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Abstract
In this paper we present SPRING Online Ser-
vices, a Web interface and RESTful APIs
for our state-of-the-art AMR parsing and gen-
eration system, SPRING (Symmetric PaRs-
Ing aNd Generation). The Web interface
has been developed to be easily used by the
Natural Language Processing community, as
well as by the general public. It provides,
among other things, a highly interactive vi-
sualization platform and a feedback mecha-
nism to obtain user suggestions for further im-
provements of the system’s output. Moreover,
our RESTful APIs enable easy integration of
SPRING in downstream applications where
AMR structures are needed. Finally, we make
SPRING Online Services freely available at
http://nlp.uniroma1.it/spring and, in addition,
we release extra model checkpoints to be used
with the original SPRING Python code.1

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013, AMR) is a popular formalism for repre-
senting the semantics of natural language in a
readable and hierarchical way. AMR pairs En-
glish sentences with graph-based logical formu-
las which are easily accessible by both humans
and machines, while abstracting away from many
syntactic variations. Because of the formalism’s
ambition to be comprehensive, AMR graphs are
complex objects that require a parser – an auto-
matic algorithm that transduces a natural language
utterance into an AMR graph – to subsume multi-
ple traditional Natural Language Processing tasks:
Word Sense Disambiguation (Bevilacqua et al.,
2021b; Barba et al., 2021), Semantic Role Labeling
(Màrquez et al., 2008; Conia et al., 2021; Blloshmi
et al., 2021), Named Entity Recognition (Yadav
and Bethard, 2018), Entity Linking (Ling et al.,
2015; Tedeschi et al., 2021), and Coreference Res-
olution (Kobayashi and Ng, 2020). Owing to this

1https://github.com/SapienzaNLP/spring

complexity, AMR parsing, as well as its specu-
lar counterpart, i.e., AMR generation, are hard to
solve. However, the richness of the information
included in AMR graphs, as well as their obvious
applications as an interface between human and
machines, make both AMR parsing and generation
very rewarding problems to solve. As a matter
of fact, AMR has been successfully applied to di-
verse downstream applications, such as Machine
Translation (Song et al., 2019), Text Summariza-
tion (Hardy and Vlachos, 2018; Liao et al., 2018),
Human-Robot Interaction (Bonial et al., 2020a), In-
formation Extraction (Rao et al., 2017) and, more
recently, Question Answering (Lim et al., 2020; Bo-
nial et al., 2020b; Kapanipathi et al., 2021). How-
ever, since AMR graphs for such applications are
obtained automatically through an AMR parser,
the benefits of AMR integration are highly corre-
lated with the performance of the underlying parser
across various data distributions and domains.

In recent years, AMR parsing and generation
models have become more reliable than they used
to be, thanks to both the availability of pretrained
language models (Devlin et al., 2019; Lewis et al.,
2020) and the continuous improvements in the
AMR-specific model architectures (Zhou et al.,
2020; Cai and Lam, 2020; Fernandez Astudillo
et al., 2020). However, most of the existing mod-
els make use of cumbersome, data-specific tech-
niques and components which not only limit the
out-of-distribution generalizability, but also make
it difficult to integrate such models in the pipeline
of downstream applications. In our recent paper,
SPRING (Bevilacqua et al., 2021a), we proposed
a solution through a simple, end-to-end approach
with no heavy inbuilt data processing assumptions.
Our model achieved unprecedented performance in
AMR parsing and generation, both in- and out-of-
distribution.

To make SPRING accessible to the community,
thereby lowering the entry point to AMR applica-

http://nlp.uniroma1.it/spring
https://github.com/SapienzaNLP/spring
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tion research, we present SPRING Online Services
which include:

• a Web interface to easily produce and visual-
ize an AMR graph for a given sentence and,
vice versa, a sentence for a given AMR graph
in PENMAN (Goodman, 2020) notation.

• RESTful APIs to programmatically request
AMR parsing and generation services.

• a bidirectional SPRING model also trained on
Bio-AMR, resulting in much stronger perfor-
mances for biomedical applications.

• a feedback mechanism which allows users to
submit modifications to the system’s outputs
– aided by the visualization – which we col-
lect to enable future enhancements of AMR
systems using active learning (Settles, 2009).

2 SPRING

In this Section we revisit the details of SPRING as
in Bevilacqua et al. (2021a) along with the alter-
ations we employ for this demonstration.

2.1 Task Formulation

SPRING is a simple sequence-to-sequence model
that operates either as a parser, aiming to produce
a linearized AMR graph given a sentence, or as a
data-to-text generator, generating a sentence from
an input linearized AMR graph. Formally, a sen-
tence is represented as a sequence of tokens s =
〈BOS, w1, w2, . . . , wn,EOS〉 where each word wi
belongs to the vocabulary V , and BOS,EOS ∈
V are special beginning-of-sentence and end-of-
sentence tokens, respectively. For example, the sen-
tence You told me to wash the dog is represented
as 〈BOS,‘You’, ‘told’, ‘me’, ‘to’, ‘wash’, ‘the’,
‘dog’, EOS〉. Similarly, a linearized graph is also a
sequence g = 〈BOS, g1, g2, . . . , gm,EOS〉, where
gi ∈ V . The graph of the aforementioned sentence
is shown in Figure 1. Note that both sentence and
graph tokens are drawn from the same vocabulary.

SPRING is at its heart a function Pθ (with θ
being the parameters) that takes as input a source
string σ in V ∗ =

⋃∞
i=1 V

i and a partial target string
τ ∈ V ∗. Then Pθ outputs a next-token probability
distribution over V . Applying this basic function
repeatedly, we can assign a probability (P ∗) to any
string of tokens given another one by factorising
it in a left-to-right way as a product of conditional

AMR GRAPH

tell-01

you wash-01

I dog

:ARG0 :ARG1

:ARG2

:ARG0 :ARG1

SNT You told me to wash the dog

DFS ( <R0> tell-01 :ARG0 ( <R1> you )
:ARG1 ( <R3> wash-01 :ARG0 <R2> :ARG1
( <R4> dog ) ) :ARG2 ( <R2> i ) )

Figure 1: The AMR graph for the sentence (SNT) “You
told me to wash the dog.” with its DFS linearization.

probabilities. This can be applied both to the pars-
ing (by using s as σ, and the progressively built
linearization g as τ ; Eq. 1) and generation (ex-
changing σ and τ ; Eq. 2):

P ∗θ (g|s) =
m+1∏
i=1

Pθ(gi | τ = g0:i−1, σ = s) (1)

P ∗θ (s|g) =
n+1∏
i=1

Pθ(si | τ = s0:i−1, σ = g) (2)

To train the model we optimize the parameters to
minimize, with mini-batch gradient descent, the so-
called negative log likelihood Lθ (the negative log
conditional probability) over a dataset D collecting
sentence-graph pairs, both for parsing (LPAR

θ(1)
) and

generation (LGEN
θ(2)

):

argmin
θ(1),θ(2)

LPAR
θ(1)

(D) +LGEN
θ(2)

(D) =

argmin
θ(1),θ(2)

−
∑
〈s,g〉∈D

logP ∗
θ(1)

(g|s) + logP ∗
θ(2)

(s|g)

(3)
Note that when θ(1) is different from θ(2), the

two objective terms are optimized separately. In-
stead, when we enforce θ(1) = θ(2) we have a
model that is not only symmetric, but can also per-
form both AMR parsing and generation at the same
time. As we will see, this results in negligible per-
formance drops compared to the disjoint models
that we presented in Bevilacqua et al. (2021a).

Once we have the trained model, the predicted
output is the string ending in EOS with the high-
est probability in P ∗θ . Unfortunately, finding this
optimal string is intractable when |V | is large; in
practice, however, we can perform an approximate
decoding with histogram beam search.
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2.2 Architecture

The SPRING model is based on the Transformer
architecture (Vaswani et al., 2017), a sequence-to-
sequence neural network that, briefly, i) uses at-
tention instead of recurrence to encode sequences,
ii) is made up of an encoder module that embeds
σ, and a decoder that, based on both the encoder
output and τ , produces the final distribution output.
Key to the high performances of SPRING is the
fact that its parameters are not randomly initialized,
but, instead, are adopted from those of a large pre-
trained encoder-decoder model, i.e., BART (Lewis
et al., 2020). Owing to this, SPRING can ex-
ploit the extensive knowledge BART encompasses,
gained through optimization on large amounts of
raw text with an unsupervised denoising objective.

2.3 Linearization

As we have mentioned, the bare SPRING model
can translate from and into linearized AMR graphs.
PENMAN, i.e., the format that is used to distribute
the AMR meaning bank, is an example of a lin-
earization. In Bevilacqua et al. (2021a) we ex-
perimented with different fully graph-isomorphic
linearization techniques. The linearization that
worked best was the one based on the Depth-First
Search (DFS) graph traversal algorithm, enhanced
with the use of special tokens to represent the vari-
ables, e.g., <R0>, <R1>, . . . , <Rn> (Figure 1).
Thus, we use the DFS-based linearization here.

One problem when performing parsing is that,
since we do not enforce constraints in decoding,
the predicted linearization may not be readable
back into a valid AMR. In practice, the outputs
are almost always valid, or can be made so with
little modification. Thus, in parsing only, we per-
form light, non content-modifying postprocessing,
mainly to ensure the validity of the linearization
produced, e.g., restoring parenthesis parity and re-
moving duplicate edges. Differently from Bevilac-
qua et al. (2021a), here we do not employ a third-
party Entity Linker so as to avoid response delay.

2.4 Vocabulary

We modify the BART vocabulary in order to
make it suitable for AMR-specific concepts (e.g.
amr-unkwown, date-entity), frames (e.g.
say-01) and relations (e.g. :ARG1, :time), as
well as special pointer tokens used in the DFS lin-
earization. The final vocabulary V is the union of
the original BART vocabulary and our additions.

Finally, we adjust the tokenization rules so that
they do not split AMR additional tokens into multi-
ple sub-words and adjust the encoder and decoder
embedding matrices to include the new symbols.
To this end, we add a vector for each newly added
token which we initialize as the average of the vec-
tors of the sub-word constituents. This is useful
for obtaining compact sequences of tokens, allow-
ing for faster decoding and response time of the
SPRING Online Services.

3 SPRING Online Services

Here we describe the functionalities of the Web in-
terface (Section 3.1) and those of the RESTful APIs
(Section 3.2). We further provide the architectural
details and libraries used in Appendix A.

3.1 Web Interface

The main functionalities of the Web interface in-
clude switching between parsing and generation
modalities, visual inspection of SPRING results
view and the feedback mechanism we develop to
enable users to validate SPRING predictions.

3.1.1 Modality Selector
The modality can be set on the initial homepage
by choosing Text or PENMAN from the Tab menu,
with Text being the default option. When the
Text option is chosen, the user is required to pro-
vide a plaintext sentence and they will then be redi-
rected to the SPRING parser Results View (shown
in Figure 2). On the other hand, when the PENMAN
option is chosen, the user is required to type or
copy a valid AMR graph in PENMAN notation. In
the case when the PENMAN provided is valid, the
user is redirected to the SPRING generator Results
View. Otherwise, when the graph is not valid, the
user is notified by a warning which points to the
error line number of the PENMAN.

3.1.2 SPRING Results View
The Results View is similar for both parsing and
generation, and we only exchange the query (input)
box and the result (output) box.

A. Query box. As in the Modality Selector
phase, also here, in the parsing modality the query
box takes as input a plaintext sentence as input,
while in generation the query box requires the in-
put to be a valid PENMAN. A user can parse or
generate from different inputs in this view while
remaining in the same modality. To switch from
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Figure 2: User interface of the SPRING parser Results View when the English sentence "After seeing that YouTube
video I wonder, what does the fox say?" is typed as input.

parsing to generation or vice versa, the user should
go back to the initial homepage.

B. Result box. When parsing a sentence, the Re-
sult box will be filled with the predicted graph in
PENMAN format. This box is editable to enable
user feedback (see Section 3.1.3). When generat-
ing from an AMR graph, the Result box shows the
generated sentence which can also be modified by
the user and submitted to the feedback system.

C. AMR view panel. This is a key component
of the Results View, which visualizes an AMR as a
hierarchical graph with labeled nodes and labeled
edges. We devise a custom node and edge layout
meant to enhance readability even in the case of big
graphs with a lot of coreference edges. For exam-
ple, there might be overlapping edges, edge labels
or nodes in the graph. To increase visibility, the
user can click/hover on an edge or edge label, and
it will be highlighted and brought to the foreground.
The same applies to nodes, and in addition, click-
ing/hovering over nodes will also highlight and
bring to the foreground every incoming and outgo-
ing edge, thus identifying all the local relations of
a concept. The graph view is resizeable in order
to better handle big AMR graphs, and the user is
also able to zoom in/out for ease of reading. There
are 4 types of node, indicated by different colors,
comprising: i) predicate concept nodes, ii) non-
predicate concept nodes, iii) constant nodes and
iv) wiki nodes. Both predicate and non-predicate
nodes are labeled with a variable name (in the high-

lighted corner) and the concept they represent. The
variable makes it easy to locate the node in the
PENMAN box on the left Panel.

Futhermore, both predicate and wiki nodes are
associated with an onhover/onclick tooltip
box that further defines them. The tooltip associ-
ated with the wiki node contains information taken
from the corresponding BabelNet2 (Navigli and
Ponzetto, 2010; Navigli et al., 2021) concept, dis-
playing a short entity description and image (when
applicable), also redirecting the user to the corre-
sponding BabelNet page when clicking on it. This
choice is motivated by the fact that BabelNet con-
cepts function as a hub of information beyond that
of Wikipedia, which paves the way for future in-
tegration of other resources in AMR. The tooltip
of the predicate node, instead, provides details on
the predicate definition and arguments taken from
the PropBank framesets (Palmer et al., 2005). In
addition, we display an example sentence contain-
ing the predicate in the specified sense. The user
is redirected to the PropBank predicate page when
clicking the tooltip. We mean the extra information
shown by the tooltip component to be useful for
the user to identify potential parsing mistakes in
the output of the system, and ideally to use the pro-
vided feedback mechanism to suggest corrections.

3.1.3 Feedback Mechanism
One key functionality of SPRING Online Services
that requires user interaction is the Feedback Mech-

2Version 5.0.
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anism. It is included in both parsing and generation
modalities. With this feature, we aim to obtain
a manual validation of SPRING output graphs or
sentences, aided by the visualization. More specif-
ically, when a user recognizes a mistake of the
SPRING parser, including both missing or extra
nodes and edges, or wrongly labeled ones, they
are allowed to suggest modifications. In SPRING
parser modality, multiple modifications are al-
lowed in the left-panel PENMAN box, which are
updated simultaneously in the right AMR view
panel when the UPDATE button is pressed, and
a user can then navigate through their own mod-
ifications by means of the Prev and Next but-
tons. To submit a final modification request, a
user is provided with the SUGGEST AN EDIT
button. The modifications are accepted if they lead
to a correctly-formed graph. When this is the case,
we save the modification request in a database for
further validation. In contrast, when a mistake is
found the user is warned about the line in PEN-
MAN where it occurs. In the SPRING generator
instead, only the predicted sentence is allowed to
be modified, assuming that the input graph by the
user is correct and does not need further modifica-
tion. If this is not the case, the user can query the
system with another AMR to obtain a new result.
This feedback mechanism paves the way to future
advancements in the field:

• enabling the use of active learning for improv-
ing system performance;

• collecting human validated SPRING output
which can be further used as synthetic data for
enhancing AMR systems;

• providing evidence of common SPRING mis-
takes which can aid studies on interpretation
and reinforcement of AMR systems’ knowl-
edge.

Since data collection requires time and consider-
able interaction of users with our services, we leave
the exploration of methods for including such data
in AMR tasks as future work. Moreover, we plan
to release the accumulated data periodically and
on-request to the community.

3.2 RESTful APIs

The RESTful APIs we provide can be used ef-
fectively to query the SPRING services program-
matically. Our APIs are simple and, differently

from our Web interface, do not allow modifi-
cation requests of the SPRING output. The
APIs can be accessed through GET or POST
requests. In fact, the APIs consist of two
endpoints, namely, /api/text-to-amr and
/api/amr-to-text, to parse into or generate
from an AMR graph, respectively. The former
requires a sentence string parameter and the
output is a JSON object containing the PENMAN
graph, while the latter expects a valid string serial-
ized PENMAN graph, and the response is a JSON
object containing the sentence. To ease the usage
of the RESTful APIs, the full documentation is ac-
cessible through the SPRING Web interface, i.e.,
API-Doc from the header menu bar.

4 Evaluation

For the purposes of this demo, we examine differ-
ent variants of SPRING to ensure: i) high perfor-
mance, ii) high generalizability across domains,
and iii) efficient and light SPRING Online Ser-
vices.

Datasets. To deal with i) and ii), we perform
experiments with the AMR 3.0 (LDC2020T023)
benchmark – currently the largest AMR-annotated
corpus which includes and corrects both of its pre-
vious inferior-sized versions, i.e., AMR 2.0 and
AMR 1.0. In addition to this, motivated by AMR-
based approaches in biomedical applications (Rao
et al., 2017; Bonial et al., 2020b), we jointly train
and evaluate SPRING in the Bio-AMR4 corpus
(May and Priyadarshi, 2017) as well.

Systems. While Bevilacqua et al. (2021a) train
one specular model for each of the AMR tasks
(henceforth SPRINGuni, denoting unidirectional),
to satisfy the point iii) above, we train a version of
SPRING that handles both AMR parsing and gener-
ation with the same model (henceforth SPRINGbi,
denoting bidirectional). This allows us to load into
memory only one model to perform both tasks,
thus decreasing the potential overload of the server
where the demo resides, as well as enabling lower
memory footprint for users employing SPRING
with our Python code. To train SPRING variants,
we employ the same hyperparameters as in Bevilac-
qua et al. (2021a). In addition, we summarize the
state-of-the-art systems on AMR 3.0.

3catalog.ldc.upenn.edu/LDC2020T02
4amr.isi.edu/download.html

https://catalog.ldc.upenn.edu/LDC2020T02
https://amr.isi.edu/download.html
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Pa
rs

in
g Lyu et al. (2020) 75.8

Zhou et al. (2021) 81.2

SPRING (Bevilacqua et al., 2021a) 83.0

G
en

er
at

io
n Zhang et al. (2020) 34.3

T5 Fine-Tune (Ribeiro et al., 2021) 41.6
STRUCTADAPT-RGCN (Ribeiro et al., 2021) 48.0

SPRING (Bevilacqua et al., 2021a) 44.9

Table 1: Comparison with literature on AMR 3.0.

AMR 3.0 Bio-AMR

Train dataset Dev Test Dev Test

Pa
rs

in
g SPRINGuni AMR 3.0 83.9 82.6 60.6 60.6

SPRINGbi AMR 3.0 83.6 82.3 60.5 59.2

SPRINGuni Bio+AMR 3.0 83.9 82.5 80.0 80.1
SPRINGbi Bio+AMR 3.0 84.1 82.7 79.5 80.2

G
en

er
at

io
n SPRINGuni AMR 3.0 45.0 44.9 22.9 19.4

SPRINGbi AMR 3.0 43.9 44.5 21.1 17.1

SPRINGuni Bio+AMR 3.0 45.3 45.7 39.5 43.5
SPRINGbi Bio+AMR 3.0 44.3 45.0 38.5 42.0

Table 2: SPRING variants in AMR 3.0 and Bio-AMR.

Results. We report Smatch (Cai and Knight,
2013) and BLEU (Papineni et al., 2002) scores for
AMR parsing and generation, respectively. In Ta-
ble 1 we summarize the performances of recent
systems in the literature on the AMR 3.0 pars-
ing and generation tasks. In parsing, SPRING
achieves the highest results across the board. In
fact, we note that Zhou et al. (2021) was published
after Bevilacqua et al. (2021a), yet SPRING re-
mains the best-performing parser in the literature
to date. In generation, instead, SPRING attains
considerably higher results than Zhang et al. (2020)
and T5 Fine-Tune (Ribeiro et al., 2021) models.
In fact, while the latter has a comparable archi-
tecture to that of SPRING due to its use of the
pretrained sequence-to-sequence T5 model (Raffel
et al., 2019), SPRING nevertheless outperforms it
by 3.3 BLEU points. SPRING obtains lower results
than the recent STRUCTADAPT-RGCN (Ribeiro
et al., 2021) model, which, however, achieved those
results at the expense of a more complex archi-
tecture with a higher number of parameters than
SPRING. In Table 2 we report the performance of
SPRING variants, i.e., SPRINGuni and SPRINGbi,
trained on AMR 3.0 or on the concatenation of
Bio-AMR and AMR 3.0 (Bio+AMR 3.0) and when
evaluated in development and test splits of each.
Notice that the results of SPRINGuni in AMR 3.0
parsing are different from those reported in Table

1, since here, as we recall from Section 2.3, we do
not perform Entity Linking in postprocessing for
the purpose of simplicity. Firstly, SPRING models
trained on Bio+AMR 3.0 achieve the highest results
overall. Then, SPRINGbi performs on a par with or
slightly worse than SPRINGuni in parsing and gen-
eration, respectively. We choose the best model for
the SPRING Online Services based on the Smatch
score on the development set of AMR 3.0, i.e,
SPRINGbi trained on Bio+AMR 3.0 for both pars-
ing and generation jointly. This model allows for
the achievement of all the goals we set at the begin-
ning of this Section: performance, generalizability
and efficiency. Furthermore, we release the addi-
tional model checkpoints to be used with the orig-
inal SPRING Python code, available at https:
//github.com/SapienzaNLP/spring.

5 Related Work

With a view to demonstrating the progress made
in AMR, over the years different Web services for
state-of-the-art AMR systems (Konstas et al., 2017;
Damonte et al., 2017; Damonte and Cohen, 2019)
have been developed. Similarly to SPRING, Kon-
stas et al. (2017), proposed an encoder-decoder
system to perform both parsing and generation by
relying on data augmentation techniques. This sys-
tem is associated with a demo5 to only parse into
or generate from AMR and does not provide extra
functionalities, RESTful APIs, or any interaction
with the users. Similarly, Damonte et al. (2017) and
Damonte and Cohen (2019) do not provide other
functionalities in their demos beside parsing (Da-
monte et al., 2017, AMREager)6 and generation
(Damonte and Cohen, 2019, AMRGen)7. However,
SPRING outperforms the aforementioned systems
by more than 20 points in both, Smatch for AMR
parsing and BLEU for AMR generation. In addi-
tion, through SPRING Online Services we provide
a highly-interactive Web interface, RESTful APIs,
and the feedback mechanism.

6 Conclusion

With this paper we make available SPRING On-
line Services, with which we bring state-of-the-
art AMR systems into the hands of the commu-
nity, providing a highly interactive interface and
easily integrable APIs. Our SPRING system ob-

5Inactive link: www.ikonstas.net/index.php?page=demos
6AMREager: bollin.inf.ed.ac.uk/amreager.html
7AMRGen: bollin.inf.ed.ac.uk/amrgen.html

https://github.com/SapienzaNLP/spring
https://github.com/SapienzaNLP/spring
http://www.ikonstas.net/index.php?page=demos
https://bollin.inf.ed.ac.uk/amreager.html
https://bollin.inf.ed.ac.uk/amrgen.html


140

tains results in the same ballpark as the state of
the art in both AMR-to-Text and Text-to-AMR,
using the same weights for both. Moreover, our
model obtains very strong results in the biomedi-
cal domain, providing a powerful tool for building
applications. In the future, we intend to extend the
services across languages following techniques as
in Blloshmi et al. (2020) and Procopio et al. (2021).
We make SPRING Online Services available at
http://nlp.uniroma1.it/spring.
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