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Abstract
In this paper, we present MISS, an assistant
for multi-style simultaneous translation. Our
proposed translation system has five key fea-
tures: highly accurate translation, simultane-
ous translation, translation for multiple text
styles, back-translation for translation quality
evaluation, and grammatical error correction.
With this system, we aim to provide a com-
plete translation experience for machine trans-
lation users. Our design goals are high trans-
lation accuracy, real-time translation, flexibil-
ity, and measurable translation quality. Com-
pared with the free commercial translation
systems commonly used, our translation as-
sistance system regards the machine transla-
tion application as a more complete and fully-
featured tool for users. By incorporating
additional features and giving the user bet-
ter control over their experience, we improve
translation efficiency and performance. Ad-
ditionally, our assistant system combines ma-
chine translation, grammatical error correc-
tion, and interactive edits, and uses a crowd-
sourcing mode to collect more data for further
training to improve both the machine trans-
lation and grammatical error correction mod-
els. A short video demonstrating our system
is available at https://www.youtube.
com/watch?v=ZGCo7KtRKd8.

1 Introduction

With the increasing technological development of
the world and the acceleration of globalization,
people from different languages and cultural back-
grounds communicate more and more, and the
needs of translation are becoming more and more
important and diverse. Although traditional man-
ual translation works well, with the increasing
frequency of international communication, tradi-
tional manual translation far from meets demand,
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and machine translation has correspondingly risen
in popularity (Hutchins and Somers, 1992). Re-
cently, Neural Machine Translation (NMT), espe-
cially Transformer-based NMT, has emerged as
a promising approach with the potential to ad-
dress many of the shortcomings of traditional rule-
based or statistics-based machine translation sys-
tems (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). This has significantly im-
proved the performance of machine translation and
other related tasks (Huang et al., 2018; Li et al.,
2018a,b).

Although neural machine translation has made
tremendous improvements and is relatively high-
performing, because human language is so com-
plex, machine translation is often still only used as
an assistance tool rather than the sole entity respon-
sible for translation. There are several popular and
large existing commercial machine translation sys-
tems that provide users with effective translation
(e.g., Google Translator, Bing Translator, Ama-
zon Translate, and Baidu Translate). As NMT is
still very imprecise, however, these web services
fall short, as they do not provide sufficient infor-
mation to users in how good each translation is,
which is particularly pertinent to those who have
not mastered the target language. VoiceTra1 in-
cluded back-translation in the machine translation
system to alleviate this deficiency; however, this
practice requires users to perform additional man-
ual evaluations, which brings new usage costs.

In mainstream machine translation systems, sen-
tences or paragraphs are used as the units of transla-
tion, which means that it takes a relatively long time
to provide users with translated content. Simulta-
neous machine translation, translating sentences in
real-time while the user speaks or types, can signif-
icantly reduce this translation time, but its perfor-
mance lags behind that of standard NMT. Although
some commercial machine translation systems such

1https://voicetra.nict.go.jp/
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as Google and Baidu have introduced simultaneous
translation feature, due to the integration of simul-
taneous translation and whole-sentence translation,
users cannot easily control whether the system uses
simultaneous translation or whole-sentence transla-
tion, and the automated control of commercial sys-
tems sometimes does not follow the user’s wishes.

Since user input errors are unavoidable for any
human-computer interaction system, the quality of
NMT system also has been shown to significantly
degrade when confronted with source-side noise
(Heigold et al., 2018; Belinkov and Bisk, 2018;
Anastasopoulos, 2019). The previous grammati-
cal error detection and correction work focused on
computer-aided writing systems. Some existing
computer-aided writing systems (Grammarly2 and
Pigai3, Write&Improve4, and LinggleWrite5) de-
tect and correct grammatical errors; however, sys-
tems such as these have had little attention when
considered in the context of input error detection
or correction for commercial machine translation
systems, as their main focus is generally post-
translation editing.

High quality domain specific machine transla-
tion systems are in high demand whereas general
purpose MT has limited applications because dif-
ferent machine translation users want to generate
translations that can be used in the scenario. On the
one hand, general purpose translation systems usu-
ally perform poorly (Koehn and Knowles, 2017).
On the other hand, appropriate translation is also
a very important goal to pursue. There are two
typical methods to achieve this goal. One is to use
the domain adaptation method to obtain a domain-
specific model from the existing general machine
translation model through transfer learning. The
other is to adopt an conditional translation decoder
to integrate various domains into the same model
and generate translations according to different in-
put conditions (Keskar et al., 2019). At present,
the commercial machine translation system mainly
adopts the former one, but it also brings the addi-
tional deployment cost.

Considering the deficiencies of existing systems,
the new needs of users, and the current develop-
ment of natural language processing, we developed
a web-based machine translation demonstration
system MISS. In this system, we tried to integrate

2https://www.grammarly.com
3https://www.pigai.org
4https://writeandimprove.com
5https://f.linggle.com

several new features to provide better services for
users. With MISS, users can get real-time trans-
lations while writing, flexible control in switching
between real-time translation and whole-sentence
translation, informative back-translation feedback
and scoring, and input error detection and revision
suggestions. In addition, the system also supports
user interactions that modify the translations or in-
puts, which provides crowdsourced data for further
improving the performance of our machine trans-
lation and grammatical error correction. Notably,
there were also several interactive translation sys-
tems in the past, such as CASMACAT (Alabau
et al., 2014), (Knowles and Koehn, 2016), (Peris
et al., 2017), and INMT (Santy et al., 2019). The
distinctions lie in the abilities of the systems and
the features to adapt to the latest user needs.

2 The MISS System

There are 5 features in our MISS translation sys-
tem: simultaneous translation, back-translation
for quality evaluation, grammatical error correc-
tion, multi-style translation, and crowdsourcing
data collection. The system is available at http:
//miss.x2brain.com/ until November 12,
2021. We show a screenshot of the system in Figure
1. In the following subsections, we will describe
each component of the system.

2.1 Basis: Transformer-based NMT

Transformer (Vaswani et al., 2017) is an atten-
tion mechanism-based network. This architecture
introduced the innovative self-attention network
(SAN) that computes the relationships between
all tokens in the source sequence. (Hassan et al.,
2018; Läubli et al., 2018; Li et al., 2020a, 2021) ob-
served that Transformer-based NMT has achieved
performance similar to human-level performance
on some benchmarks, and because of this tremen-
dous performance, this model has been widely used
in the field of machine translation. Given the ex-
cellent performance of Transformer-based NMT,
we use it as the basis for our system. The model
includes an encoder and a decoder, which are re-
spectively used for incrementally processing the
source and target sentences. Both the encoder and
decoder are stacks of L Transformer blocks.

2.2 Feature #1: Simultaneous Translation

Simultaneous NMT has attracted much attention
recently. In contrast to standard NMT, where the

http://miss.x2brain.com/
http://miss.x2brain.com/
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Figure 1: The screenshot of MISS system.

NMT system can access the full input sentence, si-
multaneous NMT can only utilize the current state
of an input sentence (which may be incomplete).
Because of this, the translation task entails more
uncertainty and consequently, more difficulty. Cur-
rent simultaneous NMT systems model the task as
a prefix-to-prefix problem. Among them, wait-k
inference (Ma et al., 2019) is a simple yet effec-
tive strategy for simultaneous NMT. In wait-k, the
decoder is asked to generate the output sequence
k words behind the input words. Specifically, the
wait-k strategy is defined as follows: given an in-
put x ∈ X , the generation of the translation y is
always k tokens behind reading x; that is, at the
t-th decoding step, we generate token yt based on
x ≤ t − k + 1. We thus adopt a Transformer-
based NMT model with the wait-k strategy, aiming
for balance between translation performance and
efficiency.

2.3 Feature #2: Back-translation for Quality
Evaluation

A machine translation model on its own is unable
to evaluate the quality of its generated translations,
as typical translation quality metrics require refer-
ence sentences. This lack of obvious evaluation
can cause users to mistrust the translation system
and doubt whether it accurately expresses a sen-
tence’s true meaning. Back-translation – the ‘re-

translation’ of a translated sequence back into its
original language – is a potential method of gen-
erating reference sentences for comparison that
utilizes the duality of direction in translation (He
et al., 2016). Back-translation is currently mainly
used as a data-enhancement method for supervised
NMT systems (Edunov et al., 2018) and as a cru-
cial training method for unsupervised NMT sys-
tems (Conneau and Lample, 2019), though it has
been more controversial as a method of assessing
translations. According to (Behr, 2017)’s conclu-
sion, while back-translation can give some evalu-
ation of the translation, it often raises issues not
noted by human assessors, and more importantly,
is less reliable in general, as many problems re-
main hidden. These shortcomings are mainly are
a result of commonly used automatic evaluation
methods (like BLEU) using only surface-level sim-
ilarity; they do not strictly measure , Semantic
Equivalence (SE), which is the true goal. Thus,
we adopted BERTScore(Zhang et al., 2019), a lan-
guage generation evaluation metric based on pre-
trained BERT contextual embeddings, for seman-
tic equivalence assessment and the evaluation met-
ric BT-BLEU (Li et al., 2020b) (also described in
(Nguyen et al., 2021) as reconstruction BLEU) for
translation quality evaluation. Furthermore, recent
work (Fomicheva et al., 2020) mentions various
other unsupervised quality evaluation methodolo-
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gies, we will include it into the follow-up updates
and provide a better reference indicator in our sys-
tem.

2.4 Feature #3: Grammatical Error
Correction

Detecting potential grammatical errors and offer-
ing corrective suggestions for them sentence is
also a very important feature in MISS. We chose
the tag-based modeling approach for this feature
based on the fresearch field’s latest achievements
(Omelianchuk et al., 2020) and our recent work
(Parnow et al., 2020, 2021) in the Grammatical
Error Correction (GEC).

Specifically, the g-transformations developed by
(Omelianchuk et al., 2020) were included in our
system in the hopes of providing learners more
specific suggestions (i.e., the edit type of an error)
to revise the users’ input. Predicting edits rather
than tokens also increases the generalization of our
GEC model. G-transformations are based on sev-
eral basic transformations: $KEEP (keep the cur-
rent token unchanged), $DELETE (delete current
token), $APPEND_t1 (append new token t1 next
to the current token), and $REPLACE_t2 (replace
the current token with another token t2). From
these basic transformations, further, more task-
specific transformations are hand designed (such
as $CASE (fix the casing of a word), $MERGE
(merge the current token and the next token into
a single one) and $SPLIT (split the current token
into two new tokens)) and empirically learned (e.g.,
$REPLACE_cause, which replaces certain words
with “cause,” and $APPEND_for, which adds “for”
when it is needed), resulting in a total tag vocabu-
lary size of 5000.

We train our tag-based GEC model with a multi-
stage strategy using the same model architecture
and pre-processing script as (Omelianchuk et al.,
2020). We use the same synthesis strategy as in
(Parnow et al., 2020) to synthesize pseudo data for
pre-training in the first stage before fine-tuning on a
small, high-quality human-annotated GEC dataset.

2.5 Feature #4: Multi-style Translation
In linguistics, the “style" of a text denotes “the ag-
gregate of contextual probabilities of its linguistic
items" (Enkvist, 1964) and can be seen as refer-
ring to its deviation from textual norms (Huang,
2015). Machine translation requires generating
translated text with different styles, leading to what
are known as as domain adaptation tasks (Koehn

and Knowles, 2017). In these tasks, there are two
main approaches (the data-centric approach and
the model-centric approach), but though these ap-
proaches produce more powerful in-domain mod-
els (i.e., domain-specific models) for their given
domains, they bring extra overhead to deployment.

Recently, large-scale Transformer-based lan-
guage models have shown promising text gener-
ation capabilities, as seen with GPT-2 (Radford
et al., 2019) and GPT-3 (Brown et al., 2020), which
demonstrated strong generation performance with
the Transformer decoder. (Keskar et al., 2019)
sought to make a more malleable model and re-
leased CTRL, a 1.63 billion-parameter conditional
Transformer language model, demonstrating that
with enough model capacity, and compute power,
language models can adapt to and be successful
in multiple domains. Inspired by CTRL’s use of
control codes, which governed the style and other
apsects of its generation, and GPT’s use of Trans-
former decoders, we made a simple modification to
the decoder of a Transformer-based NMT model,
making this decoder also conditioned on a variety
of control codes (Pfaff, 1979; Poplack, 2000). We
call our system CTRL-NMT. Formally speaking,
the target distribution of CTRL-NMT can be de-
composed using the chain rule of probability and
trained with a loss that takes the control code into
account:

p(y|x) =

NMT︷ ︸︸ ︷
n∏

i=1

p(yi|y<i, x)→

CTRL-NMT︷ ︸︸ ︷
n∏

i=1

p(yi|y<i, x, c),

where x is the source language input, y is the target
language translation, and c is the control code.

In CTRL-NMT, the control code uses natural lan-
guage terms (words) instead of separately defined
tokens, so it can share the word embedding and
has the ability to continue to expand to more codes.
There is little change to the model in comparison
to our standard NMT model, so CTRL-NMT can
be initialized with the checkpoint of our standard
NMT model. Additionally, since we only use a
single model, deploying multiple styles will not be
more costly.

2.6 Feature #5: Crowdsourcing Data
Collection

In machine translation, grammatical error correc-
tion, and Semantic Similarity calculation, high-
performing models rely on large-scale data, par-



5

ticularly high-quality, manually labeled data. Pro-
ducing large scale annotated data is an onerous
task requiring intensive human effort. This is espe-
cially true for machine translation, which requires
bilingual speakers. “Crowdsourcing" (Howe, 2006)
refers to a data collection method that involves ob-
taining work, information, or opinions from a large
group of people who typically submit their data
via internet services. Our MISS system adopts
crowdsourcing data collection as a method of fur-
ther improving model performance, making MISS
an active learning system.

Specifically, when a user begins to input a sen-
tence, the system responds with translation, back-
translation, and revision suggestions. The user’s
decisions in response to these suggestions will then
constitute the data that we collect.

Operation NMT GEC SE

Acc. Trans. X X
Edit Trans. X X X
Edit Source X
Acc. Trans.Rv. X X X
Acc. Source.Rv. X

Table 1: User operations used for our crowdsourcing
data collection in our MISS system.

3 Implementation and Training

The full system consists of 4 neural models: (1) a
multi-style NMT model, (2) a simultaneous NMT
model, (3) a grammatical error correction model,
and (4) a BERT model. In our current MISS re-
lease, we translate between three languages (En-
glish (EN), Chinse (ZH), and Japanese (JA)) for
demonstration.

For the multi-style NMT model, we implement
CTRL-NMT using the public fairseq (Ott et al.,
2019) toolkit. In our system, we adopt the Trans-
former (big) setting as in (Vaswani et al., 2017).
We did not choose a deeper or wider Transformer
(Wang et al., 2019; Sun et al., 2019) model because
we wanted to balance performance and efficiency.
As in (Li et al., 2019), we used a data-dependent
gaussian prior objective (D2GPo) during the NMT
model training process for better generalization.
Due to resource constraints, our currently deployed
model does not perform back-translation of larger
sentences. Table 2 lists all our training corpora and
their sizes.

For the simultaneous translation model, we im-
plemented the wait-k strategy and replaced the bi-

Provider Style Num.

EN-ZH WMT20 Formal 28.3M
AI Challenger18 Oral 12.9M

EN-JA WMT20 Formal 17.7M
TED+BSD Oral 0.25M

Table 2: All NMT training data

directional attention in the encoder side with unidi-
rectional attention. We also used the Transformer
model implemented by fairseq as a base for this.
Inspired by (Wu et al., 2020), we used beam search
for partial tokens during simultaneous translation
to obtain better translation sequences. We wanted
to emphasize efficient inference, so we adopted a
Transformer (Base) setting with fewer parameters.
The training data used was the same as that in the
multi-style NMT model.

We formulated the GEC task as a sequence la-
beling problem and thus adopted a neural sequence
tagging model to handle the task. We followed
(Omelianchuk et al., 2020)’s model architecture,
which was an encoder consisting of a pre-trained
BERT-like transformer stacked with two linear lay-
ers with softmax layers on the top - one for error
detection and one for error labeling. As in (Awasthi
et al., 2019), the architecture uses an iterative cor-
rection strategy in which predicted transformations
are applied to the input sequence successively. Af-
ter errors are detected and predicted, a modified
Levenshtein distance guides the generation of a
corrected sentence. We limit the maximum number
of inference iterations to 4 to speed up the over-
all correction process while still maintaining good
correction accuracy. The training data we used
for GEC is shown in Table 3. We trained our En-
glish GEC model at the word level and our Chinese
and Japanese models at the character level. We
used pre-trained language models for initialization;
namely, XLNet-large-cased in English, BERT-base-
chinese in Chinese, and BERT-base-japanese-char
in Japanese.

For translation quality evaluation, we measure
the semantic equivalence using BERTScore, an
automated evaluation metric that computes token
similarity using contextual embeddings. We use
RoBERTa-large, BERT-base-chinese, and BERT-
base-japanese-char as the respective initial em-
bedding sources for our English, Chinese, and
Japanese evaluation models. As (Zhang et al., 2019,
2020) observed that fine-tuning the pre-trained con-



6

Provider Num.

EN

PIE-synthetic 9M
Lang-8 947K
NUCLE 56K
FCE 34K
W&I+LOCNESS 34K

ZH
NLPCC2018-GEC

1.3MHSK+Lang8
CGED

JA Lang8 3.1M

Table 3: The GEC training data

Models EN→ZH ZH→EN EN→JA JA→EN

separate training

Transformer-big 37.6 28.0 33.5 18.7
30.8 28.6 23.2 11.5

joint training

Transformer-big 36.9 27.2 33.4 18.5
28.9 28.0 26.9 15.6

CTRL-NMT 37.5 28.4 33.8 19.2
31.4 29.1 28.9 16.8

joint training

Transformer-base 35.4 25.8 31.7 17.0
27.5 26.7 25.7 14.6

Sim-NMT (k=3) 31.1 23.3 30.2 16.1
24.0 23.5 23.2 13.3

Table 4: The performance of our NMT models. Each
model presents two lines of results - the top one for
formal language and the bottom one for oral language
translation.

textualized models on a related task can lead to
better evaluation, we fine-tuned the pre-trained con-
textualized language models using our collected
data.

4 Evaluation

We conducted empirical experiments on our mod-
els to evaluate the performance of important com-
ponents in our system. For the NMT component,
we chose the WMT2020 test set newstest2020 as
the evaluation set for formal EN-ZH and EN-JA
translation and the development set of the AI Chal-
lenger 2018 competition as the evaluation set for
oral ZH-EN translation. In ZH→EN and JA→EN
translation, we used Multi-bleu as our evaluation
metric, and we adopted the moses tokenizer for
word tokenization, while in EN→ZH and EN→JA,
we used character-level Multi-BLEU to remove the
influence of different segmenters on BLEU score.
For the standard and simultaneous machine transla-
tion components, we used the same evaluation sets
and metrics.

PrLM Dict P R F0.5

EN − Word 53.46 37.45 54.22
+XLNet Word 76.92 41.03 65.47

ZH
− Word 38.72 15.07 29.47
− Char 45.06 19.55 35.73

+BERT Char 50.34 33.46 45.72

JA
− Word 36.83 20.52 31.78
− Char 45.68 16.49 33.74

+BERT Char 46.56 27.34 40.82

Table 5: The performance of our GEC models

For the GEC component, we followed common
practice in the GEC task (Rei and Yannakoudakis,
2016; Omelianchuk et al., 2020) and used precision
(P), recall (R), and F0.5 to evaluate our models on
all three languages. We evaluated English at the
word level and Chinese and Japanese at the charac-
ter level. We chose the test set of the CoNLL-2014
shared task as our evaluation set for our English
GEC model. For Chinese and Japanese, we ex-
tracted 5000 sentences from the original training
set for the development set and 5000 sentences for
the test set and used the rest as the training set. ER-
RANT6 was used to convert parallel files to the m2
format for subsequent scoring with the M2Scorer
(Dahlmeier and Ng, 2012).

The results of our models for standard NMT and
simultaneous NMT are shown in Table 4. First, for
the evaluation results of standard NMT, we found
that the joint training of multiple styles of data does
not bring performance improvement compared to
separate training, especially when the corpora sizes
of the two styles are similar. The translation perfor-
mance gap between different styles demonstrates
that the level difficulty of translation in different
styles is different. Since style essentially refers to
deviation from standard textual norms, the greater
the deviation, the greater the translation complexity
is, which explains why different styles will have dif-
ferent levels of difficulty in comparison to standard
translation.

In CTRL-NMT, through the incorporation con-
trol codes, we found that the translation perfor-
mance for specific styles using the single model
was equivalent to or, in some cases, better than
that of training separate models. This shows that
the Transformer-based model sufficiently accom-
modates the generation of multiple styles of lan-
guage, and leveraging the language commonalities
between different styles can bring additional im-

6https://github.com/chrisjbryant/errant
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…

Figure 2: The deployment architecture of MISS system.

provements.
The results of simultaneous NMT and standard

NMT, however, do show that the performance of si-
multaneous NMT still lags behind that of standard
NMT when using the same architecture, as there is
less information available to the model during si-
multaneous translation. Despite this, simultaneous
NMT is likely to further approach standard NMT’s
performance in the future through the use of greater
contextual information and input prediction facili-
tated by a specific input module.

We show the evaluation results7 of the GEC mod-
els in Table 5. The results show that pre-trained
language models (PrLMs) can bring large perfor-
mance improvements. Additionally, comparing
Chinese and Japanese models at the word and char-
acter levels shows that in tag-based GEC modeling,
character-level models outperform their word-level
counterparts because of the character-level models’
smaller tag sets.

5 Deployment

The architecture diagram of our deployment of
the MISS system is shown in Figure 2. Since
modern GPUs can bring good inference acceler-
ation for deep neural network models, we choose
NVIDIA GPUs as the basis for model deployment.
There are four models in the system: the multi-
style NMT model, the simultaneous NMT model,
the GEC model, and the BERTScore model. We
use Docker to install and isolate the environments
of each model and use service_streamer to assem-
ble scattered user requests to form a mini-batch
to make full use of the GPUs in parallel. Flask

7In our results, since the evaluation sets of Chinese and
Japanese are self-split and character-level, they are not directly
comparable to other work.

and Gunicorn are used to wrap the model into a
microservice interface for external calls. NGINX is
used to distribute static resources and balance load.
We use a basic Web UI to make our service acces-
sible to users. In addition, Mongodb is adopted to
store the users’ logs, which the system collects.

6 Conclusion and Future Work

In this paper, we presented a translation sys-
tem, MISS. This system supports multi-style ma-
chine translation, simultaneous machine transla-
tion, grammatical error detection and correction,
and back-translation-based quality evaluation. Our
goal in developing this system is providing users
with a more fluid machine translation experience.
Using the research of the NLP community, we
were able to introduce a variety of translation and
translation-related tools to help users. In addition,
we leverage the user’s operations and feedback in
the system as a source of crowdsourced informa-
tion to potentially use in further improving the per-
formance of the system. Compared with existing
commercial translation systems, our system can
provide a more comprehensive experience.

With this work, we also lay out steps to take to
further improve the machine translation user ex-
perience: improve the consistency of translation
by integrating document-level context, enhance
the performance of models by incorporating back-
translation using monolingual data, include more
language styles such as academic translation, and
explore the data collected through crowdsourcing
for further improving overall performance.
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