uh we went), and incomplete
sentences, as well as linguistic tics and overlapping
speech, when people speak at the same time. All
of these elements, apart from overlapping speech,
are represented in the transcripts. Areas of over-
lapping speech, which complicate the alignment
between the transcript and audio files, and which
would have not been captured by an ASR system,
were deleted. This led to a removal of 26 minutes,
reducing the corpus to 434 minutes (7hr, 14min).

The development set used to design our LFs (see
Section 3) contains one weekly update meeting (4p)
and one informal discussion about equipment to
buy for an office (4p). As shown in Table 1, it con-
tains 9,572 words, or 13.5% of the corpus (without
overlapping speech); manual segmentation (to aid
in LF design) yielded 1140 segments.

The test set used to validate the whole process
contains one presentation (7p) and one informal
conversation about vacation (5p), making up 12.2%
of the corpus. Manual segmentation yielded around
1100 segments. While some of the participants who
asked questions in the test set appeared in other
recordings from the corpus, the principal speakers—

Set N Words N speakers Duration

Train 53,692 21 319 min
Dev 9,752 8 59 min
Test 8,833 13 56 min

Table 1: Corpus statistics for each split.

i.e., the presenter for the presentation and the two
people discussing their vacation plans—did not.

The remaining interactions from the corpus were
set aside to be used to train the label model (step
2 in the data-programming approach) and then the
final supervised model (step 3). The transcripts
for the training set were not manually annotated,
as the point of the data-programming approach is
to be able to predict them automatically based on
weights that the label model assigns to the LFs.

5 Heuristics (Labeling Functions)

5.1 LF design

Segmentation is framed as a token classification
problem in our model: for each token of a meeting
transcript, a labeling function (LF) may label it as
either the beginning of a segment (BOS) or as not
being the beginning (NO). The LF may also fail
to produce a label, i.e. it may abstain. The LFs,
designed based on the development set, exploit a
variety of sources of weak supervision, including
predictions of supervised models trained on text
data, linguistic features of the transcripts and acous-
tic features of the recordings, as well as potentially
interesting mixtures of information sources.

The main source of information in our model is
the output of the supervised segmentation model
ToNy (Muller et al., 2019), trained on French writ-
ten data, which we thus try to transfer to oral data
within the weak-supervision framework. The corre-
sponding LF, which predicts a BOS label if ToNy
predicts a BOS label, can be seen in the top-left
box of Figure 1, which summarizes the process of
creating new annotations from LFs.

We also used as input an in-house supervised
punctuation model trained on transcripts of French
conversational and read data, based on logistic re-
gression (cf. Batista et al., 2012), as we assume
punctuation of speech transcripts is correlated to
discourse segmentation (Quarteroni et al., 2011;
Zhao and Kawahara, 2018). The model tags punc-
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tuation at word level, using word ngrams around
the target word and part-of-speech tags, as well
as three parameters extracted from the audio in-
terval that is automatically aligned to the target
word: the root mean squared energy orientation
of the interval (ascending, descending, stable), the
global pitch orientation (ascending, descending,
stable, unknown) and the preceding pause duration.
Scores are produced at word-level for three classes:
period, comma and no punctuation. Overall accu-
racy on one manually annotated meeting was 53%.
As periods were more accurately predicted than
commas, and were a more reliable indicator of dis-
course segment boundaries, our LFs only exploit
period probability.

To construct further LFs, we isolated multiple
sources of confusion due to typical oral phenomena
not present in the training datasets for the models
described above, including disfluencies and differ-
ent uses of discourse markers, which are a very
important source of information for ToNy. We also
combined the acoustic features described above
with other linguistic regularities observed in the
development set. Finally, exploiting the SpaCy
syntactic parser for French,4 we looked for cor-
relations between selected grammatical features
and gold (manual) BOS labels: (a) part-of-speech
trigrams centered at the token where the decision
was to be made, (b) syntactic dependency relations
between a target token and its syntactic head.

BOS@labeling_function
def tony(x):

return BOS if,x.tony==17else ABSTAIN

def [name]:
return BOS if,[condition]7else ABSTAIN

def [name]:
return NO if,[condition]7else ABSTAIN

ABS

BOS
PBOS ='.99
PNO=.01

BOS

Example7on7one7data7point

Input :,Labeling,functions, Label model Label

Example7of7LF7and7LF7schemas

Figure 1: Label model pipeline: generation of labels
from “denoised” heuristics, to create training data. The
top left box shows an example LF; the two below it
show LF schemas. BOS = beginning of segment; NO
= no segment boundary at this token.

5.2 LF evaluation

Single LF evaluations can be done on the devel-
opment set, and include the following factors: (a)
propensity (coverage) of the LF, i.e. the number of
instances for which an LF produces a decision (not
abstains); (b) precision, i.e. the number of correct

4https://spacy.io/models/fr.

decisions it makes; (c) overlaps with other LFs,
i.e. the proportion of instances it covers that are
covered by at least one other LF; and (d) conflicts,
i.e. the proportion of instances it covers for which
another LF produced a different decision.

Segmentation of our data is a quite imbalanced
binary classification problem: only ≈10% of to-
kens mark the beginning of a segment. An LF pro-
duces at most one possible label (BOS/positive or
NO/negative), so a “negative” LF will necessarily
have good precision if it has good coverage. Since
the label model relies on agreements and conflicts
between LFs to assess their reliability and the prob-
ability of the true label, it is important to have as
many LFs as possible to fire on as many instances
as possible. Table 2 shows a few example LFs and
their corresponding statistics.

LF Pol. Cov. Ovlp. Acc

tony 1 0.11 0.09 0.75
period_pred 1 0.06 0.06 0.71
syntax_ngrams 1 0.02 0.02 0.74

stop_pos_type 0 0.33 0.10 0.96
no_disfluency 0 0.24 0.12 0.92

Table 2: Evaluation of a subset of LFs on the dev
set. Pol=polarity, as LFs only predict a segment bound-
ary (1) or its absence (0). Cov=coverage of instances.
Ovlp=overlap with other LFs. Acc=accuracy of the
LF on covered instances of the dev set (≈ precision).
LFs shown exploit the following information: label
predicted by the written segmenter, ToNy; period pre-
dicted at the target token; ngram of dependency types
around the token; pos tags typically associated with NO
labels in the dev set; disfluencies correlated with “no
boundary” decisions. These example LFs are selected
by coverage, with a threshold on accuracy at 0.7. The
full set of LFs is described in the Appendix.

6 Experiments

We adopt the architecture of (Muller et al., 2019)
for our final model (step 3), as this is currently
the best discourse segmenter that does not require
sentence preprocessing (and the only one with a
French model). Using the same architecture also al-
lows us to estimate the degradation of performance
from written text to oral speech transcripts.

Experiments were conducted on both the test set
from our corpus and transcripts from two other spo-
ken French corpora. An additional advantage of the
weakly supervised approach followed here is that

https://spacy.io/models/fr
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our final model can take as input plain transcripts;
that is, it does not require all of the information
used as input to the label model (pitch, energy, pos-
tagging, syntactic analysis, etc.).

For evaluation, we follow the procedure chosen
by the Disrpt19 shared task, i.e. we measure F-
score on segment boundary detection (BOS tags).

6.1 Label model (step 2) performance

As our final model architecture (based on Muller
et al., 2019) does not take probabilistic labels, we
discretized the distribution produced by the label
model, taking 0.7 as a threshold for positive bound-
aries based on observation of the development set.

As a first indicator of performance, we evaluated
the discretized label model’s accuracy on the de-
velopment set, though we note that because the set
was used to design the LFs, it is likely to overesti-
mate model reliability. The label model from step
(2) yielded much better accuracy than a simple ma-
jority vote between overlapping LFs: 90.8% versus
74%. The F-score on segment boundary prediction
was reasonable, but obviously much lower than re-
sults on written text: 73% versus 92% in Disrpt
2019, on French text without sentence boundaries.

6.2 Final model setup (step 3)

We trained the final, supervised model with annota-
tions produced by the label model. We borrowed
the architecture from (Muller et al., 2019), which
is essentially a BERT architecture fine-tuned for
sequence tagging, with a Bi-LSTM on top. Then,
without changing any hyperparameters from the
original setting, we trained it under two conditions,
yielding the following three evaluation conditions:

1. ToNyW : our baseline; the model of (Muller
et al., 2019), trained solely on written text.

2. ToNyW+O: the result of fine-tuning ToNyW
using annotations on our corpus predicted by
the label model.

3. ToNyO: a model trained from scratch on the
annotations predicted by the label model.

We used the implementation made available by
(Muller et al., 2019) for the Disrpt19 task for plain
text segmentation.5 For the baseline and the fine-
tuned models, we used the corresponding French
model published online.6

5https://gitlab.inria.fr/andiamo/tony
6https://zenodo.org/record/4235850
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Figure 2: Training and evaluation configurations.

6.3 In-domain data set configurations

In-domain evaluation was performed on our test set,
which contains two conversations, with a total of
8,833 tokens and ≈1100 gold segment boundaries.

As we aim to develop a robust model of segmen-
tation for oral conversation to improve models of
real-time recommendations or meeting summariza-
tion, we cannot always assume perfect transcripts
and speaker turn identification. Part of our goal was
thus to see if our LFs capture enough information
to reliably segment transcripts in the presence of
automatic speech recognition (ASR) and speaker
change detection errors. We thus performed our
evaluations on multiple data conditions.

First, taking the corrected transcript as given
(without punctuation), we evaluated our model us-
ing (1) gold (manually tagged) speaker turns, (2)
automatically predicted turns, and (3) no turn infor-
mation (just continuous text).

Second, we evaluated our model on the out-
put of the ASR system LinSTT,7 as it is an open
source system for French. In this configuration,
only words, not speaker turns, are predicted.

Predictions for speaker change at word level,
using Pyannote.audio8 (Bredin et al., 2020), was
rather low on our dataset, with 0.38 precision and
0.15 recall on finding speaker changes, so it serves
as a good robustness test. LinSTT’s performance
on our corpus was also rather low, with a ≈43%
word error rate, though this is unsurprising given
the difficulty of transcribing conversational speech.

6.4 Out-of-domain data sets

Final evaluations were also performed on tran-
scripts from two out-of-domain datasets: the Rhap-

7https://github.com/linto-ai/
linto-platform-stt-standalone-worker

8https://github.com/pyannote/
pyannote-audio.

https://gitlab.inria.fr/andiamo/tony
https://zenodo.org/record/4235850
https://github.com/linto-ai/linto-platform-stt-standalone-worker
https://github.com/linto-ai/linto-platform-stt-standalone-worker
https://github.com/pyannote/pyannote-audio
https://github.com/pyannote/pyannote-audio
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sodie treebank9 and the ESTER V2 corpus of broad-
cast news speech (Galliano et al., 2009).

The Rhapsodie treebank is a syntactically an-
notated conversation corpus; we used the version
available via the Universal Dependency corpus, un-
der the reference “Spoken French”.10 The gold
segmentation for Rhapsodie is syntax-oriented and
meant to be close to sentences, so not necessarily
in line with our definition. ESTER V2 is a French
broadcast news dataset built in 2008-2009 for ASR
system benchmarking.11

The test set for Rhapsodie has 9,850 tokens and
730 segment boundaries. For ESTER V2, we used
a single recording comprised of 20 minutes of
speech from 26 different speakers, with about 3700
tokens and 354 segment boundaries.12 Broadcast
news speech is mostly prepared speech, closer to
read speech and written text data than to the con-
versational data in our main corpus or Rhapsodie.
Evaluation on ESTER thus sheds light on how our
model performs on data that fall between fully oral
spontaneous speech data and text data.

7 Results and discussion

7.1 Comparing training conditions
Table 3 summarizes the main experiment, where
we compare ToNyW (W), the baseline segmenter
trained on written text; ToNyO (O), the same ar-
chitecture trained from scratch on our conversa-
tion data; and ToNyW+O (W+O), the architecture
fine-tuned on the conversation data. The different
train/test inputs are labelled as ‘gold’: gold speaker
turns, ‘det’: automatically detected turns, and ‘no’:
no speaker turn information.

We can see that the fine-tuned model (W+O)
outperforms the model trained from scratch (O) in
all configurations except when there is no speaker
turn information either for training or evaluation,
in which case they both attain an F-score of 64.2%.

Our systems beat the baseline in all configura-
tions with a wide margin—from +2 to +10 points—
unless gold turns are not used during training but
are given at test time (detected/gold and no/gold,
center-left and bottom-left regions of Table 3).

Using gold turns during training yields the best
results when gold turns are also given at test time

9https://rhapsodie.modyco.fr/.
10https://universaldependencies.org/

treebanks/fr_spoken/index.html
11https://catalogue.elra.info/en-us/

repository/browse/ELRA-S0338/
12File id: 20071218_1900_1920_inter

Test turns gold detected no

Train
turns

Cfg

gold
O 73.6 57.6 56.3
W + O 73.7 58.3 56.9

detected
O 66.5 62.0 60.7
W + O 69.4 63.4 60.9

no
O 60.5 62.5 64.2
W + O 62.9 63.6 64.2

Baseline W 71.6 53.6 51.1

Table 3: Evaluation of the final models (O and W+O)
trained on the noisy annotations from our label model,
according to the configuration of the final model and
the type of transcript input used for train and test. Test
results for the baseline (W), (Muller et al., 2019)’s
French model, are not dependent on the oral train set.
The best configuration for each train/test speech turn
origin is in bold if it beats the baseline for the same
testing condition, in italics if not.

(gold/gold); otherwise, scores fall at least 15 points
(first three rows of Table 3).

These results might suggest that providing turns
at training time prevents our model from learning
important features that distinguish points of speaker
change from turn-internal segment boundaries. The
results for the configurations with no turns during
training do not support this hypothesis; however,
we note that in the “no turn information” condition,
transcripts were cut arbitrarily to fit constraints
on input length imposed by BERT (and ToNy),
potentially generating random errors, and the LFs
were not designed with this in mind.

The above results were obtained with manual
transcripts. Using the transcripts produced automat-
ically with the LinSTT system (about 40% WER),
the result for the W+O model with no speaker turn
information drops from 64.2% to 49.6%, though it
still beats ToNyW ’s result of 41%.

7.2 Qualitative error analysis

While we do not provide here a quantitative er-
ror analysis of our results, a detailed qualitative
analysis of errors predicted on the development
set was necessary in order to produce and tweak
our LFs. We found that one of the most problem-
atic sources of error was the conjunction et (and),
which is well known to cause segmentation errors
due to its dual function as a propositional and nom-

https://rhapsodie.modyco.fr/
https://universaldependencies.org/treebanks/fr_spoken/index.html
https://universaldependencies.org/treebanks/fr_spoken/index.html
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0338/
https://catalogue.elra.info/en-us/repository/browse/ELRA-S0338/
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inal conjunction. The relative pronoun que (that)
also escaped our LFs at times and, like et, led to
over-segmentation errors. Both words are highly re-
liable indicators of segment boundaries and it was
difficult to circumscribe the exceptions. Likewise,
isolating frame adverbial uses of adverbs such as
aujourd’hui (today), which often introduce new
segments, can depend heavily on intonation and
other acoustic information that we did not have
time to study in detail and so could not capture
with LFs.

A further hurdle that we encountered was in
reliably predicting segmentation boundaries that
correspond to speaker changes, leading to errors
when gold speaker turns were not provided. A
more general problem was that for spontaneous
conversation, where speakers do not necessarily
produce grammatical or even complete utterances,
it can sometimes be difficult to say which is the
“correct” segmentation. In these cases, the gold
segmentation is arguably arbitrary, meaning that
disagreements between the gold and the predicted
segment boundaries do not tell us much.

Finally, some of the errors that we found were
superficial. As noted above, we sometimes had
to cut transcripts arbitrarily to respect word limits
imposed by BERT, and these cuts were treated as
segment boundaries by default. There were also
superficial errors linked to the typical French filler
word euh (um) in which the gold put a BOS on one
side of the euh but our segmenter put it on the other
side, meaning that the segmenter actually predicted
the right place to segment the real content of the
transcript.

7.3 Ablation study

We tested the impact of audio-related information
on the model by removing LFs involving audio
features. Table 4 summarizes the results, separated
again by the kind of speaker information assumed:
gold speaker turns, detected, or no turn information,
either at training or test time. Here we focus on the
best model from the previous experiments (W+O).

While removing audio-based LFs does not
change our fundamental result—our fine-tuned
model still outperforms the baseline, at least when
gold turns are not given at test time—the results in
Table 4 are mixed. Audio LFs clearly improve our
scores only in the gold/gold and detected/gold con-
figurations (+2 points), and in the former, removing
the LFs causes the model to fall slightly below the

relevant baseline score (71.6). The rest of the evalu-
ation shows either no significant difference without
audio-based LFs, or even an improvement.

Test turns gold detected no

Train
turns

LFs

gold
all 73.75 58.32 56.91

wo audio 71.49 60.76 60.28

detected
all 69.45 63.40 60.93

wo audio 67.18 63.25 62.44

no
all 62.93 63.62 64.21

wo audio 64.58 63.82 64.34

Table 4: Evaluation of the impact of audio-related LFs.
Here we show results only for the fine-tuned model
(W+O), which had the best scores in the preceding ex-
periment (see Table 3).

We note that in addition to potential errors in-
duced by arbitrary cuts in the transcripts imposed
by BERT, our audio rules require perfect align-
ments between tokens and time stamps. As align-
ment was done automatically without correction on
our train set, this could be another source of error,
though a careful study would be required to see.

7.4 Out-of-domain evaluation

We tested the robustness of the models by applying
them to transcripts from two other corpora, without
additional fine-tuning. We opted to evaluate the
model trained with no speaker turn information, as
it assumes the least about the target data. The main
results are presented in Table 5.

We can see that ToNyW provides the best score
for ESTER, which is broadcast speech and thus
closer to prepared or written text than the kind of
conversation for which our LFs were designed.

By contrast, our models clearly outperform
ToNyW on Rhapsodie, with ToNyW+O provid-
ing the best result, showing a nearly 10 point im-
provement over the segmenter baseline, ToNyW .
All three segmentation models outperformed a
second baseline (Baseline-2), a segmentation ap-
proach using syntax-based sentence splitting, with
ToNyW+O showing a more than 30 point improve-
ment (as evaluated during the ConLL 2018 shared
task13). When we compare these results to those of

13See https://universaldependencies.org/
conll18/ in Results, then Sentence information, table
fr_spoken.

https://universaldependencies.org/conll18/
https://universaldependencies.org/conll18/
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Table 3 for no speaker turns in training or testing—
the setup we use here—we see that W+O loses
about 8 points when switching to Rhapsodie.

F-score
Corpus Config

Rhapsodie
Baseline-2 24.17
W 47.12
O 54.55
W + O 56.41

ESTER
W 57.35
O 55.54
W + O 55.87

Table 5: Summary of out-of-domain evaluations on
two corpora: Rhapsodie (conversatios) and ESTER V2
(broadcast news speech). Best configuration for each
corpus is in bold. W is the model from (Muller et al.,
2019). Baseline-2 is the best system from the ConLL
2018 shared task, reported from the website.

8 Conclusion

We have detailed the design and evaluation of a
model of discourse segmentation for spontaneous,
multiparty oral conversation. While segmentation
of such data is crucial for recovering discourse
structure and for downstream tasks such as meeting
summarization, appropriate data sets are lacking
and/or diverse. The novelty of our approach lies in
transferring a model designed for prepared, writ-
ten text to conversation transcripts using minimal
data or manual annotation. Heuristics or labeling
functions, which may draw on heterogeneous infor-
mation sources, are designed by experts and used
to automatically label training data for supervision.

Our evaluations show that our heuristic-driven
approach significantly outperforms a state-of-the-
art discourse segmenter trained on prepared, writ-
ten text. Future work will focus on extending our
model to other languages and corpora with vary-
ing levels of spontaneity (and disfluency). Weak
supervision for NLP is an active subject, and re-
cent new frameworks such as (Lison et al., 2020)
might prove even more suitable for sequence tag-
ging problems in future work.
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A Descriptions of Labeling Functions

LF name Polarity Description Coverage Acc.

tony_realturns 1 Predicts a segment boundary (BOS) if ToNyW
predicts a segment boundary at the current token

0.112 0.749

period_bef 1 BOS if the audio+trigram punctuation model
predicts a period before the current token, with
probability>0.3 and the token is not a filler

0.065 0.712

first_marker 1 BOS if the current token is among a lexicon of
specific markers, and is the first of a sequence
of such markers (19 markers: donc (so), bon
(well/ok), ensuite (next), etc)

0.051 0.677

beg_real_turn 1 BOS if the current token is the first token in a
speaker turn (as given to the system)

0.031 0.987

audio_combinations 1 This LF is a set of conditions involving signifi-
cant audio signal transitions around the current
token (changes in pitch or energy), combined
with morpho-syntactic constraints on the token
and its neighbors (part of speech (pos), syntactic
dependencies, pos of the syntactic head)

0.030 0.692

posdep_ngram 1 This LF a set of conditions involving significant
morpho-syntactic patterns (pos ngrams, depen-
dency types of the token and its head)

0.025 0.737

keywords 1 BOS if the current token is among a set of open-
ing and acknowledgment markers typical of
BOSs that correspond to speaker changes (e.g.,
thanks, ok, good morning, etc)

0.015 0.591

cconj 1 BOS if the current token figures in a pattern
from a specified list of conjunction patterns

0.008 0.887

no_type 0 Predicts no boundary (NO) if the current token
falls into a part-of-speech category not typically
associated with BOSs

0.331 0.962

no_disfluency 0 NO if the current token is an instance of, or
is surrounded by, certain types of disfluencies
(e.g., hesitations, repetitions)

0.236 0.923

no_after_markers 0 NO if the current token appears after a series
of markers (see first_marker) to avoid segments
that consists only of discourse markers

0.075 0.941

Table 6: Description of LFs used by the label model. A few other LFs were tried and dismissed based on analysis
of their accuracy on the dev set, and/or the predictions of the generative labeling model on the dev set.


