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Introduction

It is our great pleasure to welcome you to the Fourth Workshop on e-Commerce and NLP (ECNLP).

This workshop focuses on intersection of Natural Language Processing (NLP) and e-Commerce. NLP
and information retrieval (IR) have been powering e-Commerce applications since the early days of the
fields. Today, NLP and IR already play a significant role in e-Commerce tasks, including product search,
recommender systems, product question answering, machine translation, sentiment analysis, product
description and review summarization, and customer review processing. With the exploding popularity
of chatbots and shopping assistants – both text- and voice-based – NLP, IR, question answering, and
dialogue systems research is poised to transform e-Commerce once again.

The ECNLP workshop series was designed to provide a venue for the dissemination of late-breaking
research results and ideas related to e-commerce and online shopping, as well as a forum where new and
unfinished ideas could be discussed. After three successful editions since 2019, we are happy to host
ECNLP 4 at ACL 2021 and once again bring together researchers from both academia and industry.

We have received a larger number of submissions than we could accept for presentation. ECNLP 4
received 34 submissions of long and short research papers. In total, ECNLP 4 featured 21 accepted
papers (62% acceptance rate). The selection process was competitive and we believe it resulted in a
balanced and varied program that is appealing to audiences from the various sub-areas of e-Commerce.

We would like to thank everyone who submitted a paper to the workshop. We would also like to express
our gratitude to the members of the Program Committee for their timely reviews, and for supporting the
tight schedule by providing reviews at short notice.

We hope that you enjoy the workshop!

The ECNLP Organizers June 2021

iii





Organizers:

Shervin Malmasi (Amazon, USA)
Surya Kallumadi (Lowe’s Companies, Inc., USA)
Nicola Ueffing (eBay Inc, Germany)
Oleg Rokhlenko (Amazon, USA)
Eugene Agichtein (Emory University, USA)
Ido Guy (eBay Inc, Israel)

Program Committee:

Ali Ahmadvand
Federico Bianchi
Eliot Brenner
David Carmel
Giuseppe Castellucci
Lei Chen
Young-joo Chung
Marcus Collins
Pradipto Das
Besnik Fetahu
Ciro Greco
Ido Guy
Ajinkya Kale
Sudipta Kar
Mladen Karan
Tracy Holloway King
Srijan Kumar
Wai Lam
Yitong Li
Weihua Luo
Amita Misra
Emerson Paraiso
Arushi Prakash
Julia Reinspach
Oleg Rokhlenko
Raksha Sharma
Venkat Srinivasan
Sinduja Subramaniam
Jacopo Tagliabue
Liling Tan
Irina Temnikova
Xiaoting Zhao

v





Table of Contents

BERT Goes Shopping: Comparing Distributional Models for Product Representations
Jacopo Tagliabue, Federico Bianchi and Bingqing Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Attribute Value Generation from Product Title using Language Models
Kalyani Roy, Pawan Goyal and Manish Pandey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ASR Adaptation for E-commerce Chatbots using Cross-Utterance Context and Multi-Task Language
Modeling

Ashish Shenoy, Sravan Bodapati and Katrin Kirchhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Turn-Level User Satisfaction Estimation in E-commerce Customer Service
Runze Liang, Ryuichi Takanobu, Feng-Lin Li, Ji Zhang, Haiqing Chen and Minlie Huang . . . . . 26

Keyword Augmentation via Generative Methods
Haoran Shi, Zhibiao Rao, Yongning Wu, Zuohua Zhang and Chu Wang . . . . . . . . . . . . . . . . . . . . . . 33

Personalized Entity Resolution with Dynamic Heterogeneous KnowledgeGraph Representations
Ying Lin, Han Wang, Jiangning Chen, Tong Wang, Yue Liu, Heng Ji, Yang Liu and Premkumar

Natarajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Semi-supervised Multi-task Learning Approach to Classify Customer Contact Intents
Li Dong, Matthew C. Spencer and Amir Biagi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

“Are you calling for the vaporizer you ordered?” Combining Search and Prediction to Identify Orders
in Contact Centers

Abinaya K and Shourya Roy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Identifying Hijacked Reviews
Monika Daryani and James Caverlee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Learning Cross-Task Attribute - Attribute Similarity for Multi-task Attribute-Value Extraction
Mayank Jain, Sourangshu Bhattacharya, Harshit Jain, Karimulla Shaik and Muthusamy Chelliah79

Unsupervised Class-Specific Abstractive Summarization of Customer Reviews
Thi Nhat Anh Nguyen, Mingwei Shen and Karen Hovsepian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Scalable Approach for Normalizing E-commerce Text Attributes (SANTA)
Ravi Shankar Mishra, Kartik Mehta and Nikhil Rasiwasia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Multimodal Item Categorization Fully Based on Transformer
Lei Chen, Houwei Chou, Yandi Xia and Hirokazu Miyake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Textual Representations for Crosslingual Information Retrieval
Hang Zhang and Liling Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Detect Profane Language in Streaming Services to Protect Young Audiences
Jingxiang Chen, Kai Wei and Xiang Hao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Exploring Inspiration Sets in a Data Programming Pipeline for Product Moderation
Justine Winkler, Simon Brugman, Bas van Berkel and Martha Larson . . . . . . . . . . . . . . . . . . . . . . . 132

Enhancing Aspect Extraction for Hindi
Arghya Bhattacharya, Alok Debnath and Manish Shrivastava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vii



Combining semantic search and twin product classification for recognition of purchasable items in voice
shopping

Dieu-Thu Le, Verena Weber and Melanie Bradford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Improving Factual Consistency of Abstractive Summarization on Customer Feedback
Yang Liu, Yifei Sun and Vincent Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

SupportNet: Neural Networks for Summary Generation and Key Segment Extraction from Technical
Support Tickets

Vinayshekhar Bannihatti Kumar, Mohan Yarramsetty, Sharon Sun and Anukul Goel . . . . . . . . . . 164

Product Review Translation: Parallel Corpus Creation and Robustness towards User-generated Noisy
Text

Kamal Kumar Gupta, Soumya Chennabasavaraj, Nikesh Garera and Asif Ekbal . . . . . . . . . . . . . . 174

viii



Proceedings of the 4th Workshop on e-Commerce and NLP (ECNLP 4), pages 1–12
August 5, 2021. ©2021 Association for Computational Linguistics

BERT Goes Shopping:
Comparing Distributional Models for Product Representations

Federico Bianchi
Bocconi University

Milano, Italy
f.bianchi@unibocconi.it∗

Bingqing Yu
Coveo

Montreal, CA
cyu2@coveo.com

Jacopo Tagliabue
Coveo AI Labs

New York, United States
jtagliabue@coveo.com†

Abstract
Word embeddings (e.g., word2vec) have been
applied successfully to eCommerce products
through prod2vec. Inspired by the recent
performance improvements on several NLP
tasks brought by contextualized embeddings,
we propose to transfer BERT-like architectures
to eCommerce: our model – Prod2BERT
– is trained to generate representations of
products through masked session modeling.
Through extensive experiments over multiple
shops, different tasks, and a range of design
choices, we systematically compare the ac-
curacy of Prod2BERT and prod2vec embed-
dings: while Prod2BERT is found to be supe-
rior in several scenarios, we highlight the im-
portance of resources and hyperparameters in
the best performing models. Finally, we pro-
vide guidelines to practitioners for training em-
beddings under a variety of computational and
data constraints.

1 Introduction

Distributional semantics (Landauer and Dumais,
1997) is built on the assumption that the meaning of
a word is given by the contexts in which it appears:
word embeddings obtained from co-occurrence pat-
terns through word2vec (Mikolov et al., 2013),
proved to be both accurate by themselves in repre-
senting lexical meaning, and very useful as compo-
nents of larger Natural Language Processing (NLP)
architectures (Lample et al., 2018). The empirical
success and scalability of word2vec gave rise to
many domain-specific models (Ng, 2017; Grover
and Leskovec, 2016; Yan et al., 2017): in eCom-
merce, prod2vec is trained replacing words in a
sentence with product interactions in a shopping
session (Grbovic et al., 2015), eventually generat-
ing vector representations of the products. The key

∗Federico and Bingqing contributed equally to this re-
search.

†Corresponding author.

intuition is the same underlying word2vec – you
can tell a lot about a product by the company it
keeps (in shopping sessions). The model enjoyed
immediate success in the field and is now essential
to NLP and Information Retrieval (IR) use cases
in eCommerce (Vasile et al., 2016a; Bianchi et al.,
2020).

As a key improvement over word2vec, the NLP
community has recently introduced contextualized
representations, in which a word like play would
have different embeddings depending on the gen-
eral topic (e.g. a sentence about theater vs soccer),
whereas in word2vec the word play is going to
have only one vector. Transformer-based architec-
tures (Vaswani et al., 2017) in large-scale models
- such as BERT (Devlin et al., 2019) - achieved
SOTA results in many tasks (Nozza et al., 2020;
Rogers et al., 2020). As Transformers are being
applied outside of NLP (Chen et al., 2020), it is
natural to ask whether we are missing a fruitful
analogy with product representations. It is a priori
reasonable to think that a pair of sneakers can have
different representations depending on the shop-
ping context: is the user interested in buying these
shoes because they are running shoes, or because
these shoes are made by her favorite brand?

In this work, we explore the adaptation of BERT-
like architectures to eCommerce: through exten-
sive experimentation on downstream tasks and
empirical benchmarks on typical digital retailers,
we discuss advantages and disadvantages of con-
textualized embeddings when compared to tradi-
tional prod2vec. We summarize our main contribu-
tions as follows:

1. we propose and implement a BERT-based
contextualized product embeddings model
(hence, Prod2BERT), which can be trained
with online shopper behavioral data and pro-
duce product embeddings to be leveraged by
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downstream tasks;

2. we benchmark Prod2BERT against prod2vec
embeddings, showing the potential accuracy
gain of contextual representations across dif-
ferent shops and data requirements. By testing
on shops that differ for traffic, catalog, and
data distribution, we increase our confidence
that our findings are indeed applicable to a
vast class of typical retailers;

3. we perform extensive experiments by vary-
ing hyperparameters, architectures and fine-
tuning strategies. We report detailed results
from numerous evaluation tasks, and finally
provide recommendations on how to best
trade off accuracy with training cost;

4. we share our code1, to help practitioners repli-
cate our findings on other shops and improve
on our benchmarks.

1.1 Product Embeddings: an Industry
Perspective

The eCommerce industry has been steadily grow-
ing in recent years: according to U.S. Department
of Commerce (2020), 16% of all retail transac-
tions now occur online; worldwide eCommerce is
estimated to turn into a $4.5 trillion industry in
2021 (Statista Research Department, 2020). In-
terest from researchers has been growing at the
same pace (Tsagkias et al., 2020), stimulated by
challenging problems and by the large-scale im-
pact that machine learning systems have in the
space (Pichestapong, 2019). Within the fast adop-
tion of deep learning methods in the field (Ma et al.,
2020; Zhang et al., 2020; Yuan et al., 2020), prod-
uct representations obtained through prod2vec play
a key role in many neural architectures: after train-
ing, a product space can be used directly (Vasile
et al., 2016b), as a part of larger systems for rec-
ommendation (Tagliabue et al., 2020b), or in down-
stream NLP/IR tasks (Tagliabue and Yu, 2020).
Combining the size of the market with the past
success of NLP models in the space, investigating
whether Transformer-based architectures result in
superior product representations is both theoreti-
cally interesting and practically important.

Anticipating some of the themes below, it is
worth mentioning that our study sits at the intersec-
tion of two important trends: on one side, neural

1Code available at https://github.com/vinid/
prodb

models typically show significant improvements
at large scale (Kaplan et al., 2020) – by quantify-
ing expected gains for “reasonable-sized” shops,
our results are relevant also outside a few public
companies (Tagliabue et al., 2021), and allow for a
principled trade-off between accuracy and ethical
considerations (Strubell et al., 2019); on the other
side, the rise of multi-tenant players2 makes sophis-
ticated models potentially available to an unprece-
dented number of shops – in this regard, we design
our methodology to include multiple shops in our
benchmarks, and report how training resources and
accuracy scale across deployments. For these rea-
sons, we believe our findings will be interesting to
a wide range of researchers and practitioners.

2 Related Work

Distributional Models. Word2vec (Mikolov et al.,
2013) enjoyed great success in NLP thanks to its
computational efficiency, unsupervised nature and
accurate semantic content (Levy et al., 2015; Al-
Saqqa and Awajan, 2019; Lample et al., 2018). Re-
cently, models such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) shifted much of
the community attention to Transformer architec-
tures and their performance (Talmor and Berant,
2019; Vilares et al., 2020), while it is increasingly
clear that big datasets (Kaplan et al., 2020) and
substantial computing resources play a role in the
overall accuracy of these architectures; in our ex-
periments, we explicitly address robustness by i)
varying model designs, together with other hyper-
parameters; and ii) test on multiple shops, differing
in traffic, industry and product catalog.

Product Embeddings. Prod2vec is a straightfor-
ward adaptation to eCommerce of word2vec (Gr-
bovic et al., 2015). Product embeddings quickly
became a fundamental component for recommenda-
tion and personalization systems (Caselles-Dupré
et al., 2018; Tagliabue et al., 2020a), as well as
NLP-based predictions (Bianchi et al., 2020). To
the best of our knowledge, this work is the first to
explicitly investigate whether Transformer-based
architectures deliver higher-quality product rep-
resentations compared to non-contextual embed-
dings. Eschauzier (2020) uses Transformers on cart

2As an indication of the market opportunity, in the space
of AI-powered search and recommendations we recently wit-
nessed Algolia (Techcrunch, 2019a) and Lucidworks rais-
ing 100M USD (Techcrunch, 2019c), Coveo raising 227M
CAD (Techcrunch, 2019b), Bloomreach raising 115M USD
(Techcrunch, 2021).
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co-occurrence patterns with the specific goal of
basket completion – while similar in the masking
procedure, the breadth of the work and the evalua-
tion methodology is very different: as convincingly
argued by Requena et al. (2020), benchmarking
models on unrealistic datasets make findings less
relevant for practitioners outside of “Big Tech”.
Our work features extensive tests on real-world
datasets, which are indeed representative of a large
portion of the mid-to-long tail of the market; more-
over, we benchmark several fine-tuning strategies
from the latest NLP literature (Section 5.2), shar-
ing – together with our code – important practical
lessons for academia and industry peers. The clos-
est work in the literature as far as architecture goes
is BERT4Rec (Sun et al., 2019), i.e. a model based
on Transformers trained end-to-end for recommen-
dations. The focus of this work is not so much
the gains induced by Transformers in sequence
modelling, but instead is the quality of the rep-
resentations obtained through unsupervised pre-
training – while recommendations are important,
the breadth of prod2vec literature (Bianchi et al.,
2021b,a; Tagliabue and Yu, 2020) shows the need
for a more thorough and general assessment. Our
methodology helps uncover a tighter-than-expected
gap between the models in downstream tasks, and
our industry-specific benchmarks allow us to draw
novel conclusions on optimal model design across
a variety of scenarios, and to give practitioners ac-
tionable insights for deployment.

3 Prod2BERT

3.1 Overview

The Prod2BERT model is taking inspiration from
BERT architecture and aims to learn context-
dependent vector representation of products from
online session logs. By considering a shopping
session as a “sentence” and the products shoppers
interact with as “words”, we can transfer masked
language modeling (MLM) from NLP to eCom-
merce. Framing sessions as sentences is a natural
modelling choice for several reasons: first, it mim-
ics the successful architecture of prod2vec; second,
by exploiting BERT bi-directional nature, each pre-
diction of a masked token/product will make use
of past and future shopping choices: if a shopping
journey is (typically) a progression of intent from
exploration to purchase (Harbich et al., 2017), it
seems natural that sequential modelling may cap-
ture relevant dimensions in the underlying vocabu-

Figure 1: Overall architecture of Prod2BERT pre-
trained on MLM task.

lary/catalog. Once trained, Prod2BERT becomes
capable of predicting masked tokens, as well as
providing context-specific product embeddings for
downstream tasks.

3.2 Model Architecture

As shown in Figure 1, Prod2BERT is based on
a transformed based architecture Vaswani et al.
(2017), emulating the successful BERT model.
Please note that, different from BERT’s original
implementation, a white-space tokenizer is first
used to split an input session into tokens, each one
representing a product ID; tokens are combined
with positional encodings via addition and fed into
a stack of self-attention layers, where each layer
contains a block for multi-head attention, followed
by a simple feed forward network. After obtain-
ing the output from the last self-attention layer, the
vectors corresponding to the masked tokens pass
through a softmax to generate the final predictions.

3.3 Training Objective

Similar to Liu et al. (2019); Sun et al. (2019), we
train Prod2BERT from scratch with the MLM ob-
jective. A random portion of the tokens (i.e., the
product IDs) in the original sequence are chosen
for possible replacements with the MASK token;
and the masked version of the sequence is fed into
the model as input: Figure 2 shows qualitatively
the relevant data transformations, from the original

3



Figure 2: Transformation of sequential data, from the
original data generating process – i.e. a shopping ses-
sion –, to telemetry data collected by the SDK, to the
masked sequence fed into Prod2BERT.

shopping session, to the telemetry data, to the final
masking sequence. The target output sequence is
exactly the original sequence without any masking,
thus the training objective is to predict the original
value of the masked tokens, based on the context
provided by their surrounding unmasked tokens.
The model learns to minimize categorical cross-
entropy loss, taking into account only the predicted
masked tokens, i.e. the output of the non-masked
tokens is discarded for back-propagation.

3.4 Hyperparameters and Design Choices
There is growing literature investigating how dif-
ferent hyperparameters and architectural choices
can affect Transformer-based models. For exam-
ple, Lan et al. (2020) observed diminishing returns
when increasing the number of layers after a cer-
tain point; Liu et al. (2019) showed improved per-
formance when modifying masking strategy and
using duplicated data; finally, Kaplan et al. (2020)
reported slightly different findings from previous
studies on factors influencing Transformers perfor-
mance. Hence, it is worth studying the role of hy-
perparameters and model designs for Prod2BERT,
in order to narrow down which settings are the best
given the specific target of our work, i.e. product
representations. Table 1 shows the relevant hy-
perparameter and design variants for Prod2BERT;
following improvement in data generalization re-
ported by Liu et al. (2019), when duplicated = 1
we augmented the original dataset repeating each
session 5 times.3 We set the embedding size to
64 after preliminary optimizations: as other values
offered no improvements, we report results only

3This procedure ensures that each sequence can be masked
in 5 different ways during training.

Parameter Values

# epochs [e] 10, 20, 50, 100
# layers [l] 4, 8
masking probability [m] 0.15, 0.25
duplicated [d] 1, 0

Table 1: Hyperparameters and their ranges.

for one size.

4 Methods

4.1 Prod2vec: a Baseline Model
We benchmark Prod2BERT against the industry
standard prod2vec (Grbovic et al., 2015). More
specifically, we train a CBOW model with neg-
ative sampling over shopping sessions (Mikolov
et al., 2013). Since the role of hyperparame-
ters in prod2vec has been extensively studied be-
fore (Caselles-Dupré et al., 2018), we prepare em-
beddings according to the best practices in Bianchi
et al. (2020) and employ the following config-
uration: window = 15, iterations = 30,
ns exponent = 0.75, dimensions = [48, 100].
While prod2vec is chosen because of our focus
on the quality of the learned representations – and
not just performance on sequential inference per
se – it is worth nothing that kNN (Latifi et al.,
2020) over appropriate spaces is also a surprisingly
hard baseline to beat in many practical recommen-
dation settings. It is worth mentioning that for
both prod2vec and Prod2BERT we are mainly in-
terested in producing a dense space capturing the
latent similarity between SKUs: other important
relationships between products (substitution (Zuo
et al., 2020), hierarchy (Nickel and Kiela, 2017)
etc.) may require different embedding techniques
(or extensions, such as interaction-specific embed-
dings (Zhao et al., 2020)).

4.2 Dataset
We collected search logs and detailed shopping ses-
sions from two partnering shops, Shop A and Shop
B: similarly to the dataset released by Requena et al.
(2020), we employ the standard definition of “ses-
sion” from Google Analytics4, with a total of five
different product actions tracked: detail, add, pur-
chase, remove, click5. Shop A and Shop B are

4https://support.google.com/analytics/
answer/2731565?hl=en

5Please note that, as in many previous embedding stud-
ies (Caselles-Dupré et al., 2018; Bianchi et al., 2020), action
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Shop Sessions Products 50/75 pct

Shop A 1,970,832 38,486 5, 7
Shop B 3,992,794 102,942 5, 7

Table 2: Descriptive statistics for the training dataset.
pct shows 50th and 75th percentiles of the session
length.

mid-sized digital shops, with revenues between 25
and 100 millions USD/year; however, they differ
in many aspects, from traffic, to conversion rate, to
catalog structure: Shop A is in the sport apparel
category, whereas Shop B is in home improvement.
Sessions for training are sampled with undisclosed
probability from the period of March-December
2019; testing sessions are a completely disjoint
dataset from January 2020. After pre-processing6,
descriptive statistics for the training set for Shop A
and Shop B are detailed in Table 2. For fairness of
comparison, the exact same datasets are used for
both Prod2BERT and prod2vec.

Testing on fine-grained, recent data from multi-
ple shops is important to support the internal valid-
ity (i.e. “is this improvement due to the model or
some underlying data quirks?”) and the external
validity (i.e. “can this method be applied robustly
across deployments, e.g. Tagliabue et al. (2020b)”?)
of our findings.

5 Experiments

5.1 Experiment #1: Next Event Prediction

Next Event Prediction (NEP) is our first evaluation
task, since it is a standard way to evaluate the qual-
ity of product representations (Letham et al., 2013;
Caselles-Dupré et al., 2018): briefly, NEP consists
in predicting the next action the shopper is going to
perform given her past actions. Hence, in the case
of Prod2BERT, we mask the last item of every ses-
sion and fit the sequence as input to a pre-trained
Prod2BERT model7. Provided with the model’s
output sequence, we take the top K most likely
values for the masked token, and perform compar-
ison with the true interaction. As for prod2vec,
we perform the NEP task by following indus-
try best practices (Bianchi et al., 2020): given a

type is not considered when preparing session for training.
6We only keep sessions that have between 3 and 20 prod-

uct interactions, to eliminate unreasonably short sessions and
ensure computation efficiency.

7Note that this is similar to the word prediction task for
cloze sentences in the NLP literature (Petroni et al., 2019).

trained prod2vec, we take all the before-last items
in a session to construct a session vector by aver-
age pooling, and use kNN to predict the last item8.
Following industry standards, nDCG@K (Mitra
and Craswell, 2018) with K = 10 is the chosen
metric9, and all tests ran on 10, 000 testing cases
(test set is randomly sampled first, and then shared
across Prod2BERT and prod2vec to guarantee a
fair comparison).

5.1.1 Results

Model Config Shop A Shop B

Prod2BERT e = 10, l = 4,
m = 0.25, d = 0

0.433 0.259

Prod2BERT e = 5, l = 4,
m = 0.25, d = 1

0.458 0.282

Prod2BERT e = 10, l = 8,
m = 0.25, d = 0

0.027 0.260

Prod2BERT e = 100, l = 4,
m = 0.25, d = 0

0.427 0.255

Prod2BERT e = 10, l = 4,
m = 0.15, d = 0

0.416 0.242

prod2vec dimension = 48 0.326 0.214

prod2vec dimension = 100 0.326 0.218

Table 3: nDCG@10 on NEP task for both shops with
Prod2BERT and prod2vec (bold are best scores for
Prod2BERT; underline are best scores for prod2vec).

Table 3 reports results on the NEP task by high-
lighting some key configurations that led to com-
petitive performances. Prod2BERT is significantly
superior to prod2vec, scoring up to 40% higher
than the best prod2vec configurations. Since shop-
ping sessions are significantly shorter than sentence
lengths in Devlin et al. (2019), we found that chang-
ing masking probability from 0.15 (value from
standard BERT) to 0.25 consistently improved per-
formance by making the training more effective.
As for the number of layers, similar to Lan et al.
(2020), we found that adding layers helps only up
until a point: with l = 8, training Prod2BERT with
more layers resulted in a catastrophic drop in model
performance for the smaller Shop A; however, the

8Previous work using LSTM in NEP (Tagliabue et al.,
2020b) showed some improvements over kNN; however,
the differences cannot explain the gap we have found be-
tween prod2vec and Prod2BERT. Hence, kNN is chosen here
for consistency with the relevant literature.

9We also tracked HR@10, but given insights were similar,
we omitted it for brevity in what follows.
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Model Time A-B Cost A-B

prod2vec 4-20 0.006-0.033$
Prod2BERT 240-1200 48.96-244.8$

Table 4: Time (minutes) and cost (USD) for training
one model instance, per shop: prod2vec is trained on
a c4.large instance, Prod2BERT is trained (10 epochs)
on a Tesla V100 16GB GPU from p3.8xlarge instance.

same model trained on the bigger Shop B obtained
a small boost. Finally, duplicating training data
has been shown to bring consistent improvements:
while keeping all other hyperparameters constant,
using duplicated data results in an up to 9% in-
crease in nDCG@10, not to mention that after only
5 training epochs the model outperforms other con-
figurations trained for 10 epochs or more.

While encouraging, the performance gap be-
tween Prod2BERT and prod2vec is consistent with
Transformers performance on sequential tasks (Sun
et al., 2019). However, as argued in Section 1.1,
product representations are used as input to many
downstream systems, making it essential to evalu-
ate how the learned embeddings generalize outside
of the pure sequential setting. Our second experi-
ment is therefore designed to test how well contex-
tual representations transfer to other eCommerce
tasks, helping us to assess the accuracy/cost trade-
off when difference in training resources between
the two models is significant: as reported by Ta-
ble 4, the difference (in USD) between prod2vec
and Prod2BERT is several order of magnitudes.10

5.2 Experiment #2: Intent Prediction

A crucial element in the success of Transformer-
based language model is the possibility of adapt-
ing the representation learned through pre-training
to new tasks: for example, the original Devlin
et al. (2019) fine-tuned the pre-trained model
on 11 downstream NLP tasks. However, the
practical significance of these results is still un-
clear: on one hand, Li et al. (2020); Reimers and
Gurevych (2019) observed that sometimes BERT
contextual embeddings can underperform a sim-
ple GloVe (Pennington et al., 2014) model; on the

10Costs are from official AWS pricing, with 0.10
USD/h for the c4.large (https://aws.amazon.com/
it/ec2/pricing/on-demand/), and 12,24 USD/h for
the p3.8xlarge (https://aws.amazon.com/it/ec2/
instance-types/p3/). While obviously cost optimiza-
tions are possible, the “naive” pricing is a good proxy to
appreciate the difference between the two methods.

other, Mosbach et al. (2020) highlights catastrophic
forgetting, vanishing gradients and data variance
as important factors in practical failures. Hence,
given the range of downstream applications and
the active debate on transferability in NLP, we in-
vestigate how Prod2BERT representations perform
when used in the intent prediction task.

Intent prediction is the task of guessing whether
a shopping session will eventually end in the user
adding items to the cart (signaling purchasing in-
tention). Since small increases in conversion can
be translated into massive revenue boosting, this
task is both a crucial problem in the industry and
an active area of research (Toth et al., 2017; Re-
quena et al., 2020). To implement the intent pre-
diction task, we randomly sample from our dataset
20, 000 sessions ending with an add-to-cart actions
and 20, 000 sessions without add-to-cart, and split
the resulting dataset for training, validation and
test. Hence, given the list of previous products that
a user has interacted with, the goal of the intent
model is to predict whether an add-to-cart event
will happen or not. We experimented with several
adaptation techniques inspired by the most recent
NLP literature (Peters et al., 2019; Li et al., 2020):

1. Feature extraction (static): we extract the con-
textual representations from a target hidden
layer of pre-trained Prod2BERT, and through
average pooling, feed them as input to a multi-
layer perceptron (MLP) classifier to generate
the binary prediction. In addition to alternat-
ing between the first hidden layer (enc 0) to
the last hidden layer (enc 3), we also tried
concatenation (concat), i.e. combining em-
beddings of all hidden layers via concatena-
tion before average pooling.

2. Feature extraction (learned): we implement
a linear weighted combination of all hidden
layers (wal), with learnable parameters, as
input features to the MLP model (Peters et al.,
2019).

3. Fine-tuning: we take the pre-trained model up
until the last hidden layer and add the MLP
classifier on top for intent prediction (fine-
tune). During training, both Prod2BERT and
task-specific parameters are trainable.

As for our baseline, i.e. prod2vec, we implement
the intent prediction task by encoding each product
within a session with its prod2vec embeddings, and
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Model Method Shop Accuracy

Prod2BERT enc 0 Shop B 0.567
Prod2BERT enc 3 Shop B 0.547
Prod2BERT concat Shop B 0.553
Prod2BERT wal Shop B 0.543
Prod2BERT fine-tune Shop B 0.560

prod2vec - Shop B 0.558

Prod2BERT enc 0 Shop A 0.593
prod2vec - Shop A 0.602

Table 5: Accuracy scores in the intent prediction task
(best scores for each shop in bold).

feeding them to a LSTM network (so that it can
learn sequential information) followed by a binary
classifier to obtain the final prediction.

5.2.1 Results

From our experiments, Table 5 highlights the
most interesting results obtained from adapting
to the new task the best-performing Prod2BERT
and prod2vec models from NEP. As a first consid-
eration, the shallowest layer of Prod2BERT for fea-
ture extraction outperforms all other layers, and
even beats concatenation and weighted average
strategies11. Second, the quality of contextual rep-
resentations of Prod2BERT is highly dependent on
the amount of data used in the pre-training phase.
Comparing Table 3 with Table 5, even though the
model delivers strong results in the NEP task on
Shop A, its performance on the intent prediction
task is weak, as it remains inferior to prod2vec
across all settings. In other words, the limited
amount of traffic from Shop A is not enough to
let Prod2BERT form high-quality product repre-
sentations; however, the model can still effectively
perform well on the NEP task, especially since
the nature of NEP is closely aligned with the pre-
training task. Third, fine-tuning instability is en-
countered and has a severe impact on model perfor-
mance. Since the amount of data available for in-
tent prediction is not nearly as important as the data
utilized for pre-training Prod2BERT, overfitting
proved to be a challenging aspect throughout our
fine-tuning experiments. Fourth, by comparing the
results of our best method against the model learnt
with prod2vec embeddings, we observed prod2vec

11This is consistent with Peters et al. (2019), which states
that inner layers of a pre-trained BERT encode more transfer-
able features.

embeddings can only provide limited values for in-
tent estimation and the LSTM-based model stops to
improve very quickly; in contrast, the features pro-
vided by Prod2BERT embeddings seem to encode
more valuable information, allowing the model to
be trained for longer epochs and eventually reach-
ing a higher accuracy score. As a more general
consideration – reinforced by a qualitative visual
assessment of clusters in the resulting vector space
–, the performance gap is very small, especially con-
sidering that long training and extensive optimiza-
tions are needed to take advantage of the contextual
embeddings.

6 Conclusion and Future Work

Inspired by the success of Transformer-based
models in NLP, this work explores contextualized
product representations as trained through a
BERT-inspired neural network, Prod2BERT.
By thoroughly benchmarking Prod2BERT
against prod2vec in a multi-shop setting, we
were able to uncover important insights on the
relationship between hyperparameters, adaptation
strategies and eCommerce performances on one
side, and we could quantify for the first time quality
gains across different deployment scenarios, on
the other. If we were to sum up our findings for
interested practitioners, these are our highlights:

1. Generally speaking, our experimental set-
ting proved that pre-training Prod2BERT with
Mask Language Modeling can be applied suc-
cessfully to sequential prediction problems
in eCommerce. These results provide inde-
pendent confirmation for the findings in Sun
et al. (2019), where BERT was used for
in-session recommendations over academic
datasets. However, the tighter gap on down-
stream tasks suggests that Transformers’ abil-
ity to model long-range dependencies may
be more important than pure representational
quality in the NEP task, as also confirmed by
human inspection of the product spaces (see
Appendix A for comparative t-SNE plots).

2. Our investigation on adapting pre-trained con-
textual embeddings for downstream tasks fea-
tured several strategies in feature extraction
and fine-tuning. Our analysis showed that
feature-based adaptation leads to the peak per-
formance, as compared to its fine-tuning coun-
terpart.
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3. Dataset size does indeed matter: as evi-
dent from the performance difference in Ta-
ble 5, Prod2BERT shows bigger gains with
the largest amount of training data avail-
able. Considering the amount of resources
needed to train and optimize Prod2BERT
(Section 5.1.1), the gains of contextualized
embedding may not be worth the investment
for shops outside the top 5k in the Alexa
ranking12; on the other hand, our results
demonstrate that with careful optimization,
shops with a large user base and significant
resources may achieve superior results with
Prod2BERT.

While our findings are encouraging, there are
still many interesting questions to tackle when
pushing Prod2BERT further. In particular, our re-
sults require a more detailed discussion with re-
spect to the success of BERT for textual represen-
tations, with a focus on the differences between
words and products: for example, an important as-
pect of BERT is the tokenizer, that splits words into
subwords; this component is absent in our setting
because there exists no straightforward concept of
“sub-product” – while far from conclusive, it should
be noted that our preliminary experiments using cat-
egories as “morphemes” that attach to product iden-
tifiers did not produce significant improvements.
We leave the answer to these questions – as well
as the possibility of adapting Prod2BERT to even
more tasks – to the next iteration of this project.

As a parting note, we would like to emphasize
that Prod2BERT has been so far the largest and
(economically) more significant experiment run
by Coveo: while we do believe that the methodol-
ogy and findings here presented have significant
practical value for the community, we also recog-
nize that, for example, not all possible ablation stud-
ies were performed in the present work. As Bianchi
and Hovy (2021) describe, replicating and compar-
ing some models is rapidly becoming prohibitive in
term of costs for both companies and universities.
Even if the debate on the social impact of large-
scale models often feels very complex (Thompson
et al., 2020; Bender et al., 2021) – and, sometimes,
removed from our day-to-day duties – Prod2BERT
gave us a glimpse of what unequal access to re-
sources may mean in more meaningful contexts.
While we (as in “humanity we”) try to find a solu-
tion, we (as in “authors we”) may find temporary

12See https://www.alexa.com/topsites.

solace knowing that good ol’ prod2vec is still pretty
competitive.

7 Ethical Considerations

User data has been collected by Coveo in the pro-
cess of providing business services: data is col-
lected and processed in an anonymized fashion, in
compliance with existing legislation. In particular,
the target dataset uses only anonymous uuids to
label events and, as such, it does not contain any
information that can be linked to physical entities.
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A Visualization of Session Embeddings

Figures 3 to 6 represent browsing sessions pro-
jected in two-dimensions with t-SNE (van der
Maaten and Hinton, 2008): for each browsing ses-
sion, we retrieve the corresponding type (e.g. shoes,
pants, etc.) of each product in the session, and use
majority voting to assign the most frequent prod-
uct type to the session. Hence, the dots are color-
coded by product type and each dot represents a

Figure 3: T-SNE plot of browsing session vector space
from Shop A and built with the first hidden layer of
pre-trained Prod2BERT.

Figure 4: T-SNE plot of browsing session vector space
from Shop A and built with prod2vec embeddings.
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Figure 5: T-SNE plot of browsing session vector space
from Shop B and built with the first hidden layer of
pre-trained Prod2BERT.

Figure 6: T-SNE plot of browsing session vector space
from Shop B and built with prod2vec embeddings.

unique session from our logs. It is easy to notice
that, first, both contextual and non-contextual em-
beddings built with a smaller amount of data, i.e.
Figures 3 and 4 from Shop A, have a less clear
separation between clusters; moreover, the quality
of Prod2BERT seems even lower than prod2vec, as
there exists a larger central area where all types are
heavily overlapping. Second, comparing Figure 5
with Figure 6, both Prod2BERT and prod2vec im-
prove, which confirms Prod2BERT, given enough
pre-training data, is able to deliver better separa-
tions in terms of product types and more meaning-
ful representations.
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Abstract

Identifying the value of product attribute is es-
sential for many e-commerce functions such
as product search and product recommenda-
tions. Therefore, identifying attribute values
from unstructured product descriptions is a
critical undertaking for any e-commerce re-
tailer. What makes this problem challenging
is the diversity of product types and their at-
tributes and values. Existing methods have
typically employed multiple types of machine
learning models, each of which handles spe-
cific product types or attribute classes. This
has limited their scalability and generalization
for large scale real world e-commerce applica-
tions. Previous approaches for this task have
formulated the attribute value extraction as a
Named Entity Recognition (NER) task or a
Question Answering (QA) task. In this pa-
per we have presented a generative approach
to the attribute value extraction problem us-
ing language models. We leverage the large-
scale pretraining of the GPT-2 and the T5 text-
to-text transformer to create fine-tuned mod-
els that can effectively perform this task. We
show that a single general model is very effec-
tive for this task over a broad set of product at-
tribute values with the open world assumption.
Our approach achieves state-of-the-art perfor-
mance for different attribute classes, which has
previously required a diverse set of models.

1 Introduction

Product attributes and their values play an impor-
tant role in e-commerce platforms. There are hun-
dreds of thousands of products sold online and
each type of product has a different set of attributes.
These attributes help customers search for products,
compare the relevant items and purchase the prod-
uct of their choice. While details of a product can
be found both in its title as well as its description,
commonly, the title includes important attributes
of the product. Everyday many new products are
added to the product catalogue often with new at-

ammoon Electric Guitar 6 String Solid
Wood Brims 23 Frets Basswood Body
Dual-coil Pickup Tremolo & Rhythm
Control with Pickguard

Brand Name : ammoon
Type : Electric Guitar
Tone Position : 23
Fingerboard Material : NULL
Body Material : Basswood

Figure 1: An example of a product with its title, at-
tributes and values. There is no value for the attribute
‘Fingerboard Material’ and it is represented as NULL.

tributes types and values. However, attribute in-
formation is often sparse, noisy and incomplete
with missing values. For example, Figure 1 shows
a product with its description and attribute value
pairs available on the website. It contains attribute
values for Brand Name, Type etc., but there are
missing attributes, such as “Dual-coil” for Pickup
Type, “6” for Strings etc. Given the wide diversity
of products and new products constantly emerging,
it is important that attribute value extraction works
with the open world assumption, i.e., values for the
attributes not seen before.

Earlier work (Ghani et al., 2006; Chiticariu et al.,
2010; Gopalakrishnan et al., 2012) for attribute
value extraction use a rule based approach with the
help of a domain specific seed dictionary to identify
the key phrases. Other work have formulated this
as named entity recognition (NER) problem (Put-
thividhya and Hu, 2011; More, 2016). However,
these approaches do not work under the open world
assumption. More recently, various neural network
based approaches have been proposed and applied
to sequence tagging model for attribute value ex-
traction. Huang et al. (2015) is the first to apply the
BiLSTM-CRF model for sequence tagging. Zheng
et al. (2018) propose an end-to-end tagging model
using BiLSTM, CRF and attention without any dic-
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tionary or hand-crafted features. Most of these
approaches create separate models for different at-
tributes. Also, for each attribute a, they have one
set of tags to denote beginning (Ba) and inside (Ia)
of that attribute. Hence, these methods are not scal-
able for large set of attributes and these models can
not identify emerging values for unseen attributes.
Recent works (Xu et al., 2019; Wang et al., 2020)
have set up this task as question answering (QA)
task. Question answering in machine reading com-
prehension (MRC) selects a span of text from the
given context to answer the question. Xu et al.
(2019) considers product title as context, attribute
as query, and proposes to find the attribute value
using only global set of BIO tags. Although the
sequence tagging models (Zheng et al., 2018; Xu
et al., 2019) achieve promising result, they do not
work well for discovering new attributes values.

In contrast to past extractive or classification
based approaches, we have taken a generative ap-
proach to identify attribute values. Text generation
using language models has several applications in
real-world tasks such as text-editing, article writing,
sentence completion, etc. Text infilling aims to fill
the missing part of a given sentence. Motivated by
their success as well as to leverage the large scale
pretraining of the language models, we formulate
the attribute value extraction as an instance of text
infilling task as well as an answer generation task.
We utilize Infilling by Language Modeling (ILM)
(Donahue et al., 2020) for the infilling approach
and we fine-tune Text-to-Text Transfer Transformer
(T5) (Raffel et al., 2020) as an answer generation
task. We summarize the main contribution of this
work as follows:

• We propose a language modeling approach
for attribute value extraction.

• We empirically demonstrate that this approach
achieves state-of-the-art results on discovering
new attribute values.

2 Problem Statement

In this section, we formally define the problem
of attribute value generation. Given a product
context T = (wt

1, w
t
2, ..., w

t
m) and its attribue

A = (wa
1 , w

a
2 , ..., w

a
n), our goal is to generate the

value V = (wv
1 , w

v
2 , ..., w

v
e). For example, the con-

text of the product in Figure 1 is “ammoon Electric
Guitar 6 String Solid Wood Brims 23 Frets Bass-
wood Body Dual-coil Pickup Tremolo & Rhythm
Control with Pickguard”. Consider the two at-

Attributes Train Valid test
All 76,970 10,996 21,991
Brand Name 7,969 1,095 2,348
Material 2,824 373 752
Color 735 112 197
Category 662 86 206

Table 1: Statistics of the AV-109K dataset and its four
frequent attributes

tributes Type and Fingerboard Material. We want
to generate the value “Electric Guitar” for the at-
tribute Type and NULL for the attribute Finger-
board Material as this attribute is not present in the
context.

In this work, first, we formulate this problem as
a (i) text infilling task and then as an (ii) answer
generation task. For text infilling, we combine
the context, T , attribute, A, and the value, V , in
a sentence as “T . A is V .” where the attribute
value V is masked as blank. Our objective is to
generate the missing span in this sentence to pre-
dict this value. Let the incomplete sentence be
S̃ = (ws

1, w
s
2, ..., w

s
p). Our model outputs the best

attribute value sequence Ṽ by learning the distri-
bution Ṽ = P (V |S̃). In the answer generation
approach, our aim is to generate V as the answer,
considering T as the context and A as the question.

3 Experimental Setup

3.1 Dataset

We have used publicly available dataset1 which is
collected from Sports & Entertainment category of
AliExpress (Xu et al., 2019). This dataset contains
110, 484 examples. Each example contains a triple,
i.e., context as product title, an attribute and its
value. We preprocessed the dataset to handle noisy
data, and removed triples with empty values and
triples with ‘-’, ‘/’ as value. This led to a dataset
comprising of 109, 957 triples which we refer to as
AV-109K. There are 2, 157 unique attributes and
11, 847 uniques values in this dataset. Also, not all
the attributes have a value in the context and these
are represented as NULL. There are 21, 461 such
triples in AV-109K. We randomly split the data into
7:1:2 ratio, i.e., we randomly select 76, 970 triples
as training set, 10, 996 triples as validation set, and
the remaining 21, 991 triples as the test set.

1https://raw.githubusercontent.com/
lanmanok/ACL19_Scaling_Up_Open_Tagging/
master/publish_data.txt
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Method EM(%) P (%) R(%) F1(%)

SUOTag 68.88 70.81 71.31 71.06
ILM 81.14 83.35 83.38 83.37
T5 81.35 83.89 83.75 83.82

Table 2: Performance comparison on the AV-109K
dataset

To further examine the model’s ability to gen-
erate values for unseen attributes, we select five
attributes with relatively low frequency (< 0.1%)
in the dataset: Frame Color, Lenses Color, Shell
Material, Wheel Material and Product Type and the
number of triples for these attributes are 108, 62,
36, 23, and 523, respectively. All the triples with
these attributes are included in the test set. From
the remainder of the dataset, we pick 10% as vali-
dation set and the rest as the training set. We refer
to this dataset as AV-zero.

3.2 Evaluation Metrics
To evaluate the models, we use the Exact Match
(EM ) metric on the generated values where the
whole sequence of the value must match. Since
values can contain more than one tokens and mod-
els may generate tokens in any order, we have also
computed average bag of word precision, recall
and F1 score as our evaluation measure which are
denoted as P , R and F1, respectively. Let N be
the size of the dataset, V = {v1, v2, .., vN} be the
gold standard values, G = {g1, g2, ..., gN} be the
generated values, and |vi ∩ gi| denotes the bag of
words overlap between the gold standard and the
generated values corresponding to the ith triple.
The computation of P and R is shown below:

P = 1
N

∑N
i=1

|vi∩gi|
|gi| R = 1

N

∑N
i=1

|vi∩gi|
|vi|

3.3 Baselines
We compare our models with BiLSTM-
CRF (Huang et al., 2015) and SUOTag (Scaling
Up Open Tag) (Xu et al., 2019)2.

• BiLSTM-CRF (Huang et al., 2015) is consid-
ered to be the state-of-the-art sequence tagging
model for NER tasks. It uses the word embed-
ding from pretrained BERT model and applies
a BiLSTM layer over it to the contextual repre-
sentation. Finally a Conditional Random Fields

2AVEQA (Attribute Value Extraction via Question An-
swering) (Wang et al., 2020) is also a recent work that could
potentially be a baseline, but we could not get the numbers as
the code was not publicly available.

Models SUOTag ILM T5

NULL
Precision (%) 41.73 75.25 77.32
Recall (%) 93.10 78.99 74.09
F1(%) 57.63 77.07 75.67

EM(%) when attributes
appear in context

28.86 61.11 54.57

EM(%) when attributes does
not appear in context

69.53 81.22 81.78

Values having multiple
words EM (%)

47.00 62.74 62.96

Numerical values 43.24 66.56 72.06

Table 3: Performance of models on AV-109K dataset in
different scenarios.

(CRF) (Lafferty et al., 2001) layer is applied over
this BiLSTM.

• SUOTag (Xu et al., 2019) uses two separate
BiLSTMs over the BERT based pretrained word
embeddings to represent the context and attribute.
Then, it applies a cross attention between these
two representations followed by a CRF layer.

3.4 Implementation Details
All the models are implemented with Py-
Torch (Paszke et al., 2019). We train each model
for 5 epochs. The model that performs the best on
the validation set is used for evaluating the test set.
The minibatch size is fixed to 32. We use AdamW
optimizer and a learning rate of 5e-5. We use pre-
trained GPT-2 small (Radford et al., 2019) model
to train ILM and we use the validation set perplex-
ity of the model on the masked token. We fine-tune
T5-Base for the answer generation framework.

3.5 Results and Discussion
We conduct experiments on different settings to
(1) explore the scalability on large attribute set,
(2) compare the performance on four frequent at-
tributes, and (3) examine the model’s ability to
discover new attributes.
Table 2 reports the performance on the AV-109K
dataset. Since BiLSTM-CRF requires to tag each
of the attributes a with separate Ba and Ia tags, it
is not suitable for a large attribute set. So, we did
not consider this model. The overall result shows
that both ILM and T5 have the capability to a han-
dle large number of attributes. Next, we examine
the models for various interesting cases such as (a)
when the values are NULL, (b) when the attributes
appear in the context vs. when the attributes do not
appear in the context, (c) when the values contain
multiple words, and (d) when value has numerical
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Attributes Model EM(%) P (%) R(%) F1(%)

Brand
Name

BiLSTM-CRF 85.77 80.99 86.37 83.59
SUOTag 91.05 92.53 92.35 92.44
ILM 94.72 94.93 94.89 94.91
T5 94.97 95.35 95.29 95.32

Material

BiLSTM-CRF 65.03 65.20 67.08 66.13
SUOTag 68.09 72.21 72.36 72.28
ILM 85.24 88.59 88.10 88.34
T5 84.57 88.94 87.48 88.20

Color

BiLSTM-CRF 42.64 40.74 42.64 41.67
SUOTag 42.64 43.15 43.09 43.12
ILM 75.63 80.29 79.8 80.04
T5 76.65 80.63 81.02 80.82

Category

BiLSTM-CRF 48.06 51.25 50.08 50.66
SUOTag 52.43 56.55 55.26 55.90
ILM 79.13 81.56 81.96 81.76
T5 74.27 81.67 80.18 80.92

Table 4: Performance comparison of different models
on four frequent attributes.

data. The details are summarized in Table 3. ILM
performs better than other models in identifying
triples having NULL values. Specifically, language
models give a much better precision in this case.
There are 19.26% NULL values in AV-109K, but
SUOTag predicts 43.83% data as NULL. Hence,
it has such high recall. There are very few triples
where the attributes appear in the context - only
1.50% in train dataset and 1.59% in test dataset.
So, when the attribute appears in the context, the
performance of all the models is poor in compari-
son with when the attribute does not appear in the
context. In the AV-109K dataset, there are 4, 058
triples whose value consist of multiple words. T5
performs the best in finding the values having more
than one word. There are 8.5% numerical data in
the test set and T5 gives much better results than
other models in identifying them.

The second experiment is conducted on the four
most frequent attributes of the AV-109K dataset.
Table 4 shows the result. T5 performs better than
other models in Brand Name and Color. For Mate-
rial and Category, ILM has the best performance.
We have looked into the predictions of the values
in these two categories and found that T5 is not cor-
rectly identifying the NULL values. On closer look
at the dataset, we find that most of those NULL
values are incorrectly annotated, e.g., “new 1pcs
Golf Sports Mens Right Left Hand Golf Gloves
Sweat Absorbent Microfiber Cloth Soft Breathable
Abrasion Gloves” - the material of this product is
microfiber, but it is annotated as NULL. T5 has pre-

Attributes Model EM(%) P (%) R(%) F1(%)

Frame
Color

SUOTag 71.30 71.76 72.22 71.99
ILM 69.44 69.44 69.44 69.44
T5 74.07 74.07 74.07 74.07

Lenses
Color

SUOTag 64.52 64.52 64.52 64.52
ILM 67.74 67.74 67.74 67.74
T5 69.35 69.35 69.35 69.35

Shell
Material

SUOTag 30.56 41.2 52.78 46.28
ILM 47.22 59.72 72.22 65.38
T5 58.33 68.06 77.78 72.59

Wheel
Material

SUOTag 47.83 52.90 60.87 56.60
ILM 69.57 69.57 69.57 69.57
T5 78.26 78.26 78.26 78.26

Product
Type

SUOTag 20.84 21.63 21.8 21.71
ILM 57.17 68.84 68.59 68.72
T5 52.20 62.01 64.15 63.06

Table 5: Performance comparison of different models
on AV-zero for identifying values of unseen attributes.

dicted the category as Bicycle Saddle for the title
“INBIKE Soft Wide Bicycle Saddle Comfortable
Bike Seat Vintage Bicycle Leather Saddle Pad”,
but the annotation is NULL. Although T5 has iden-
tified the correct value of the attribute, it is marked
as incorrect due to faulty annotation.

The last experiment is performed on AV-zero
dataset. Table 5 shows the result of discovering
values of five new attributes. ILM is the best in
identifying “Product Type”. The value of most of
the “Product Type” is Fishing Float, but T5 either
predicted the product type to be NULL or the type
of the float, e.g., Luminous Fishing Float, Ice Fish-
ing Float, etc. For the remaining three attributes,
T5 outperforms other models.3 Both T5 and ILM
perform better than SUOtag in discovering unseen
attribute values.

4 Conclusion

In this work, we present a formulation to generate
product attribute values as (i) an instance of text
infilling task and (ii) as an answer generation task.
We show that we can leverage GPT-2 based and T5
text-to-text transformer models for this task. The
models achieve strong results over a broad set of
attributes. T5 performs better at multi-word values,
and ILM is better at predicting null values. Addi-
tionally, our approach outperforms the state-of-the-
art models for discovering new attribute values.

3We would like to note that in Table 5, for some of the
attributes, all the evaluation metrics are identical. This occurs
because for those attributes, the predicted value is a single
token.
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Abstract

Automatic Speech Recognition (ASR) robust-
ness toward slot entities are critical in e-
commerce voice assistants that involve mone-
tary transactions and purchases. Along with
effective domain adaptation, it is intuitive that
cross utterance contextual cues play an im-
portant role in disambiguating domain spe-
cific content words from speech. In this pa-
per, we investigate various techniques to im-
prove contextualization, content word robust-
ness and domain adaptation of a Transformer-
XL neural language model (NLM) to rescore
ASR N-best hypotheses. To improve con-
textualization, we utilize turn level dialogue
acts along with cross utterance context carry
over. Additionally, to adapt our domain-
general NLM towards e-commerce on-the-fly,
we use embeddings derived from a finetuned
masked LM on in-domain data. Finally, to
improve robustness towards in-domain content
words, we propose a multi-task model that can
jointly perform content word detection and lan-
guage modeling tasks. Compared to a non-
contextual LSTM LM baseline, our best per-
forming NLM rescorer results in a content
WER reduction of 19.2% on e-commerce au-
dio test set and a slot labeling F1 improvement
of 6.4%.

1 Introduction

Task-oriented conversations in voice chatbots de-
ployed for e-commerce usecases such as shopping
(Maarek, 2018), browsing catalog, scheduling de-
liveries or ordering food are predominantly short-
form audios. Moreover, these dialogues are re-
stricted to a narrow range of multi-turn interactions
that involve accomplishing a specific task (Mari
et al., 2020). The back and forth between a user
and the chatbots are key to reliably capture the
user intent and slot entities referenced in the spo-
ken utterances. As shown in previous works (Irie

et al., 2019; Parthasarathy et al., 2019; Sun et al.,
2021), rather than decoding each utterance inde-
pendently, there can be benefit in decoding these
utterances based on context from previous turns. In
the case of grocery shopping for example, knowing
that the context is "what kind of laundry deter-
gent?" should help in disambiguating "pods" from
"pause". Another common aspect in e-commerce
chatbots is that the speech patterns differ among
sub-categories of usecases (Eg. shopping clothes
vs ordering fast food). Hence, some chatbot sys-
tems allow users to provide pre-defined grammars
or sample utterances that are specific for their use-
case (Gandhe et al., 2018). These user provided
grammars are then predominantly used to perform
domain adaptation on an n-gram language model.
Recently (Shenoy et al., 2021) showed that these
can be leveraged to bias a Transformer-XL (TXL)
LM rescorer on-the-fly.

While there has been extensive previous work
on improving contextualization of TXL LM us-
ing historical context, none of the approaches uti-
lize signals from a natural language understanding
(NLU) component such as turn level dialogue acts.
This paper investigates how to utilize dialogue acts
along with user provided speech patterns to adapt
a domain-general TXL LM towards different e-
commerce usecases on-the-fly. We also propose a
novel multi-task architecture for TXL, where the
model jointly learns to perform domain specific
slot detection and LM tasks. We use perplexity
(PPL) and word error rate (WER) as our evaluation
metrics. We also evaluate on downstream NLU
metrics such as intent classification (IC) F1 and
slot labeling (SL) F1 to capture the success of these
conversations. The overall contributions of this
work can be summarized as follows :

• We show that a TXL model that utilizes turn
level dialogue act information along with long
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span context helps with contextualiziation and
improves WER and IC F1 in e-commerce chat-
bots.

• To improve robustness towards e-commerce
domain specifc slot entities, we propose a
novel TXL architecture that is jointly trained
on slot detection and LM tasks which signifi-
cantly improves content WERR and SL F1.

• We show that adapting the NLM towards user
provided speech patterns by using BERT on
domain specific text is an efficient and ef-
fective method to perform on-the-fly adap-
tation of a domain-general NLM towards e-
commerce utterances.

2 Related Work

Incorporating cross utterance context has been well
explored with both recurrent and non-recurrent
NLMs. With LSTM NLMs, long span context is
usually propogated without resetting hidden states
across sentences or using longer sequence lengths
(Xiong et al., 2018a; Irie et al., 2019; Khandelwal
et al., 2018; Parthasarathy et al., 2019). In (Xiong
et al., 2018b), along with longer history, informa-
tion about turn taking and speaker overlap is used
to improve contextualization in human to human
conversations. With transformer architecture based
on self attention (Vaswani et al., 2017) (Dai et al.,
2019) showed that by utilizing segment wise recur-
rence Transformer-XL (TXL) (Dai et al., 2019) is
able to effectively leverage long span context while
decoding. More recently, improving contextualiza-
tion of the TXL models included adding a LSTM
fusion layer to complement the advantages of recur-
rent with non-recurrent models (Sun et al., 2021).
(Shenoy et al., 2021) incorporated a non-finetuned
masked LM fusion in order to make the domain
adaptation of TXL models quick and on-the-fly us-
ing embeddings derived from customer provided
data and incorporated dialogue acts but only with
an LSTM based LM. While (Sunkara et al., 2020)
tried to fuse multi-model features into a seq-to-seq
LSTM based network. In (Sharma, 2020) cross
utterance context was effectively used to perform
better intent classification with e-commerce voice
assistants.

For domain adaptation, previous techniques ex-
plored include using an explicit topic vector as
classified by a separate domain classifier and in-
corporating a neural cache (Mikolov and Zweig,

2019; Li et al., 2018; Raju et al., 2018; Chen et al.,
2015). (Irie et al., 2018) used a mixture of domain
experts which are dynamically interpolated. It is
also shown in (Liu et al., 2020), that using a hybrid
pointer network over contextual metadata can also
help in transcribing long form social media audio.
Joint learning NLU tasks such as intent detection
and slot filling have been explored with RNN based
LMs in (Liu and Lane, 2016) and more recently in
(Rao et al., 2020), where they show that a jointly
trained model consisting of both ASR and NLU
tasks interfaced with a neural network based inter-
face helps incorporate semantic information from
NLU and improves ASR that comprises a LSTM
based NLM. In (Yang et al., 2020) tried to incor-
porate joint slot and intent detection into a LSTM
based rescorer with a goal of improving accuracy
on rare words in an end-to-end ASR system.

However, none of the previous work utilize di-
alogue acts with a non-recurrent based LM such
as Transformer-XL nor optimize towards improv-
ing robustness of in-domain slot entities. In this
paper we experiment and study the impact of uti-
lizing dialogue acts along with a masked language
model fusion to improve contextualization and do-
main adaptation. Additionally, we also propose a
novel multi-task architecture with TXL LM that im-
proves the robustness towards in-domain slot entity
detection.

3 Approach

A standard language model in an ASR system com-
putes a probability distribution over a sequence of
words W = w0, ..., wN auto-regressively as:

p(W ) =

N∏

i=1

p(wi|w1, w2, ..., wi−1) (1)

In our experiments, along with historical con-
text, we condition the LM on additional contextual
metadata such as dialogue acts :

p(W ) =
N∏

i=1

p(wi|w1, w2, ..., wi−1, c1, c2, ..., ck)

(2)
Where c1, c2, ...ck are the turn based lexical rep-

resentation of the contextual metadata. For base-
line, we use a standard LSTM LM as summarized
below :

embedi = ET
kewi−1

ci, hi = LSTM(hi−1, ci−1, embedi)

p(wi|w<i) = Softmax(W T
hohi)

(3)
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Figure 1: Transformer-XL language model architecture
jointly trained with slot detection task with an optional
MLM fusion layer

Utterance i want my shoes delivered to seattle next thursday 
Annotation O O O SLOT O O SLOT SLOT SLOT 

 

Figure 2: Example utterance with slots annotated

where embedi is a fixed size lower dimensional
word embedding and the LSTM outputs are pro-
jected to word level outputs using W T

ho. A
Softmax layer converts the word level outputs
into final word level probabilities.

3.1 Transformer-XL based NLM

Although recurrent language models help in model-
ing long range dependencies to certain extent, they
still suffer from the fuzzy far away problem (Khan-
delwal et al., 2018). Vanilla transformer LMs on
the other hand use fixed segment lengths which
leads to context fragmentation. To address these
limitations and model long range dependencies,
TXL models add segment-level recurrence and use
a relative positional encoding scheme (Dai et al.,
2019). Hence we choose to use a TXL LM directly.
The cached hidden representations from previous
segments helps contextual information flow across
segment boundaries. If sk = [wk,1, ..., wk,T ] and
sk+1 = [xk+1,1, ..., xk+1,T ] are two consecutive
segments of length T and hnk is the n-th layer hid-

den state produced for the k-th segment sk, then,
the n-th layer hidden state for segment sk+1 is pro-
duced as follows:

h̃n−1
k+1 = [SG(hn−1

k ) ◦ hn−1
k+1 ]

qnk+1, k
n
k+1, v

n
k+1 = h̃n−1

k+1Wq
ᵀ

hnk+1 = TL(qnk+1, k
n
k+1, v

n
k+1)

(4)

where SG(.) stands for stop gradient and TL
stands for Transformer Layer. To carry over con-
text from previous turns, we train and evaluate the
model by concatenating all the turns, including the
bot responses, in a single conversation session. The
model is trained with a cross entropy objective as
defined below :

LLM = − 1

T

[
T∑

i=1

log(P (wi | w<i, s<i))

]
(5)

During inference time, we cache a fixed length
hidden representation from previous segments. We
also use the generated bot responses to perform a
forward pass and carry over the context to the next
user turn.

3.2 Slot detection and language modeling
multi-task learning

To make the our domain-general model robust to
e-commerce specific slot entities, we propose a
multi-task learning approach to training the TXL
LM. We train our models on both LM and slot de-
tection tasks. Similar to slot filling, slot detection
is a sequence classification task that involves pre-
dicting if a word, wi at time step i is a domain
specific slot entity. We use a separate slot detection
network, consisting of a simple multi-layer percep-
tron, and use the final layer hidden representation
from the TXL network as inputs to the network.
Figure 2 shows an example utterance with the slot
annotations. Formally, let s = (s0, s1, ..., sT ) be
the slot label sequence, corresponding to a word
sequence w = w0, w1, ...., wT in the k-th segment.
We model the slot label output st as a conditional
distribution over input word sequence up to time
step t, w≤t similar to (Liu and Lane, 2016) :

hnk = TL(qnk , k
n
k , v

n
k )

p(st|w≤t) = SlotLabelDist(hnt )
(6)

We use a cross-entropy training objective for the

20



slot detection task as below :

LSD = − 1

T

[
T∑

i=1

log(P (si | w≤i))

]
(7)

To incorporate this semantic information about
the word from previous time step into the NLM,
we use the logits from the slot detection network
to condition the probability distribution of the next
word in the sequence as shown in Figure 1.

The total loss is then computed using a linear
combination of LM and slot detection losses:

Ltotal = LLM + αSDLSD (8)

where αSD is the weight for the slot detection loss.

3.3 Transformer-XL LM conditioning on
dialogue acts

Dialogue acts (DA) in a conversation represent the
intention of an utterance and is intended towards
capturing the action that an agent is trying to ac-
complish (Austin, 1975). An example conversation
snippet with DA is shown in Table 1. DA classifica-
tion is typically performed in a separate component
that is part of a downstream NLU system and con-
sumes the outputs generated by ASR. The classified
DA is an important contextual signal that provides
hints about the type of speech pattern that can be
expected in the next turn. We utilize these signals
to train our TXL models. Specifically, we augment
the training data with the dialogue act information
prefixed to the user turns and surround them with
explicit <dialogue_act> tags. The expectation is
that the TXL LM learns the usage patterns associ-
ated with different dialogue acts and this informa-
tion should help narrow down the search space for
the model to content words relevant to the current
dialogue context.

3.4 Domain adaptation using contextual
semantic embeddings

In production chatbots, it is common for bot de-
velopers to provide example speech patterns, in
the form of sample sentences or explicit grammars,
which can then be used to bias the n-gram language
models in a ASR system (Gandhe et al., 2018).
This pre-defined set of speech patterns is a useful
source of contextual information that can be also
used to bias NLMs as well. As demonstrated in
(Shenoy et al., 2021), pretrained masked language

Actor Utterance Dialogue Act

Bot how can i help you today general-welcome
User hi i want to track my

online shopping order inform-intent
Bot sure! what is the order

number? request
User my order number is abcdef inform
Bot your order is scheduled to be

delivered tomorrow inform
User thanks thank-you
Bot do you need help with

anything else? req-more

Table 1: A sample user bot conversation snippet show-
ing example dialogue acts.

models (MLM) such as BERT, can be used to de-
rive a fixed size semantic representation from this
lexical information. Large pretrained MLMs are
gaining widespread popularity and are considered
as powerful language learners (Radford et al., 2016;
Brown et al., 2020). However, the sentence or doc-
ument embeddings derived from such an MLM
without finetuning on in-domain data is shown to
be inferior in terms of the ability to capture seman-
tic information that can be used in similarity related
tasks (Reimers and Gurevych, 2019). Instead of
using the [CLS] vector to obtain sentence embed-
dings, in this paper we take the average of context
embeddings from last two layers as these are shown
to be consistently better than using [CLS] vector
(Reimers and Gurevych, 2019; Li et al., 2020).

We use a simple fusion method as experimented
in (Shenoy et al., 2021) where the hidden state from
the last layer of the TXL decoder is concatenated
with the BERT derived embedding. This is then
followed by a single projection layer with a non-
linear activation function σ, such as sigmoid.

gt = σ(W [hTXL
t ; eMLM ] + b) (9)

Where hTXL
t is the hidden state from the last

transformer decoder and eMLM is the BERT de-
rived embedding from in domain sample utterances.
The intuition here is that the model learns to asso-
ciate the domain specific BERT derived embedding
with the occurrences of jargon specific to that do-
main. Thus providing different BERT vectors de-
rived from different domain texts should allow the
model to adapt towards such domains on-the-fly.
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Model Retail Fastfood
CWERR IC F1 SL F1 p-value CWERR IC F1 SL F1 p-value

1 Non-contextual LSTM – – – – – –

2 TXL 1.0% 0.5% 0.4% 0.083 12.3% 0.4% 0.9% 0.048

3 + Dialogue Acts (DA) 1.2% 1.2% 1.3% 0.057 14.4% 1.0% 1.2% 0.041

4 + Joint Slot Detection (SD) 4.3% 2.0% 3.3% 0.046 16.3% 0.9% 2.1% 0.015
5 + Joint SD + DA 8.6% 2.1% 3.3% 0.048 17.3% 1.3% 2.7% 0.009

6 + BERT Fusion 6.4% 2.8% 2.3% 0.030 18.2% 1.8% 4.8% 0.004
7 + BERT Fusion + DA 9.6% 2.9% 2.7% 0.023 19.2% 1.7% 4.8% 0.004

8 + Joint SD + DA + BERT Fusion 11.8% 3.8% 4.3% 0.037 19.2% 2.1% 6.4% 0.002

Table 2: ASR and NLU improvements on two e-commerce sub-domains : Retail and Fastfood. CWERR - Content
Word Error Reduction, IC F1 - Relative Intent Classification F1 Improvement, SL F1 - Relative Slot Labeling F1
Improvement, MPSSWE p-value test on WERR where significant improvements are in bold

Model PPLRgen PPLRecom

TXL –
+ Dialogue Acts (DA) 3.4% 9.9%
+ Joint Slot Detection (SD) 8.5% 11.4%
+ BERT Fusion (BF) 16.3% 23.3%

+ Joint SD + DA 9.8% 13.0%
+ BF + DA 21.5% 25.3%
+ BF + DA + Joint SD 21.0% 25.8%

Table 3: Relative perplexity reduction (PPLR) from
the various TXL models on a general domain eval
set (PPLgen) and on e-commerce domain eval set
(PPLecom).

4 Experimental Setup

4.1 Dataset

We required task-oriented dialogue datasets with
actor, dialogue acts and the slot entities annotated.
Since no single dataset was large enough to train
a reliable language model, we used a combina-
tion of Schema-Guided Dialogue Dataset (Rastogi
et al., 2019), MultiWOZ 2.1 (Eric et al., 2019;
Budzianowski et al., 2018), MultiDoGo (Peskov
et al., 2019) along with anonymized in-house
datasets that belong to two e-commerce usecases
: retail and fastfood delivery. The final LM train-
ing data consisted of 260k training samples, 56k
validation and evaluation samples and around 9.9
million running words. We used a vocabulary of
size 25k. We evaluated our models on anonymized
in-house 8kHz close-talk audio. These audio com-
prised of task-oriented conversations with multiple
speakers and acoustic conditions representative of
real world usage and belonged to the same two
usecases mentioned above. The average number of
turns in the audio dataset was 5.

4.2 ASR setup and NLM setup
We used a hybrid ASR model comprising of a
regular-frame-rate (RFR) model trained on cross-
entropy loss, followed by sMBR (Ghoshal and
Povey, 2013). The first pass LM we used was
a domain-general Kneser-Ney (KN) (Kneser and
Ney, 1995) smoothed 4-gram model estimated on
a weighted mix of datasets spanning multiple do-
mains. The final vocabulary size of the n-gram LM
was 500k words. All our NLM rescorers used a
4-layer Tranformer-XL1 decoder, each of size 512
with 4 attention heads. The input word embedding
size was 512. We used a segment and memory
length of 25. During model training we applied a
dropout rate of 0.3 to both the slot detection net-
work and TXL. For the slot detection layer we used
a 3 layer MLP and used the final layer hidden rep-
resentation from the TXL as the output. To obtain
the BERT embedding from in-domain speech pat-
terns, we finetune huggingface2 pretrained BERT
mode on the retail and fastfood text corpus. The
derived BERT embedding size used was 768. Dur-
ing inference, we extract n-best hypothesis with
n<=50 from the lattice generated by the first pass
ASR model. We rescored the n-best hypothesis by
multiplying the acoustic score with the acoustic
scale and adding it to the scores obtained from the
TXL rescorer. We used a fixed αSD of 0.8 for the
slot detection loss.

5 Results and Discussion

Table 3 summarizes the relative perplexity reduc-
tions (PPLR). Since we are optimizing our models
to improve on the e-commerce domain specific con-

1https://github.com/kimiyoung/transformer-xl
2https://github.com/huggingface/transformers
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tent words we directly report the relative content
word error rate reductions (CWERR) in Table 2
along with the relative impact on the downstream
NLU tasks of IC and SL. For computing CWERR,
we remove all the stop words comprising of com-
monly used function words, such as conjunctions
and prepositions from the transcriptions and eval-
uate only on content words. We also report sta-
tistical significance of our CWER improvements
using matched pairs sentence segment word error
test (MPSSWE). All the WER numbers are relative
to a non-contextual LSTM baseline. The gap in the
performance between the two domains we tested
on is reflective of the underlying training corpus
distribution, which has more text belonging to the
fastfood domain.

Perplexity gains indicate effective domain
adaptation We report both general domain and
e-commerce domain PPLR. Overall, the contextu-
alization and domain adaptation techniques help
with the PPL dropping in both cases. The jointly
trained model on in-domain slot detection how-
ever clearly helps more in the e-commerce case.
Moreover, since we used BERT that was finetuned
on e-commerce text we again see larger gains in
the domain specific testset when compared to the
general domain testset (23.3% vs 16.3%).

Using system dialogue acts improves intent
detection: From our experiments that train the
TXL LMs with dialogue act information, it is clear
that dialogue acts helps with relatively marginal
gains in PPL (3.4% on generic and 9.9% on e-
commerce) and WER (1.2% Retail, 14.4% Fast-
food). When compared to other techniques we
explored, we see that the impact on intent clas-
sification was higher in proportion to the gain in
WER, which indicates that dialogue acts are valu-
able contextual signals to help with intent convey-
ing phrases.

Slot detection loss yields improvements on
domain specific content words: Rows 4 and 5 of
Table 2 report the content WERR, IC and SL F1s
that we obtain by incorporating the joint LM and
slot detection (SD) loss. As expected, the multi-
task model improves on the content words signif-
icantly (1.2% to 4.3% on Retail, 12.3% to 16.3%
on Fastfood). This WER improvement also car-
ries over to a higher SL F1 improvement, but a
relatively small IC F1 improvement. This is again
indicative that the improvements are mainly on
recognition of in-domain slot entities and the auxil-

iary function words that are important to recognize
intents do not benefit as much.

Domain adaptation using BERT fusion pro-
vides maximum gains: Rows 6 and 7 in Table 2
illustrate the performance of the TXL LM that in-
corporates the BERT embedding fusion layer. Com-
pared to the model trained with joint slot detection
loss, BERT fusion model performs better on all
ASR and the NLU metrics. It is evident from the
results that the BERT embeddings that are derived
from different user provided text helps the model
effectively adapt to the domain that the embedding
was derived from. The gains are amplified when
complemented with the dialogue acts ability to im-
prove on intent carrying words and the joint slot
detection model leading to a WERR improving
from 12.3% to 19.2% on the fastfood domain and
1% to 11.8% on the retail domain. This also carries
over to an improvement on IC and SL F1 of 3.8%,
4.3% on retail and 2.1%, 6.4% on fastfood.

6 Conclusion

In this paper we explored different ways to robustly
adapt a domain-general Transformer-XL NLM to
rescore N-best hypotheses from a hybrid ASR sys-
tem for task-oriented e-commerce speech conversa-
tions. We demonstrated that Transformer-XL LM
trained with turn level dialogue acts benefits in-
tent classification by improving the recognition of
content words. Additionally, we show that using
semantic embeddings derived from a masked lan-
guage model finetuned on e-commerce domain can
be effectively used to adapt a domain-general TXL
LM for e-commerce domain utterance rescoring
task. Finally, we introduced a new TXL training
loss function to jointly predict content words along
with language modeling task, this when combined
with BERT fusion and dialogue acts, amplifies the
WER, IC F1 and SL F1 gains. We have also shown
these improvements to be statistically significant.
Future work can look at integrating these methods
into an end-to-end ASR system for both rescoring
task and first pass LM fusion.
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Abstract

User satisfaction estimation in the dialogue-
based customer service is critical not only for
helping developers find the system defects, but
also making it possible to get timely human in-
tervention for dissatisfied customers. In this
paper, we investigate the problem of user sat-
isfaction estimation in E-commerce customer
service. In order to apply the estimator to
online services for timely human intervention,
we need to estimate the satisfaction score at
each turn. However, in actual scenario we
can only collect the satisfaction labels for the
whole dialogue sessions via user feedback. To
this end, we formalize the turn-level satisfac-
tion estimation as a reinforcement learning
problem, in which the model can be optimized
with only session-level satisfaction labels. We
conduct experiments on the dataset collected
from a commercial customer service system,
and compare our model with the supervised
learning models. Extensive experiments show
that the proposed method outperforms all the
baseline models.

1 Introduction

Task-oriented dialogue systems have been widely
studied recently (Gao et al., 2019; Zhang et al.,
2020), and many have been widely deployed to real-
world applications, such as intelligent assistants
and customer service in industry. However, due to
the limitation of model capability, the system may
fail to understand the intent of users or complete the
task, which makes it common for users to become
dissatisfied with the system (Kiseleva et al., 2016b;
Lopatovska et al., 2019).

In this paper, we focus on the problem of user
satisfaction estimation (Chowdhury et al., 2016;
Kiseleva et al., 2016a) in E-commerce customer
service, where users may ask for E-commerce trans-
actions, claim a refund or make a complaint to the
customer service. An actual E-commerce customer

Figure 1: A dialogue example in E-commerce customer
service where the system cannot understand the user’s
intent, thereby making the user dissatisfied.

service may serve thousands of users simultane-
ously, many of whom may feel dissatisfied, more
or less. It is imperative to offer manual service to
those users who are exhibiting signs of dissatisfac-
tion. Nevertheless, the manual service resources
are usually limited. Therefore, estimating user sat-
isfaction can help us assign manual service priority
to the users by sorting the ongoing dialogues with
satisfaction scores.

Ideally, the satisfaction score estimation and sort-
ing process should be in a timely and turn-level
manner. Take Figure 1 for an example. In the
first two turns1, the system responses are consistent
with the user utterances. Therefore, the satisfaction
score until the second turn should be high, and the
user should not be allocated human service. But
in the third turn, the system seems to ask a weird
question instead of responding to the special situa-
tion the user encounters. Therefore, the satisfaction
score until the third turn should be lower than that
until the second turn. And after the fourth turn,

1In this work, a turn consists of a pair of a user utterance
and a system utterance.
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the satisfaction score should get even lower since
the system still responds improperly. Whether the
user will be offered human resources in the third
and the fourth turn is determined by the rank of the
satisfaction score among all the ongoing dialogues.

However, in actual scenario we can only col-
lect the satisfaction labels for the whole dialogue
sessions through user feedback (Park et al., 2020),
because asking the users to provide turn-level feed-
back will lead to poor user experience. Conse-
quently, most of the existing works only tackle
the session-level satisfaction prediction problem,
where they can only predict the satisfaction label
after the whole session finishes, lacking the abil-
ity to adjust the satisfaction score as the dialogue
proceeds.

To address this problem, we formalize the turn-
level user satisfaction estimation as a reinforcement
learning problem. With carefully designed actions
and reward function, we can optimize the turn-level
satisfaction estimator with only session-level satis-
faction labels.

To summarize, we utilize reinforcement learning
to achieve turn-level satisfaction estimation in E-
commerce customer service when only the session-
level labels are available. Extensive experiments
verify the effectiveness of our method.

2 Related Work

User satisfaction estimation for dialogue systems
has been an important research topic over the past
decades. Most of the existing work focused on
the session-level user satisfaction estimation (Jiang
et al., 2015; Hashemi et al., 2018; Park et al.,
2020). Walker et al. (1997) first proposed PAR-
ADISE framework, which can estimate the user
satisfaction in spoken dialogue systems through a
task success measure and dialogue-based cost mea-
sures. Yang et al. (2010) extended the PARADISE
framework by an item-based collaborative filtering
model. Some works on user satisfaction estimation
focused on extracting useful features from user-
system interaction (Kiseleva et al., 2016a; Sand-
bank et al., 2018). Others modeled a dialogue as a
sequence of dialogue actions (Jiang et al., 2015) or
utterances (Hashemi et al., 2018; Choi et al., 2019).
However, these methods can predict user satisfac-
tion only after the dialog is completed, which can
not be adopted in an E-commerce customer ser-
vice scenario where timely satisfaction estimation
is preferred.

While some works also addressed the turn-level
online satisfaction estimation, they needed turn-
level human annotations (Ultes et al., 2017; Bod-
igutla et al., 2020). These methods are not scal-
able in terms of annotation costs due to the large
volumes of user data in E-commerce. Choi et al.
(2019) used elaborate rules to generate turn-level
satisfaction labels and trained the model in a su-
pervised manner, but rules do not generalize well
to the rapid growth of new data in a commercial
system. Recently, Kachuee et al. (2020) suggested
a self-supervised contrastive learning approach to
use unlabeled data and transfer to user satisfaction
prediction with labeled data, but the size of labeled
data is still very large.

In our work, we propose to leverage reinforce-
ment learning to achieve turn-level user satisfaction
estimation. Only requiring session-level labels, our
model is more suitable for industrial E-commerce
customer service than existing methods.

3 User Satisfaction Estimation

We formally define the task in our work as fol-
lows: the tth turn of a dialogue, denoted by Tt, con-
sists of user request T ut and system response T st .
Each dialogue d contains a few turns, namely d =
(T1, T2, ..., TT ), and we estimate the satisfaction
score sct of a user at each turn Tt (t = 1, 2, ..., T ).

We now describe the proposed method in de-
tail, which consists of three components: dia-
logue encoder, satisfaction score estimator, and
reinforcement learning module. Figure 2 shows the
overview of the proposed method.

Figure 2: The overview of the proposed method.

3.1 Dialogue Encoder

Following (Choi et al., 2019), we extract features
from each turn and model a dialogue as a se-
quence of features, such as turn index and input
channel2. Suppose there are m features and we

2See Appendix A for details

27



denote the one-hot vector for the jth feature in
turn Tt as f jt . Then the feature for the tth turn is
ft = [f1t ; f2t ; ...; fmt ].

For better understanding of natural languages,
we use BERT (Devlin et al., 2019) to encode the
pair of user and system utterances at each turn, and
apply it as a part of the input features ft.

Then, we use the gated recurrent units (GRU)
(Chung et al., 2014) to get the hidden state ht of
the dialogue history up to the tth turn:

ht = GRU(ht−1, ft) (1)

3.2 Satisfaction Score Estimator
For satisfaction score estimation, our insight is that
a the degree of a user’s dissatisfaction will accu-
mulate if he/she encounters successive improper
system response (where the satisfaction score is
negative and decreases over time), or can be re-
lieved by a satisfactory reply (where the satisfac-
tion score increases). Therefore, it is natural to
predict the increment of user satisfaction score,
not only because it is in line with the intuition
that users who experience more dis-satisfactory
turns are more likely to give up interacting with
the system, but also the predicted increment of user
satisfaction score can be regarded as the actions in
reinforcement learning (see Section 3.3 for details).

Formally, having encoded the dialogue, we first
predict the increment of user satisfaction score
∆sct with a multilayer perceptron (MLP):

∆sct = MLP (ht) (2)

Then, we sum up the increments of user satisfac-
tion score to get the user satisfaction score up to
the tth turn:

sc1:t = sc1:t−1 + ∆sct =

t∑

τ=1

∆scτ (3)

3.3 Reinforcement Learning Module
To optimize the satisfaction score estimator, we
sample a pair of a satisfying dialogue (where the
user is satisfied with the system at the session level)
and a dissatisfying dialogue and compare the two
predicted satisfaction scores. Our key insight is
that although it is hard to directly assign each turn
with the absolute value of satisfaction, the predicted
satisfaction score of satisfying dialogue must be
higher than that of the dissatisfying dialogue. We
model the satisfaction score estimator as an agent

assigning increment of satisfaction score to each
turn given the dialogue context, and the aforemen-
tioned fact can be utilized to design the reward
signal in reinforcement learning setting.

Formally, the training set D is split into satisfy-
ing dialogues SD and dissatisfying dialogues SD.
In each episode of reinforcement learning, we ran-
domly sample a satisfying dialogue d ∈ SD with
T turns and a dissatisfying dialogue d′ ∈ SD with
T ′ turns. Then the satisfaction score estimator is
regarded as the agent, and predicts the increment
of satisfaction score of each turn for d and d′ suc-
cessively. Thus, the length of an episode is T + T ′.

For the first turn of satisfying dialogue (i.e., the
1st time step), the state is initialized with the fea-
tures of the first turn (of satisfying dialogue). The
rest states of the satisfying dialogue (i.e., the 2rd ∼
T th time steps) are updated by the features of cur-
rent turn and GRU hidden states encoding features
of history turns (of satisfying dialogue). Similarly,
for the first turn of dissatisfying dialogue (i.e., the
(T + 1)th time step), the state is reinitialized with
the features of the first turn (of dissatisfying dia-
logue). The rest states of the dissatisfying dialogue
(i.e., the (T + 2)th ∼ (T + T ′)th time steps) are
also updated by features of current turn and GRU
hidden states encoding features of history turns
(of dissatisfying dialogue). Formally, the state is
defined as:

st =

{
ft(t = 1, T + 1)

[ht−1; ft](t 6= 1, T + 1)
(4)

The action at = ∆sct is sampled from the policy
π(at|st) ∼ N (MLP (GRU(st)), σ

2), where σ is
a hyper-parameter. The rewards rt for each time
step t are all 0 except the T th and (T + T ′)th step.
The rewards for these two steps are 1 if the agent
predicts sc1:T > scT+1:T+T ′ , and -1 otherwise.

Let the expectation of return J(πθ) =

Eπθ [
∑T

t=1 γ
t−1rt] + Eπθ [

∑T+T ′
t=T+1 γ

t−T−1rt],
where the policy is parameterized by θ, and γ
denotes the discount rate. Following the REIN-
FORCE (Williams, 1992) algorithm, the gradient
of the expectation of return can be calculated as
follows:

∇θJ(πθ) = E
πθ

[(

T∑

t=1

γt−1rt)
T∑

t=1

∇θ log πθ(at|st)]

+ E
πθ

[(
T+T ′∑

t=T+1

γt−T−1rt)
T+T ′∑

t=T+1

∇θ log πθ(at|st)]

(5)
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4 Experimental Setting

4.1 Dataset

The dataset in this experiment is sampled from a
commercial customer service system, where users
communicate with the intelligent assistant about
the E-commerce transactions, such as claiming a
refund and requesting a receipt. The users are al-
lowed to request manual service during the dia-
logue if they feel dissatisfied with the automatic
system. The dataset contains 1294 dialogue ses-
sions in total, 840 and 454 of which are labeled as
satisfying and dissatisfying, respectively.

4.2 Evaluation Metric

We aim at deploying our satisfaction estimator to
online services, where thousands of dialogues are
handled simultaneously. As the manual service
resources are limited, we need to sort the ongoing
dialogues by the satisfaction scores estimated by
our model, and allocate manual service resource to
the least satisfied users.

To evaluate the model in this scenario, we use the
Area Under the Receiver Operating Characteristic
Curve (AUC) (Fawcett, 2006) as the evaluation
metric. In our scenario, AUC equals the probability
that the satisfaction score of a randomly sampled
satisfying dialogue is higher than the score of a
randomly sampled dissatisfying dialogue.

4.3 Baseline

We compare our model with the following base-
lines: (1) DeepFM (Guo et al., 2017) which com-
bines the factorization machine and deep neural
network. (2) ConvSAT (Choi et al., 2019) which
uses bidirectional LSTMs to encode the context his-
tory for each turn, and also utilizes the behaviour
signals.

We train the baseline models using session-level
labels with supervised learning, then treat the sub-
dialogue (i.e., the first n turns of dialogue history)
as a whole dialogue session to estimate turn-level
user satisfaction during evaluation. We also add
an augmented variant of supervised learning: we
augment the training set with turn-level labels by
directly copying the session-level labels as the train-
ing signals of the sub-dialogues.

5 Experiment Results

5.1 Turn-Level Satisfaction Estimation
To investigate how well the model can estimate user
satisfaction in a timely manner, we first compare
the AUC of each model with different number of re-
maining turns n, where we predict the satisfaction
score n turns before the end of each dialogue (i.e.,
we predict sc1:T−n for a dialogue with T turns). In
this way, we can test whether our model is capa-
ble of estimating the user’s satisfaction tendency
before a dialogue finishes or fails.

Figure 3 shows the AUC of satisfaction estima-
tion with respect to remaining turns. Our proposed
method outperforms all other methods with all re-
maining turns. And the improvement of our pro-
posed method over the other methods increases as
the number of remaining turns grows. The reason is
that the distribution of incomplete dialogues differs
from the complete ones. Since the supervised learn-
ing model only learns to score the complete dia-
logues during the training period, it cannot properly
score the incomplete ones during the test period.
In contrast, since the reinforcement learning model
learns to make turn-level estimation during the
training time, its estimation performance is much
better than that of supervised learning model when
the number of remaining turns is large. Augment-
ing the training data with sub-dialogues benefits the
supervised learning process, but the performance
is still worse than the reinforcement learning.

Figure 3: AUC of satisfaction estimation with different
remaining turns.

To verify the effectiveness of each feature in
dialogue encoding, we conduct ablation study. We
remove one feature in each experiment, and the
model makes satisfaction estimation with access to
the complete dialogues in the test set.

The results of ablation study are shown in Table
1. The model with all the features have the best
performance, indicating that every feature is useful
for making satisfaction estimation.
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Setting AUC
Ours(rl) 0.859

w/o input channel 0.841
w/o turn index 0.831
w/o utterance 0.826
w/o frequence 0.791
w/o user intent 0.783

Table 1: AUC of satisfaction score.

5.2 Model Behaviour Analysis

To understand the behaviour of our proposed model,
we draw the distribution of satisfaction score pre-
dicted by our model up until each specific turn. As
shown in Figure 4, at the first few turns, the ab-
solute value of satisfaction score is usually small,
as users usually express their demands in the be-
ginning with no satisfaction tendency. When the
dialogue continues, the dialogues will exhibit more
clues about satisfaction or dissatisfaction. There-
fore, the predicted satisfaction scores go up (or
down) in the satisfying (or dissatisfying) dialogues
as depicted by orange (or blue) figures. This veri-
fies the ability of distinguishing the dissatisfying
dialogues from the satisfying ones by our method.

Figure 4: The distribution of satisfaction score esti-
mated by our model up until each specific turn.

6 Conclusion

We present a reinforcement learning method to
estimate turn-level satisfaction scores with only
session-level labels. We verify that our model can
effectively estimate satisfaction scores of customer
service dialogues. In the future work, we will ex-
plore algorithms for retraining the customer service
system with the help of user satisfaction estimator.
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A Implementation details

The dataset is split into training set (70%), vadi-
dation set (15%) and test set (15%). In all ex-
periments, the dimension of GRU output vector
is 32. Each MLP is a two-layer neural network,
whose hidden size is 32 and the activation function
is ReLU. We use Adam as the optimizer and the
learning rate is 0.0001. The batch size is 4, and the
discount rate for reinforcement learning is 1. The
extracted features for each dialogue turn is listed in
Table 2.

Feature Explanation
Turn index The index of the current turn in a di-

alogue session. Each turn consists of
a pair of user and system utterances.
The dimension is 10 (1, 2, ..., 9,≥10).

Frequence How many times the (exactly) same
question has been proposed by other
users in one month on the system.
We manually divide the scope of fre-
quence into 8 disjoint intervals, and
the dimension is therefore 8.

Input channel The channel for each turn that users in-
put through (e.g., keyboard and short-
cut button). The dimension is 6.

User intent The detected user intent for each turn
(e.g., making a complaint and claim-
ing a refund). The dimension is 10.

Table 2: Extracted features for each turn.

B Case Study

To better understand the turn-level satisfaction esti-
mation behaviour of our model, we conduct case
study. We sample two dialogue cases from the test
set and display their contents as well as the satis-
faction increment ∆sct estimated by our model
for each turn. It is worth noting that in this E-
commerce customer service, the system might re-
spond in rich text format, including tables, images
and links. In such case, the system response will
be represented by the title of the knowledge (e.g.,
Knowledge: Why I’m not eligible for the quick
refund?).
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turn user utterance system response user input channel ∆sct
1 12345678 (order number) How can I help you with this or-

der?
order selection -0.176

2 Why don’t I get the quick
refund?

Knowledge: Why I’m not eligi-
ble for the quick refund?

keyboard 0.250

3 Manual service. Please describe your question,
and I will help you.

keyboard -0.861

4 Manual service, please. I guess you might be interested
in our other services.

keyboard -0.598

Table 3: A dialogue in which the user is dissatisfied.

turn user utterance system response user input channel ∆sct
1 87654321 (order number) How can I help you with this or-

der?
order selection -0.176

2 What can I do if the seller
won’t refund me?

Knowledge: What can I do if the
seller won’t refund me?

knowledge recom-
mendation

0.375

3 After applying for a re-
fund, what if the seller
doesn’t react?

Knowledge: After applying for a
refund, what if the seller doesn’t
react?

knowledge recom-
mendation

0.522

4 The seller declined to re-
fund me.

Knowledge: What can I do if the
seller declines to refund me?

shortcut 0.365

Table 4: A dialogue in which the user is satisfied.

Table 3 shows a dialogue case where the user is
dissatisfied. At the first turn, the user selects the
order. Since it is common for users to select order
in the first turn, the absolute value of the estimated
satisfaction increment is small. This suggests that
our model finds no clear satisfaction or dissatisfac-
tion tendency of the user. In the second turn, the
user raises a question about the quick refund. Since
this is a common question and system responds
with relevant knowledge, our model predicts a pos-
itive satisfaction increment (i.e., the user is likely
to be more satisfied). However, in the third turn,
the user asks for manual service, which usually in-
dicates that the user is dissatisfied with the content
of the last response. Therefore, our model predicts
a negative satisfaction increment with large abso-
lute value, showing that the user might become
quite dissatisfied with the automatic system. At the
fourth turn, the user continues asking for manual
service, and therefore our model continues predict-
ing a negative satisfaction increment with large
absolute value.

Table 4 illustrates a dialogue case where the
user is satisfied. At the first turn, the user also
selects the order, and therefore the absolute value
of the predicted satisfaction increment is small. In

the following turns, the user consecutively clicks
the knowledge recommendation links and shortcut
buttons in the user interface. This is a good phe-
nomenon because the user can conveniently get the
desired information through simple clicks, without
the need for typing the questions through the key-
board. Hence, our model keeps making estimation
of positive satisfying increment, showing the belief
that the user is satisfied.

The above cases illustrate that our proposed
model can make reasonable turn-level satisfaction
estimation in various situations, verifying the effec-
tiveness and great interpretability of our reinforce-
ment learning method.
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Abstract

Keyword augmentation is a fundamental prob-
lem for sponsored search modeling and busi-
ness. Machine generated keywords can be rec-
ommended to advertisers for better campaign
discoverability as well as used as features for
sourcing and ranking models. Generating high-
quality keywords is difficult, especially for cold
campaigns with limited or even no historical
logs; and the industry trend of including multi-
ple products in a single ad campaign is making
the problem more challenging. In this paper,
we propose a keyword augmentation method
based on generative seq2seq model and trie-
based search mechanism, which is able to gen-
erate high-quality keywords for any products or
product lists. We conduct human annotations,
offline analysis, and online experiments to eval-
uate the performance of our method against
benchmarks in terms of augmented keyword
quality as well as lifted ad exposure. The ex-
periment results demonstrate that our method
is able to generate more valid keywords which
can serve as an efficient addition to advertiser
selected keywords.

1 Introduction

Sponsored search has proved to be an efficient and
inspiring way of connecting shoppers with inter-
esting products. Advertisers have the freedom to
provide a list of targeting keywords with associ-
ated bidding prices to the ad platform, so that their
ad campaigns can match to shopper queries either
lexically or semantically. The quantity and qual-
ity of targeting keywords are fundamental to the
performance of the ad campaign: insufficient key-
words can hardly get the campaigns with enough
exposure; and low-quality ones will match shopper
queries with irrelevant ads, leading to low conver-
sion and damages to customer experiences.

Efficient and optimal keyword selection is chal-
lenging and time consuming because it requires

deep understanding of the ad industry as well as
the sponsored search platform. Furthermore, an ad
campaign used to be designed for a single product
traditionally, but ads with richer information start
to appear in the recent years. Nowadays, an ad cam-
paign can contain multiple products, brand stores,
or even rich media contents. Consequently, the
keyword selection task becomes even more crucial
and challenging for advertisers campaign creation
and management.

In this paper, we present an end-to-end machine
learning solution to generate keywords for ad cam-
paigns. The method applies to single-product cam-
paigns as well as campaigns with any number of
products. It only relies on product information like
product titles, hence efficient on newly created cam-
paigns without any performance logs in the past.
We conduct offline and online experiments on the
proposed method and observe significant improve-
ments over traditional statistical methods in terms
of keyword quality. Specifically, we highlight our
contributions as the following:

• We propose an end-to-end solution for key-
word generation. It can be applied to recom-
mendation of high-quality keywords for ad-
vertisers as well as semantic augmentation for
better ad exposure.

• The keyword generation method relies on
product metadata but not historical perfor-
mance data of ad. Therefore, the method ap-
plies to tail or newly-created campaigns.

• Our method is able to handle single-product-
campaign as well as multi-product-campaign
by leveraging semantic meanings of each
product in the latent space.

• The quality and superiority of the generated
keywords are validated by human audits, of-
fline analysis as well as online experiments.
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2 Related Work

Considerable research work has been devoted to
keyword augmentation techniques because of its
important applications in information retrieval, in-
dexing, and digital library management. The ma-
jority of existing work focuses on processing docu-
ments with statistical information including term
co-occurrence and frequency (Campos et al., 2020).
In particular, Rose et al. (2010) proposed RAKE
to split the document into candidate phrases by
word delimiters and calculate their scores with co-
occurrence counts. Ravi et al. (2010) first applied
statistical machine translation model for keyword
candidate generation and ranking. With rapid de-
velopment of deep learning models, neural ma-
chine translation has surpassed statistical transla-
tion in many benchmarks, where recurrent neural
networks (RNNs) and gating mechanisms are pop-
ular building blocks to model sequence dependen-
cies and alignments (Hochreiter and Schmidhuber,
1997; Cho et al., 2014). However, extracting high-
quality and diverse keywords from short document
like ad campaigns remains a difficult problem due
to the lack of context.

Query expansion for improved product or ad dis-
covery, as an application of keyword augmentation,
is crucial to e-commerce search engines and rec-
ommender systems. He et al. (2016) applies LSTM
architecture to rewriting query into web document
index space. However, the long tail distribution of
the query space hinders the deployment of com-
plicated generative models. It is well known that
infrequent queries account for a large portion of the
e-commerce daily queries. In Lian et al. (2019), a
lightweight neural network for infrequent queries is
trained, incurring even more engineering burdens
for deployment. It also proposed the method of
using trie-based search to normalize the decoding
in the constrained semantic space, which is further
investigated in Chen et al. (2020).

Expanding advertiser bidding keywords is an-
other growing research area. Qiao et al. (2017)
applies keyword clustering and topic modeling to
retrieve similar keywords and Zhou et al. (2019)
conducts keywords expansion in the constrained
domains through neural generative models. In ad-
dition, Zhang et al. (2014) formulates the keyword
recommendation problem as a mixed integer op-
timization problem, where they collect candidate
keywords whose relevance score to the ad group ex-
ceed a threshold and handle the keyword selection

problem by maximizing revenue. Such methods
rely on the quality of advertiser bidding keywords.
Campaigns with sub-optimal or misused keywords
may suffer significantly.

3 Methods

In this section, we present our products-to-keyword
framework and algorithm for campaign keyword
augmentation. The framework is compatible with
any seq2seq components with encoders and de-
coders. Given an ad campaign C including a set of
products {p1, p2, . . . , pn}, our goal is to generate
a list of relevant keywords {k1, k2, . . . , km}. We
will describe how we generate keywords for each
product first and later generalize to ad campaigns
with multiple products.

3.1 Dataset and Preprocessing

We choose to use organic search click data for
model training, which includes the pairs of queries
and clicked products in search log. Compared to
sponsored search data, it can guide the model to
generate more keywords than existing ads system
as shown in Lian et al. (2019). We lowercase
shopper queries and product titles, and then apply
pretrained T5 tokenizer (Raffel et al., 2020) for
tokenization. Note that the vocabulary space for
shopper queries and product titles are ever-growing,
but the subword encoding space is stable. There-
fore, subword tokenization is an efficient method
to handle the out-of-vocabulary issue which hurts
the fluency of generated queries.

3.2 Modeling

In the following, we use X = [x1, x2, ...xL] to
denote tokenized product title whose length is L.
Let θ be the trainable model parameters, and Q =
[q0, q1, q2, . . . , qS ] as the padded tokenized target
query, where q0 is the special start token and qS the
special end token. For training, we feed the model
with the product title X and the first s query token
Q<s = [q0, q1, . . . , qs−1], to predict the next query
token qs, where 1 ≤ s ≤ S.

We adopt the seq2seq model training with
teacher forcing, where multi-layer Gated Recur-
rent Units (GRU) are used in the encoder and the
decoder (Cho et al., 2014). The encoder transforms
the tokenized sequence into the latent space with
an embedding layer and a GRU encoder. Then
the decoder transforms the latent vector back to a
predicted distribution over token vocabulary given
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all previously decoded tokens as inputs. The to-
ken embedding layer for the encoder and the de-
coder are shared. We use cross entropy loss to
maximize the likelihood of the model generating
the correct next token for each training data point
(X,Q<s, qs). The objective function is written as

L(θ) = −
S∑

s=1

log p(qs|X,Q<s; θ))). (1)

3.3 Keyword Generation
Intuitively, the desired generated keywords should
be diverse to accommodate different aspects of the
products, and relevant to promote the products to
right shoppers. In the model inference phase, the
encoding is the same as in training, while in decod-
ing process beam search is usually used for larger
search space. However, standard beam search will
generate similar sequences with minimal diversity.
To resolve this issue, we build the trie TQ on all to-
kenized queries in our training dataset to normalize
the decoding. Specifically in the i-th decoding step,
the decoder outputs the probability of p(qs|X,Q<s

over the vocabulary. Then we extract all children
nodes of Q<s in the trie and keep those with high-
est probability in the candidate beam for future
decoding. In this way, it is guaranteed that the gen-
erated sequence exists in the canonical query space
as a path traversal in the trie ending with the special
end token. We define such queries as valid queries
since they reflect the word selection of shoppers.
The prebuilt Trie and the inference workflow for
one product title is illustrated in Figure 1 and 2
respectively.

Figure 1: An illustration of the Trie built on queries

Now we discuss the handling of multiple prod-
ucts within one campaign. A naive solution is to
generate keywords for each product, and then ag-
gregate all generated keywords. Alternatively, we
propose to encode each product title into the la-
tent space, and apply the decoder to the averaged
title encodings. These two methods are denoted as
Generation by Keyword Aggregation (G-KA) and
Generation by Hidden State Mixing (G-HSM).

Figure 2: An illustration of the keyword generation pro-
cess. Tokens in red color with strikethrough line are re-
moved by beam search, and “men adjustable hoodie” is
pruned by the query trie. Details of the encoder/decoder
are omitted.

4 Experiments

In this section, we compare the performance of the
proposed methods with empirical study. In Section
4.1, we explain how we collect our experimental
data including training, validation, and testing; then
we introduce benchmarking methods and param-
eter setup in Section 4.2; evaluation metrics are
explained in Section 4.3; and eventually in Section
4.4, we illustrate experimental results.

4.1 Data Preparation
We collect query-product pairs in search click logs
from September 2020 to March 2021. To reduce
the noise, we apply a series of filtering: 1) remove
stop-words in queries and product titles; 2) remove
tokens with non-alphanumeric characters; 3) re-
move pairs with empty query or title; 4) remove
query-product pairs with less than 1024 clicks.

In total, we collect 6.2M pairs of queries and
products, where more than 95% of the queries have
less than or equal to 6 tokens. We split them into
training set (5.2M) and validation set (1M). To
prevent frequent queries dominating the result and
encourage diversity, we normalize the weight of all
pairs to the same for training stage.

For testing, we use cold campaigns to benchmark
the keyword augmentation model performance,
which are campaigns with less than 100 impres-
sions from January 2021 to March 2021. Since
we use organic search log for training, there is no
overlap between training and testing data.

4.2 Benchmarks and Parameters Setup
The benchmark methods include heuristics based
on search log as well as trending keyword genera-
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tion methods. We use ADV to denote targeting key-
words provided by advertisers, and OS to denote
keywords generated by organic search logs heuris-
tically. More specifically, we extract those queries
which lead to the click of the campaign products
in organic search, and collect those distinct queries
as keywords for the campaign. We also include
RAKE in our comparison which is a popular open-
sourced keyword extraction algorithm based on
lexical co-occurrence statistics. To achieve better
extraction performance, we run RAKE on the con-
catenation of all product titles in the campaign, and
keep the keywords with length between 2 and 6.
In addition, we compare the two variants of our
proposed solutions, G-KA and G-HSM:

• G-KA: We select top 8 generated queries with
lowest perplexity from each product.

• G-HSM: We select top 3 products in terms
of sales in each campaign and averaged their
latent encodings for decoding. We select top
8 generated queries for each campaign too.

For both variants, the encoder and decoders are
6-layer GRUs with 256 hidden dimensions, and the
beam search size is set as 20. We choose the model
with the lowest loss on the validation dataset.

4.3 Evaluation Method
We sample 1500 keyword-campaign pairs from
each method for human annotations. Each cam-
paign will be associated with a landing page URL
including all targeted products. Three different au-
ditors are assigned to label each pair as exactly rele-
vant, partially relevant, and irrelevant. We take the
majority decision as the final label of each pair. For
simplicity, we merge exactly relevant and partially
relevant labels, and report the ratio of relevance for
different methods. To evaluate whether the gener-
ated keywords are able to effectively promote ad
exposures, we calculate the total traffics incurred
by generated keywords as a metric, and report the
median total traffics as the Exposure column of
Table 1. We also report the median value of the
number of generated keywords for each method
as the Count column, and use Exposure divided
by Count to evaluate the traffic incurred by each
individual keyword.

In addition, we conduct online A/B testing by
enriching the campaign keywords with generated
results from G-KA for ad sourcing and compar-
ing with the existing system in terms of total ad

impressions. All other components in the system,
including relevance and ranking logics, are consis-
tent for control and treatment.

4.4 Results and Analysis

Table 1 illustrates the performance of different
methods in terms of the number of generated key-
words, relevance ratio and exposure. For the testing
campaigns without many impressions, advertisers
bid on a few relevant keywords which lead to poor
ad exposures. Such impression shortage issue is
one of the motivations for our work, and we use
this method as the baseline.

RAKE is able to extract relevant keywords from
the product titles, but their exposure is quite low.
Such results indicate vocabulary gap exists a be-
tween product titles and shopper queries. Organic
search connects the products to the relevant queries
but the amount of queries are much fewer than the
baseline. Intuitively, this is because advertisers are
aware of historical queries related to their products.

G-KA and G-HSM provide a moderate number
of keywords with ads exposure much larger than
baseline (+1665% and +2194%), though the rele-
vance rate are lower than standard baseline. The
boost of Exposure/Count also demonstrates the ef-
fectiveness of the proposed keyword generation
methods with seq2seq learning framework and trie-
based decoding. In addition, the G-HSM shows
superiority over G-KA in terms of keyword rele-
vancy and validity.

In our online experiment, our model increases ad
impressions by 5.3%, which demonstrates the con-
tribution from the proposed keyword augmentation
methods. Note that relevance and ranking logics
are the same for both control and treatment groups.
Only augmented keywords not covered by existing
advertiser selected keywords with good quality are
able to yield additional ad exposures.

5 Conclusion and Future Work

In this paper, we formulate the sponsored search
keyword augmentation task as a seq2seq learning
problem in the constrained space. We present a
general framework which incorporates seq2seq ar-
chitecture and trie-based pruning for query genera-
tion from product titles. We compare the proposed
method with baselines and other existing methods,
and show that our method is able to generate rele-
vant keywords which bring up the campaign expo-
sure significantly. In the future, we would like to
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Method Count Relevance Exposure Exposure/Count
ADV 12 97.8% baseline baseline
RAKE 9 93.1% -71.66% -62.22%
OS 2 98.1% +192.4% +1654%
G-KA 19 78.1% +1665% +1015%
G-HSM 8 88.3% +2194% +3341%

Table 1: Performance comparison.

explore more structured decoding strategies com-
bined with trie to improve the generation quality,
and take more factors into account when gener-
ating keywords including long-tail keywords and
keyword competitiveness.
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Abstract

The growing popularity of Virtual Assistants
poses new challenges for Entity Resolution,
the task of linking mentions in text to their
referent entities in a knowledge base. Specif-
ically, in the shopping domain, customers tend
to mention the entities implicitly (e.g., “or-
ganic milk”) rather than use the entity names
explicitly, leading to a large number of candi-
date products. Meanwhile, for the same query,
different customers may expect different re-
sults. For example, with “add milk to my cart”,
a customer may refer to a certain product from
his/her favorite brand, while some customers
may want to re-order products they regularly
purchase. Moreover, new customers may lack
persistent shopping history, which requires us
to enrich the connections between customers
through products and their attributes. To ad-
dress these issues, we propose a new frame-
work that leverages personalized features to
improve the accuracy of product ranking. We
first build a cross-source heterogeneous knowl-
edge graph from customer purchase history
and product knowledge graph to jointly learn
customer and product embeddings. After that,
we incorporate product, customer, and history
representations into a neural reranking model
to predict which candidate is most likely to be
purchased by a specific customer. Experiment
results show that our model substantially im-
proves the accuracy of the top ranked candi-
dates by 24.6% compared to the state-of-the-
art product search model.

1 Introduction

Given an entity mention as a query, the goal of
entity resolution (or entity linking) (Ji and Grish-
man, 2011) is to link the mention to its correspond-
ing entry in a target knowledge base (KB). In an
academic shared task setting, an entity mention

∗* This work was done when the first author was on an
internship at Amazon Alexa AI.

is usually a name string, which can be a person,
organization or geo-political entity in a news con-
text, and the KB is usually a Wikipedia dump with
rich structured properties and unstructured text de-
scriptions. State-of-the-art entity resolution meth-
ods can achieve higher than 90% accuracy in such
settings (Ji and Grishman, 2011; Ji et al., 2015;
Agarwal and Bikel, 2020), and they have been suc-
cessfully applied in hundreds of languages (Pan
et al., 2017) and various domains such as disaster
management (Zhang et al., 2018a) and scientific
discovery (Zheng et al., 2014; Wang et al., 2015).
Therefore, we tend to think entity resolution is a
solved problem in academia. However, in indus-
try, with the rise in popularity of Virtual Assistants
(VAs) in recent years, an increasing number of cus-
tomers now rely on VAs to perform daily tasks
involving entities, including shopping, playing mu-
sic or movies, calling a person, booking a flight,
and managing schedules. The scale and complex-
ity of industrial applications presents the following
unique new challenges.

Unpopular majority. There is a massive num-
ber of new entities emerging every day. The entity
resolver may know very little about them since
very few users interact with them. Handling these
tail entities effectively requires the use of property
linkages between entities and shared user interests.
Similarly, there might be many new users with lim-
ited interaction history, and we need to infer their
interests from other users who have interacted with
similar entities.

Large number of ambiguous variants. When
interacting with VAs, users tend to use short and
less informative utterances with the expectation
that the VAs can intelligently infer their actual in-
tentions. This raises the need for personalization
when resolving the entities. In the shopping do-
main, this problem is even more challenging as
customers typically use implicit entity mentions
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Figure 1: An illustration of the cross-source heterogeneous customer-product graph.

(e.g., “organic milk”) instead of explicit names
(e.g., “Horizon Organic Shelf-Stable 1% Lowfat
Milk”) which usually leads to a large number of
candidates due to the ambiguity. However, with
VAs’ voice user interface (VUI), the number of
products that can be presented to the customers is
very limited, if not only one. In this work, we focus
on the problem of personalized entity resolution in
the shopping domain. Given a query and a list of
retrieved candidates, we aim to return the product
that is most likely to be purchased by a customer.

Beyond ambiguity. In the traditional news en-
tity linking setting, each entity in the KB refers to
a unique world object. In contrast, in e-commerce,
the same product can have multiple variants. For
example, a customer may like to stick to a tooth-
paste product of a certain brand and flavor, but
choose different sizes (thus different entities) in
each purchase. These entities in the target KB refer
to the same product but have different properties
(in this case, size). Therefore it is important to
construct fine-grained knowledge graphs to profile
products and capture the implicit connections be-
tween customers based on the properties of their
purchased products.

We make three assumptions: (H1) customers
tend to purchase products they have purchased in
the past; (H2) customers tend to purchase prod-
ucts that share some properties; (H3) customers
who purchased products with similar properties
share similar interests. Based on these assumptions,
we propose to represent customers and products
as low-dimensional vectors learned from a graph
of customers and products. Unlike social media
networks with rich interactions among users, the
customers of most shopping services are isolated,

which prevents us from learning customer embed-
dings effectively. To address this issue, we propose
to build a cross-source heterogeneous knowledge
graph as Figure 1 depicts to indirectly establish
rich connections among customers from a) users’
purchase history (customer-product graph) and b) a
product knowledge graph, and further jointly learn
the representations of nodes in this graph using a
Graph Neural Network (GNN)-based method. In
Figure 1(c), for instance, we can build connections
between Customer 1 and Customer 2 because their
purchased products share the same ingredient at-
tribute, and thus possibly recommend Product 2
to Customer 1 even though it does not appear in
his/her purchase history. In addition to static cus-
tomer embeddings, we further propose an attentive
model to dynamically generate a history represen-
tation for each user based on the current query.
Finally, the model predicts how likely a candidate
will be purchased using entity, customer, and his-
tory representations.

Experiments on real purchase records collected
from an online shopping service show that our
method significantly improves the purchase rate
of the top ranked products.

2 Methodology

Given a query q from a customer c, and a list of
candidate products P = {p1, ..., pL}, where L is
the number of candidates, our goal is to predict
the product that the customer will purchase based
on their purchase history and the product knowl-
edge graph. Specifically, we use purchase records
{r1, ..., rH} where H is the number of historical
records. As Figure 2 illustrates, we jointly learn
customer and product embeddings from a cross-

39



source customer-product graph using GNN. To
perform personalized ranking, we incorporate the
learned customer embedding and history represen-
tation as additional features when calculating the
confidence score of each candidate. We then rank
all candidates by confidence score and return the
top one.

History Encoder

Candidate
Encoder

Query CandidateCustomer

Query Embedding

Query Encoder

History
Representation

Candidate
Representation

Scorer

Customer
Purchase History

Customer
Embedding

Candidate Score

Figure 2: An illustration of our framework.

2.1 Candidate Retrieval

We first retrieve candidate products for each query
using QUARTS (Nigam et al., 2019; Nguyen et al.,
2020), which is an end-to-end neural model for
product search. QUARTS has three major compo-
nents: (1) an LSTM-based (long short-term mem-
ory) classifier adapted from the entailment model
in (Rocktäschel et al., 2016) to predict whether a
product-query pair is matched; (2) a variational
encoder-decoder (VED) query generator that gener-
ates difficult negative examples to tackle the class
imbalance issue in the training data as a search
engine typically returns much more matched query-
item examples than mismatched ones, and (3) a
state combiner that switches between query repre-
sentations computed by the classifier and generator.
During training, the VED generator takes as input
a matched product-query pair (I,Q) and gener-
ates a mismatched query Qgen which is lexically
similar to Q. The state combiner then merges H ,
the representation computed by the classifier, and
Hgen, the representation computed by the gener-
ator, as sHgen + (1 − s)H , where s is a binary
value that controls which query to use and whether
the gradients are back-propagated to the classifier
or generator.

2.2 Joint Customer and Product Embedding
The next step is to obtain the representations of
customers and products. Customer embeddings are
usually learned from user-generated texts (Preoţiuc-
Pietro et al., 2015; Yu et al., 2016; Ribeiro et al.,
2018) or social relations (Perozzi et al., 2014a;
Grover and Leskovec, 2016; Zhang et al., 2018b),
neither of which are available in the shopping
dataset we use. Alternatively, we establish indi-
rect connections among customers through their
purchased products under hypothesis H3, and form
a customer-product graph as shown in Figure 1(a).
This graph only contains a single type of relation
(i.e., purchase) and ignores product attributes. As
a result, it tends to be sparse and less effective for
customer representation learning.

In order to learn more informative embeddings,
we propose to incorporate richer information from
a product knowledge graph (Figure 1(b)) where
products are not only connected to different at-
tribute nodes (e.g., brands, flavors), but they
may also be associated with textual features (e.g.,
title) and boolean features (e.g., isOrganic, en-
coded as a boolean vector).

By merging the product knowledge graph and
the customer-product graph, we obtain a more com-
prehensive graph (Figure 1(c)) of higher connectiv-
ity. For example, in the original customer-product
graph, Customer 1 and Customer 2 are discon-
nected because they do not share any purchase. In
the new graph, they have an indirect connection
through Product 2 and Product 3, which share
the same flavor and ingredient.

From this heterogeneous graph, we jointly learn
customer and product representations using a
two-layer Relational Graph Convolutional Net-
work (Schlichtkrull et al., 2018). The embedding
of each node is updated as:

hl+1
i = ReLU

(
W l

0h
l
i +
∑

r∈R

∑

j∈Nr
i

1

|N r
i |
W l

rh
l
j

)
,

where hl
i is the representation of node i at the l-th

layer, N r
i is the set of neighbor indices of node i un-

der relation r ∈ R, and W l
0 and W l

r are learnable
weight matrices.

In order to capture textual features (i.e., prod-
uct titles, descriptions, and bullet1), we use a pre-
trained RoBERTa (Liu et al., 2019) encoder to gen-
erate a fix-sized representation for each product.

1Bullet points that outline the main features of a product.
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Specifically, we concatenate textual features us-
ing a special separator token [SEP], obtain the
RoBERTa representation for each token, and then
use the averaged embedding to represent the whole
sequence. To reduce the runtime, we calculate cus-
tomer and product embeddings offline and cache
the results.

2.3 Candidate Representation
In addition to the product embedding, we further
incorporate the following features to enrich the
representation of each candidate.

Rank: the order of the candidate returned by the
product retrieval system.

Relative Price: how much a product’s absolute
price is higher or lower than the average price of all
retrieved candidates as price is an important factor
that affects purchasing decision.

Previously Purchased: a binary flag indicating
whether a candidate has been purchased by the
customer or not.

Textual Feature: we use RoBERTa to encode
each candidate’s textual features (i.e., title, bullet,
description). This RoBERTa encoder is fine-tuned
during training.

We concatenate these features with the product
embedding and project the vector into a lower di-
mensional space using a feed forward network.

2.4 History Representation
Although customer embeddings can encode pur-
chase history information, they are static and may
not effectively provide the most relevant informa-
tion for each specific query. For example, if the
query is “bookshelf”, the furniture-related purchase
records are more likely to help the model predict
the product that the customer will purchase, while
if the query is “sulfate-free shampoo”, the purchase
records of beauty products are more relevant. To
tackle this issue, we propose to generate a query-
aware history representation v based on the current
query q from all purchase record representations
{v1, ...,vH} of the customer.

We first represent each purchase record as the
concatenation of the product embedding, prod-
uct price, and purchase timestamp. The query-
aware history representation is then calculated as
a weighted sum of the customer’s purchase record
representations using an attention mechanism as
follows.

ei = v> tanh
(
W qq +W vvi

)
,

ai = Softmax(ei) =
exp (ei)∑M
k exp (ek)

,

v =
H∑

i

aivi,

where v>, W q, and W v are learnable weights.

2.5 Candidate Ranking

We adopt a feed forward neural network that takes
in the candidate, customer, and history represen-
tations, and returns a confidence score ŷi which
indicates how likely a candidate will be purchased.
The confidence score is scaled to (0, 1) using a Sig-
moid function. During training, we optimize the
model by minimizing the following binary cross
entropy loss function.

L = − 1

N

N∑

i=1

yi log ŷi + (1− yi) log (1− ŷi),

where N denotes the total number of candidates,
and yi ∈ {0, 1} is the true label. In the inference
phase, we calculate confidence scores for all candi-
dates for each session and return the one with the
highest score.

3 Experiment

3.1 Data

Product Knowledge Graph. In our experiment,
we use a knowledge graph of products in five cat-
egories (i.e., grocery, beauty, luxury beauty, baby,
and health care), which contains 24,287,337 unique
product entities. As Figure 1(b) depicts, the prod-
ucts in this knowledge graph are connected through
attribute nodes, including brands, scents, flavors,
and ingredients. This knowledge graph also pro-
vides rich attributes for each product node. We
use two types of attributes in this work, textual fea-
tures (i.e., title, description, and bullet) and binary
features (e.g., isOrganic, isNatural).
Evalution Dataset. We randomly collect 1 million
users’ purchase sessions from November 2018 to
October 2019 on an online shopping service. Each
session contains a query, an obfuscated identifier,
a timestamp, and a list of candidate products re-
trieved using QUARTS where only one product is
purchased.

We split the sessions before and after Septem-
ber 1, 2019 into two subsets. The first subset only
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serves as the purchase history and is used to con-
struct the customer-product graph. From the sec-
ond subset, we randomly sample 22,000 customers
with at least one purchase record in the first subset
and take their last purchase sessions for training or
evaluation. Specifically, we use 20,000 sessions for
training, 1,000 for validation, and 1,000 for test. If
a customer has multiple purchase sessions in the
second subset, other sessions before the last one
are also considered as purchase history when we
generate history representations, while they are ex-
cluded from the customer-product graph, which is
constructed from the first subset.

3.2 Experimental Setup
We optimize our model with AdamW (Loshchilov
and Hutter, 2018) for 10 epochs with a learning
rate of 1e-5 for the RoBERTa encoder, a learning
rate of 1e-4 for other parameters, weight decay of
1e-3, a warmup rate of 10%, and a batch size of
100.

To encode textual features, we use the RoBERTa
base model2 with an output dropout rate of 0.5. To
represent query words, we use 100-dimensional
GloVe embeddings (Pennington et al., 2014) pre-
trained on Wikipedia and Gigaword3. We set the
size of pre-trained customer and product embed-
dings to 100 and freeze them during training.

We use separate fully connected layers to project
candidate and history representations into 100-
dimensional feature vectors before concatenating
them for ranking. We use a two-layer feed forward
neural network with a hidden layer size of 50 as
the ranker and apply a dropout layer with a dropout
rate of 0.5 to its input.

3.3 Quantitative Analysis
We compare our model to the state-of-the-art prod-
uct search model QUARTS as the baseline. Be-
cause our target usage scenarios are VAs where
only one result will be returned to the user, we use
accuracy as our evaluation metric. We implement
the following baseline ranking methods.
Purchased: We prioritize products previously pur-
chased by the customer. If multiple candidates are
previously purchased, we return the one ranked
highest by QUARTS.
ComplEx: Customer and product embeddings are
learned using ComplEx (Trouillon et al., 2016), a

2https://huggingface.co/transformers/
pretrained_models.html

3https://nlp.stanford.edu/projects/glove/

widely used knowledge embedding model that rep-
resents nodes in a knowledge graph as complex
vectors and is able to capture antisymmetric rela-
tions using efficient dot product.

In Table 1, we show the relative gains compared
to the baseline model QUARTS. With personalized
features, our method effectively improves accuracy
on both development and test sets.

We also conduct ablation studies by removing
the following features and show results in Table 2.
Ranking: In this setting, our model ignores the
original retrieval ranking returned by QUARTS.
Personalized Features: We remove personalized
features (e.g., customer embedding, whether a prod-
uct is previously purchased) in this setting.
Product Embedding: We remove pre-trained
product embedding but still use textual features
and binary features to represent products.
Joint Embedding: Customer and product embed-
dings are not jointly learned from the merged graph.
Alternatively, customer embeddings are learned
from the customer-product graph, and product em-
beddings are learned from the product knowledge
graph.

In Table 2, from the results of Methods 6 and
7, we can see that removing either product or cus-
tomer embedding degrades the performance of the
model. The result of Method 8 shows that em-
beddings jointly learned from the merged cross-
source graph achieve better performance on our
downstream task. We also observe that the ranking
returned by the product search system is still an
important feature as Method 6 shows.

Method Dev Accuracy Test Accuracy
1 QUARTS 0.0 0.0
2 Purchased +10.5 +8.5
3 ComplEx +25.7 +16.1
4 Our Model +32.9 +24.6

Table 1: Relative gains compared to QUARTS. (%)

Method Dev Acc Test Acc
4 Our Model +32.9 +24.6
5 w/o Ranking -17.1 -20.4
6 w/o Personalized Features -10.5 -18.0
7 w/o Product Embedding +25.2 +19.0
8 w/o Joint Embedding +28.1 +20.4

Table 2: Ablation study. (%, relative gains compared to
QUARTS.)
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Query Candidates History
#1 vitamin c
serum

* [3] instanatural vitamin c serum with hyaluronic acid
& vit e - natural & organic anti wrinkle ...

* foundation makeup brush flat top kabuki for face -
perfect for blending liquid, cream or flawless powder

* [1] truskin vitamin c serum for face, topical facial
serum with hyaluronic acid, vitamin e, 1 fl oz

* women’s rogaine 5% minoxidil foam for hair thin-
ning and loss, topical treatment for women’s hair ...

* [2] vitamin c serum for face - anti aging facial serum * vita liberata advanced organics fabulous self-tanning
gradual lotion with marula oil, 6.76 fl oz

* [4] vitamin c serum plus 2% retinol, 3.5% niaci-
namide, 5% hyaluronic acid, 2% salicylic acid ...

* instanatural vitamin c serum with hyaluronic acid &
vit e - natural & organic anti wrinkle reducer ...

Our model promotes candidate 3 as this product was purchased by the customer.
#2 toothpaste * [2] crest 3d white whitening toothpaste, radiant mint,

3.5oz, twin pack
* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [1] crest + scope complete whitening toothpaste,
minty fresh, 5.4 oz, pack of 3

* skindinavia the makeup of countrol finishing spray,
8 fluid ounce

* [3] pronamel gentle whitening enamel toothpaste for
sensitive teeth, alpine breeze-4 ounces (pack of 3)

* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [4] colgate cavity protection toothpaste with fluoride
- 6 ounce (pack of 6)

* nivea shea daily mointure body lotion - 48 hour
moisture for dry skin - 16.9 fl. oz. pump bottle, ...

Although the previously purchased item is no longer available, with entity embedding learned from the
cross-source graph, our model successfully promotes the most similar product.

#3 sun dried
tomatoes

* [3] 365 everyday value, organic sundried tomatoes
in extra virgin olive oil, 8.5 oz

* #1 usda organic aloe vera gel - no preservatives, no
alcohol - from freshly cut usa grown 100% pure ...

* [1] 35 oz bella sun luci sun dried tomatoes julienne
cut in olive oil (original version)

* organic aloe vera gel with 100% pure aloe from
freshly cut aloe plant, not powder - no xanthan ...

* [2] julienne sun-dried tomatoes - 16oz bag (kosher) * wicked joe organic coffee wicked italian ground
* [4] organic sun-dried tomatoes with sea salt, 8
ounces - salted, non-gmo, kosher, raw, vegan, ...

*thayers alcohol-free original witch hazel facial toner
with aloe vera formula, clear, 12oz

Our model promotes an organic product as the customer probably prefers organic products based on the
shopping records.

Table 3: Positive examples in the data set. Candidates are listed in the order returned by our method. The number
before each candidate is the original ranking returned by QUARTS. In the candidate column, we highlight the
purchased products . In the history column, we highlight related records .

3.4 Qualitative Analysis

In Table 3 and Table 4, we show some positive and
negative examples in the data set. From Table 3
we can see that multiple sources of evidence in
the constructed heterogeneous knowledge graphs
are complimentary and the combination of them
successfully promotes various entities which match
customers’ interests.

Table 4 shows examples where our model fails to
return the correct item. In many cases, such as Ex-
ample #4, the purchased product and the top ranked
one only differ in packaging size. We also observe
that sometimes customers may not repurchase a
product even if it is in the candidate list.

To better understand the remaining errors, we
randomly sample 100 examples where our model
fails to predict the purchased items. As Figure 3
illustrates, we analyze these examples and classify
the possible reasons into the following categories.
Different size. The predicted product and ground
truth are the same product but differ in size. For
example, while our model predicts “Lipton Herbal

Similar Description
12%

Incomplete Description
4%

Attribute
5%

Brand
2%

Purchased
3%

Different Size
48%

Other
27%

Figure 3: Distribution of remaining Errors.

Tea Bags, Peach Mango, 20 ct”, the customer pur-
chases another item “Lipton Tea Herbal Peach
Mango (pack of 2)”, which is actually the same
product in 2 pack.
Purchased. The customer purchased the predicted
product before but decides not to repurchase it.
This usually happens in categories (e.g., toothpaste)
where customers are more willing to try new prod-
ucts. Additionally, customers may be less likely
to repurchase a product in some categories such as
books and electronics.
Uninformative title. The purchased product has
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Query Candidates History
#4 wasabi
almonds

* [8] blue diamond almonds, bold wasabi & soy sauce,
16 ounce (pack of 1)

* epsoak epsom salt 19 lb. bulk bag magnesium sulfate
usp

* [2] blue diamond almonds variety pack (1.5 ounce
bags) (20 pack)

* blue diamond almonds, bold wasabi & soy sauce, 16
ounce (pack of 1)

* [1] blue diamond almonds bold wasabi & soy sauce
almonds, 25 ounce (pack of 1)

* signature trail mix, peanuts, m & m candies, raisins,
almonds & cashews, 4 lb

* [6] blue diamond almonds, bold wasabi & soy, 1.5
ounce (pack of 12)

* amazon brand - happy belly nuts, chocolate & dried
fruit trail mix, 48 ounce

Our model promotes candidate 8 which is previously purchased, whereas the customer selects another size.
#5 cacao
powder

* [5] anthony’s organic cocoa powder, 2 lb, batch
tested and verified gluten free & non gmo

* anthony’s organic cocoa powder, 2 lb, batch tested
and verified gluten free & non gmo

* [1] viva naturals #1 best selling certified organic
cacao powder from superior criollo beans, 1 lb bag

* vör all natural keto nut butter spread (10oz) | only
two ingredients | no sugar, no salt | vegan ...

* [2] navitas organics cacao powder, 16oz. bag - or-
ganic, non-gmo, fair trade, gluten-free

* anthony’s organic cocoa powder, 2 lb, batch tested
and verified gluten free & non gmo

* [3] terrasoul superfoods raw organic cacao powder,
1 lb - raw | keto | vegan

* nutiva organic, neutral tasting, steam refined coconut
oil from non-gmo, sustainably farmed coconuts ...

* [4] viva naturals certified organic cacao powder (2lb)
for smoothie, coffee and drink mixes
Our model promote “Anthony’s Organic Cocoa Powder” as it has been purchased twice by the customer.

Table 4: Negative examples in the data set.

an uninformative title and is therefore not pro-
moted. For example, when the customer searches
for “masaman curry paste maesri”, our model pro-
motes “Maesri Thai Masaman Curry - 4 oz (pack
of 4)”, while the customer purchases “6 Can (4oz.
Each) of Thai Green Red Yellow Curry Pastes Set”,
which is also a Maesri product, but this key infor-
mation is missing from its title.
Similar title. The title of the predicted product is
similar to the titles of some purchased products in
the customer’s history in a less important aspect.
For example, the model promotes a “moisturizing”
shave gel because the customer has purchased a
“moisturizing” body wash, whereas the customer
decides to purchase a product for “sensitive skin”.
Brand. The customer has purchased one or more
products of the same brand.
Attribute. The customer has purchased one or
more products with the same attribute (e.g., organic,
keto, kosher).
Other. The model may fail to predict the pur-
chased item in other uncategorized cases. For ex-
ample, when a customer searches for “nail clippers”
but has purchased only food in the past, the model
is unlikely to utilize the history records to improve
the ranking.

3.5 Remaining Challenges

Although our framework can improve the accu-
racy of predicting products that will be purchased,
there are still some remaining challenges. We pro-

pose the following potential solutions for further
improvement.
Incorporating more informative features. Some
important features that affect purchase decisions
are still missing in our framework, such as the aver-
age rating, customer review comments, and number
of ratings. For example, we may promote the high-
est rated product for a customer who usually buys
products with high ratings.
Building a more comprehensive cross-source
customer-product graph. In this work, we merge
the customer-product graph and product knowledge
graph into a single graph, which has been proved
to produce better embeddings for our target task. A
natural extension is to include records from more
sources, such as music or video playing history,
and multimedia features such as product pictures.
Modeling the interactions among purchase be-
haviors. Our current attention-based method that
generates history representations is “flat” and ig-
nores the relationship among purchase behaviors.
For example, for a customer who previously pur-
chases a pod coffee maker, we should promote
coffee capsules in the candidates over coffee beans
or grounds.
Incorporating cohort features. When dealing
with customers with limited or even no previous
shopping records, a step forward is to cluster cus-
tomers and produce cohort-based representations.
In this way, customers can be better represented
collectively through other similar customers, espe-
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cially when we combine their interaction history
from other domains and build a more comprehen-
sive graph as suggested above.

To sum up, shopping is a complex behavior, the
importance weights of various features may vary
across types of products. For instance, customers
may like to stick to the same brand for beauty prod-
ucts while changing the size, depending on their
needs. In contrast, for clothing customers may care
more about visual features rather than text descrip-
tions, and for books customers rarely purchase the
same book more than once. To tackle these remain-
ing challenges, we aim to extend our framework
to incorporate more multimedia features, extract
knowledge from review comments, and present rec-
ommendation results in a more hierarchical way by
clustering variants of the same product and present-
ing their different attributes.

4 Related Work

4.1 Neural Entity Linking

A variety of neural models (Gupta et al., 2017;
Kolitsas et al., 2018; Cao et al., 2018; Sil et al.,
2018; Gillick et al., 2019; Logeswaran et al., 2019;
Wu et al., 2019; Agarwal and Bikel, 2020) have
been applied to entity linking in recent years. Com-
pared to traditional entity linking, our task is differ-
ent in three aspects: (1) Our mentions are typically
vague and occur in uninformative contexts, such as
“add toothpaste to my cart” ; (2) A mention may be
reasonably linked to multiple entities, while only
one of them is considered “correct” (purchased by
the customer); (3) The ground truth for the same
mention can be different for different customers.

4.2 Personalized Recommendation

A recommender system is an information filter-
ing system that aims to suggest a list of items in
which a user may be interested. Content-based
filtering (Billsus and Pazzani, 2000; Aciar et al.,
2007; Wang et al., 2018) and collaborative filter-
ing (Shardanand and Maes, 1995; Konstan et al.,
1997; Linden et al., 2003; Zhao and Shang, 2010)
are two common approaches used in recommender
systems. In recent years, researchers have also
applied neural methods to improve the quality of
recommendations (Xue et al., 2017; He et al., 2017;
Wang et al., 2019a,b). Recommender systems usu-
ally rank items based on the user’s past behaviors
(e.g., purchasing, browsing, rating) and current con-
text (Linden et al., 2003; Smith and Linden, 2017),

whereas the results are not constrained by queries.
Instead, our task requires a specific query and only
returns the product that is most likely to be pur-
chased from a list of relevant candidates.

4.3 Graph Embedding

Various methods have been proposed to learn low-
dimensional vectors for nodes in knowledge graphs.
Knowledge graph embedding methods, such as
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2018), typically represent the head
entity, relation, and tail entity in each triplet in
the knowledge graph as vectors and aim to rank
true triplets higher than corresponding corrupted
triplets. Matrix Factorization-based methods (He
and Niyogi, 2004; Nickel et al., 2011; Qiu et al.,
2018) represent the graph as a matrix and obtain
node vectors by factorizing this matrix. Another
category of frameworks (Perozzi et al., 2014b;
Yang et al., 2015; Grover and Leskovec, 2016) use
random walk to sample paths from the input graph
and learn node embeddings from the sampled paths
using neural models such as SkipGram and LSTM.

4.4 Heterogeneous Network

The earliest study of mining heterogeneous net-
work dates back to (Sun et al., 2009), which coins
the concept of Heterogeneous Information Net-
work. After that, heterogeneous network has been
applied to a range of tasks, including ranking (Ji
et al., 2011), similarity search (Sun et al., 2011),
link prediction (Dong et al., 2015), academic paper
recommendation (Pan et al., 2015), and malicious
account detection (Liu et al., 2018).

Recently, with the advent of graph neural net-
work, many methods based on this new paradigm
have been proposed to learn graph representations
on heterogeneous graphs, such as Heterogeneous
Graph Neural Network (HetGNN) (Zhang et al.,
2019), Heterogeneous Graph Attention Network
(HAN) (Wang et al., 2019c), and Heterogeneous
Graph Transformer (HGT) (Hu et al., 2020).

5 Conclusion and Future Work

We propose a novel framework to jointly learn cus-
tomer and product representations based on a cross-
source heterogeneous graph constructed from cus-
tomers’ purchase history and the product knowl-
edge graph to improve personalized entity resolu-
tion. Experiments show that our framework can
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effectively increase the purchase rate of the top
ranked products. In the future, we plan to investi-
gate better approaches to integrating personalized
features and extend the framework to cross-lingual
cross-media settings and generate conversations for
more proactive and explainable entity recommen-
dation and summarization.
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Abstract
In the area of customer support, understand-
ing customers’ intents is a crucial step. Ma-
chine learning plays a vital role in this type
of intent classification. In reality, it is typi-
cal to collect confirmation from customer sup-
port representatives (CSRs) regarding the in-
tent prediction, though it can unnecessarily
incur prohibitive cost to ask CSRs to assign
existing or new intents to the mis-classified
cases. Apart from the confirmed cases with
and without intent labels, there can be a num-
ber of cases with no human curation. This data
composition (Positives + Unlabeled + multi-
class Negatives) creates unique challenges for
model development. In response to that, we
propose a semi-supervised multi-task learn-
ing paradigm. In this manuscript, we share
our experience in building text-based intent
classification models for a customer support
service on an E-commerce website. We im-
prove the performance significantly by evolv-
ing the model from multiclass classification to
semi-supervised multi-task learning by lever-
aging the negative cases, domain- and task-
adaptively pretrained ALBERT on customer
contact texts, and a number of un-curated data
with no labels. In the evaluation, the final
model boosts the average AUC ROC by almost
20 points compared to the baseline finetuned
multiclass classification ALBERT model.

1 Introduction

As machine learning makes rapid advances in the
area of natural language processing (NLP), it is
becoming more common to aid customer support
representatives (CSRs) with NLP models. This not
only ensures timely and consistent replies to cus-
tomers, but also reduces operational costs for orga-
nizations. We can see successful use cases from or-
ganizations such as Alibaba (Fu et al., 2020), Uber
(Molino et al., 2018), Square (Fotso et al., 2018),
AT&T (Gupta et al., 2010), IBM (Mani et al., 2018),

Los Alamos National Laboratory (DeLucia and
Moore, 2020), and US Navy (Powell et al., 2020).
In general, identifying the intents of the coming
contacts is the first step in customer support. There-
fore, accurate intent classification is crucial.

Intent classification is a broad topic mostly
falling under the umbrella of NLP. In this
manuscript, we limit our discussion to intent clas-
sification in the area of customer support. In the
past two decades, researchers have been trying to
improve the efficiency of customer support by de-
tecting customer intents with machine learning ap-
proaches (Molino et al., 2018; Powell et al., 2020;
DeLucia and Moore, 2020; Hui and Jha, 2000;
Gupta et al., 2010; Fotso et al., 2018; Mani et al.,
2018; Sarikaya et al., 2011; Gupta et al., 2006; Xu
and Sarikaya, 2013). We can loosely categorize
these approaches into text classification (Molino
et al., 2018; Powell et al., 2020; DeLucia and
Moore, 2020; Hui and Jha, 2000; Gupta et al., 2010;
Fotso et al., 2018), question-answer (QA) system
(Mani et al., 2018) and automatic speech recog-
nition (ASR) (Sarikaya et al., 2011; Gupta et al.,
2006; Xu and Sarikaya, 2013). In this manuscript,
we focus on using text classification methods to
classify intents for customer support. To deal with
unstructured text data, researchers use handcrafted
features (Hui and Jha, 2000; Gupta et al., 2010),
Bag-of-Words type of features (Powell et al., 2020),
features from topic modeling (DeLucia and Moore,
2020) and vectorization type of features, such as
word2vec (Fotso et al., 2018; Molino et al., 2018)
and doc2vec (DeLucia and Moore, 2020). By con-
suming these features, classifiers determine the in-
tent of a case and the case can be routed to spe-
cialists (Molino et al., 2018; Gupta et al., 2010;
DeLucia and Moore, 2020; Powell et al., 2020)
and/or a reply template from the “Answer Bank”
can be provided (Molino et al., 2018; Fotso et al.,
2018; Hui and Jha, 2000). A general intelligent
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customer support loop can be seen in Figure 1.

Customer contacts Intelligent system
(ML and/or rules)

Customer support 
representatives

Routing,
suggesting replies, 
providing diagnostic info, etc.

Fully automated replies.

Expert-curated replies.

?

Figure 1: Intelligent customer support loop

To meet ever-changing business needs, the intent
taxonomy is generally under active development
(Molino et al., 2018; Fotso et al., 2018; DeLucia
and Moore, 2020). It is not realistic to manually
relabel all cases after each intent taxonomy up-
date. This means that we have positive cases (P)
with assigned intents and unlabeled cases (U) in
data. Moreover, to maintain a high standard of
customer satisfaction, intent classification is typi-
cally a human-in-the-loop process (Fu et al., 2020;
Molino et al., 2018; Fotso et al., 2018; Gupta et al.,
2010; Powell et al., 2020). Specifically, the CSRs
are asked to confirm the intent predictions, a pro-
cess we refer to as “curation” in this manuscript.
The negative cases (N) identified by CSRs are in-
deed hard cases, since their prediction scores are
above the preset confidence threshold yet they are
mis-classified by the existing model. It is an active
research area to create classifiers with only P and
U (Elkan and Noto, 2008; Xu et al., 2017). Some
research has explored models that also include N,
but they have been only concerned with binary clas-
sifiers (Fei and Liu, 2015; Hsieh et al., 2019; Li
et al., 2010).

In this manuscript, we adopt the semi-supervised
paradigm and the multi-task approach to deal with
the U and the multiclass N, respectively. More-
over, in contrast to the above-mentioned works
about intent classification for customer support, we
use the ALBERT pretrained language model (Lan
et al., 2019) plus domain- and task-adaptive pre-
training (Ramponi and Plank, 2020; Gururangan
et al., 2020) to process texts. In the following sec-
tions, we describe how these techniques improve
the model performance.

The paper outline is as follows. We start with
Section 2 by elaborating the business background
and how we pose it as a machine learning problem.

Then we describe the details of the training data
and models in Section 3, compare the models by
conducting experiments with real data in Section 4,
and discuss the results in Section 5. We conclude
in Section 6.

2 Background

The E-commerce website of interest receives many
support requests from customers in each second.
There is a team of CSRs to actively address the
requests via phone, online chat, and email chan-
nels. Identifying appropriate requests and grouping
them into categories is not a trivial task. While a
deep discussion of the taxonomy building process
is out of the scope of this manuscript, it is sufficient
to know that we have a taxonomy system that is
similar to those described in (Molino et al., 2018;
Fotso et al., 2018), where customized reply tem-
plates are pre-compiled for each customer contact
intent. This study elaborates our journey building
machine learning models to classify the intents.

3 Methodology

Since the inception of BERT (Devlin et al., 2019),
an abundance of research in the area of NLP has
demonstrated it to be an effective approach to trans-
fer knowledge from pretrained language models to
downstream tasks (Xia et al., 2020; Wang et al.,
2018, 2019a; Rajpurkar et al., 2016; Lai et al.,
2017). Following BERT’s architecture, there is a
stream of research that achieve comparable or bet-
ter performance, to name a few (Lan et al., 2019;
Liu et al., 2019; Wang et al., 2019b; Clark et al.,
2020; Yang et al., 2019; Sanh et al., 2019). Among
these BERT variants, ALBERT aims to strike a bal-
ance between model performance and model size
(Lan et al., 2019). Therefore, we use albert-base-
v2 as the backbone encoder and perform further
pretraining and finetuning. The implementation is
based on Transformers from Huggingface (Wolf
et al., 2019).

3.1 Training Data

3.1.1 Features
The input to the model is a collection of emailed
support requests in text format. The texts are min-
imally preprocessed, including removing invalid
characters, lowercasing letters and replacing some
obvious entities with consistent words, such as re-
placing urls and emails to url id and email id.
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3.1.2 Targets
In industrial machine learning applications, it is
typical to construct a feedback loop to collect train-
ing data. In most cases, it is straightforward to
obtain a simple “yes” or “no” from human label-
ers with respect to the predictions. That means
the human labelers only need to accept or dismiss
the recommendations. Those “yes” cases are con-
firmed positive ones with explicit labels. However,
in a common multiclass classification setting, the
“no” cases can have any other label, so the labels are
effectively unknown. In some scenarios, such as
object detection in computer vision, it is not hard
to ask human labelers to assign a label to those
negative cases. However, it is highly non-trivial
to ask for a valid label in many NLP applications,
owing to the size of the taxonomy and the neces-
sary domain-expertise, as is the case for the intent
classification in this manuscript. Therefore, in our
training data, we only have “yes” or “no” feedback
to each case in each intent class.

Since the scope of the intent taxonomy is not
trying to cover all customer support requests, there
are many requests falling out of the scope of the
taxonomy but still scored by the model. The neg-
ative cases are either out-of-scope requests or in-
scope requests falling in the wrong bucket. The
former one is more probable, since the requests
are false positives for existing classes with high
confidence scores above the preset thresholds. In
this manuscript, we tried two ways to deal with this
situation.

1. We can simply exclude the negative cases
from training data, since they do not come
with labels. In this scenario, it is a multiclass
classification model trained on positive cases,
i.e. confirmed intents. However, we lose valu-
able signals by excluding the negative cases.

2. Since the negative cases are indeed hard nega-
tives and contain valuable signals, we can use
the multi-task learning paradigm to elegantly
treat the negatives for each intent class as the
negative samples for a binary classification
task. In this scenario, we have a binary clas-
sification task for each class plus a multiclass
classification task for all classes. It is also not
necessary to examine the negative cases and
assign them to appropriate new or existing
classes, especially when the labeling efforts
outweigh the benefits it could bring to model

development. With this approach, we make
full use of the signals in the training data.

Apart from the multiclass positive (P) and nega-
tive (N) cases mentioned above, we also have the
un-curated cases that do not come with labels, i.e.
the U cases. We adopt an iterative semi-supervised
approach to deal with them. The approach is de-
scribed in Section 3.2.2.

3.2 Models

3.2.1 ALBERT
Following the pretraining-finetuning framework for
language models, we start with a finetuned AL-
BERT. We simply remove the masked language
model (MLM) head and the sentence order predic-
tion (SOP) head from ALBERT and add a sequence
classification head. Following the convention from
(Devlin et al., 2019), the final hidden vector corre-
sponding to the first input token [CLS] is used for
classification. We denote this vector as the classifi-
cation vector in the rest of the manuscript. We note
that this ALBERT model is trained as a multiclass
classification with only positive cases.

3.2.2 SS MT D/TAPT ALBERT
The pretrained language models are mostly trained
on well-known corpora, such as Wikipedia, Com-
mon Crawl, BookCorpus, Reddit, etc. However, in
many cases, we need to apply the language models
to very different domains, like BioMed, scientific
publication, or product reviews. For these types
of problems, researchers have found that, in ad-
dition to finetuning on specific downstream tasks,
it is beneficial to adapt the language models to
the domain- and task-specific corpus, i.e. domain-
adaptive pretraining (DAPT) and task-adaptive pre-
training (TAPT) (Gururangan et al., 2020). This is
achieved by further training the language modeling
tasks, such as MLM, with the corpus of the domain
and the task. We note that it can be difficult to
rigorously define domain in NLP. For the DAPT
training in this manuscript, we simply use customer
contacts in the past few months as the domain cor-
pus and follow the training recommendations from
(Gururangan et al., 2020).

To make full use of the feedback from CSRs, we
include the negatively confirmed cases and treat
each class as a separate binary classification task
in addition to the multiclass classification task. We
accomplish the modeling with the multi-task (MT)
learning paradigm (Liu et al., 2019). In this case,
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we have n + 1 tasks, i.e. n binary classification
tasks and 1 multiclass classification task. As illus-
trated on the left of Figure 2, we train the model in
an end-to-end fashion. This means the n+ 1 tasks
are finetuned jointly sharing the same encoder. We
note that every positive sample belongs to two tasks
(the multiclass classification task and one binary
task) and each negative sample only belongs to the
corresponding binary classification task. In infer-
encing time, as illustrated on the right of Figure 2,
the model first processes the case text through the
encoder to get the classification vector. Then the
multiclass classification task consumes the vector
and predicts the class. In the end, the same vector
is routed to the binary task corresponding to that
class, predicting the probability of the intent class
accepted by the CSRs.

To make it more concrete, we can see the train-
ing loss implementation in Equation (1). yb is the
binary label, i.e. 1 means it is a positive sample and
its intent class is confirmed by CSRs with “yes”.
lm is the multiclass task loss. ym is the one-hot
encoded n-dimensional multiclass label vector. lb

is the loss function vector for n binary tasks. N is
the number of samples. Typical cross-entropy loss
is used for all tasks here.

L =
1

N

N∑

i=1

(ybi · lmi + ym
i · lbi ) (1)

For the inferencing process, we refer to Equa-
tions (2)-(5). x is the tokenized sequence vector.
u is the classification vector, i.e. the embedding
vector for the CLS token. fm is the multiclass
classifier. f b

k is the binary classifier for intent class
k.

u = Encoder(x) (2)

ŷm = fm(u) (3)

k = argmax
i

ŷm(i), i ∈ [0...n− 1] (4)

ŷb = f b
k(u) (5)

Moreover, we add the semi-supervised (SS) strat-
egy to take advantage of the un-curated data. While
a large volume of model predictions are reviewed
by the CSRs each second, we believe there are still
a number of qualified cases that we miss. There-
fore, we can train the model, make prediction on
the un-curated cases, choose the high-confidence
ones, and re-train the model with the labeled data

shared encoder

multiclass
classifier
for all intents

binary
classifier
for intent k

x

ŷm ŷb

ym lossm

multiclass
classifier
for all intents

binary
classifier
for intent k

x

ŷb

shared encoder

lossb yb

loss

ŷm

Figure 2: Training (left) and inferencing (right) for the
multi-task learning strategy, where k ∈ [0...n− 1], and
n is the number of intent classes. In training time, the
green path is only executed when x is a positive sample.

plus the high-confidence cases. We follow this in
an iterative manner until the improvement dimin-
ishes such that it cannot justify the training cost.
We note that we only augment the data of the multi-
class classification task and the data for the binary
classification tasks remain unchanged throughout
the iterative process. The same strategy is recently
used by (Schick and Schütze, 2020) to create small
language models that have similar performance to
BERT and (Xie et al., 2020) to achieve state-of-the-
art performance on Imagenet in computer vision.

Adding up the techniques described above, we
denote this model as SS MT D/TAPT ALBERT.

4 Experiments and Results

4.1 Data and Experimental Setup

For confidentiality reasons, we can only share di-
rectional numbers about the training data. In this
study, we consider 9 customer intent classes. The
curated data is unbalanced among classes, rang-
ing from a few thousand to tens of thousands of
records per class. The class with the most samples
is roughly 40 times as much as the class with the
least samples. For each class, the ratio of positive-
to-negative cases in the curated data is about 4. The
un-curated data is roughly 20 times of the curated
data. We use both the curated and un-curated data
for DAPT and only curated data for TAPT. In the
semi-supervision process, for each class, we select
high-confidence samples from the un-curated data
in each iteration to be roughly two to three times
of the volume of the labeled samples in the curated
data. Table 1 shows a few sample training data
with dummy features and intents. The last column
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Table 1: Sample training data and how different training strategies incorporate them.

Curation Composition Features Targets Training data for
Messages Intents CSR responses Multiclass task Binary tasks DAPT TAPT SS

Curated
Positives Could you help me? General inquiry Yes Yes Yes (+) Yes Yes Yes

How to setup account? Account issue Yes Yes Yes (+) Yes Yes Yes

Negatives How much is this? Account issue No No Yes (-) Yes Yes Yes
Can you fix this issue? General inquiry No No Yes (-) Yes Yes Yes

Un-curated Unlabeled What’s this? General inquiry N/A No No Yes No Yes
Please help. N/A N/A No No Yes No Yes

shows how different strategies incorporate them in
training.

After being processed with the ALBERT tok-
enizer, the total data amounts to about 800 million
tokens with an average of about 80 per sample.
We performed all experiments on Sagemaker on
AWS. We used 2 ml.p3.16xlarge instances with
distributed data parallelism for DAPT and TAPT,
1 ml.p3.8xlarge instance for finetuning language
models, and 1 ml.p3.8xlarge instance for batch in-
ferencing testing data.

We hold out a portion of the data as develop-
ment data to tune hyperparameters. We follow the
suggestions from (Gururangan et al., 2020; Liu
et al., 2019) for DAPT and TAPT and (Devlin et al.,
2019) for finetuning. For the end-to-end multi-task
learning process, we kept a unit weight for each
task and did not explore different weight combina-
tions. More research about tuning task weights in
multi-task learning can be found in (Cipolla et al.,
2018).

4.2 Evaluation
4.2.1 Pretrained models
In this section, we evaluate the performance of the
pretrained language models, the out-of-the-box AL-
BERT and the D/TAPT ALBERT. We note that the
pretrained language models are evaluated before
any finetuning happens.

To visually demonstrate how the adaptive pre-
training improves the clustering performance of the
classification vector, we sample a couple thousand
cases per class and apply t-SNE (Van Der Maaten
and Hinton, 2008) to the reduced classification vec-
tor for each case. We reduce the dimension of the
classification vectors from 768 to 50 with PCA
to keep the computational cost of t-SNE in check.
In Figure 3, we can see how clustering improves
from the vanilla ALBERT on the left to D/TAPT
ALBERT on the right.

To more quantitatively assess the performance
of the off-the-shelf pretrained ALBERT and the
D/TAPT ALBERT, we sample a couple thousand

Figure 3: t-SNE plots using the dimension-reduced
classification vectors from the off-the-shelf pretrained
ALBERT (left) and the D/TAPT ALBERT (right).

Table 2: Average kNN prediction accuracy using the
classification vectors from the pretrained models

ALBERT D/TAPT ALBERT
0% +33%

cases per class and use k-nearest-neighbor classi-
fiers (kNN) to predict each sample’s class based
on its k neighbors. We use the Euclidean distance
between the classification vector for each case as
the similarity metric for kNN. We compute the
average accuracy by varying k from 3 to 99 in
interval of 2 and report it in Table 2. As a re-
sult, D/TAPT lifts the accuracy by more than 30
points compared to the vanilla ALBERT. Similar
performance lift is also observed in (Reimers and
Gurevych, 2019). This illustrates that D/TAPT can
improve the clustering performance of the classifi-
cation vector when the clustering rules are closely
related to the domain corpus. The absolute accu-
racy values are not reported here for confidentiality
reasons.

4.2.2 Finetuned models
In practice, for each class, we expect to route more
positive cases and less negative cases to our CSRs
with machine learning models. That means we ex-
pect our models to better differentiate positives
from negatives for each class. Area Under the
Curve - Receiver Operating Characteristics (AUC
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Table 3: The average and sample-weighted average
AUC ROC for different experiment settings

Model avg AUC ROC wavg AUC ROC
ALBERT +0% +0%
+ MT +17.8% +14.3%
+ MT DAPT +18.4% + 15.8%
+ MT D/TAPT +19.0% +16.1%
+ SS MT D/TAPT +19.9% +17.0%

ROC) is a natural metric for such binary classifi-
cation problem. We note that the commonly-used
accuracy metric is not appropriate in this context
since the negatives do not have ground truth labels
in our data. The evaluation data is from recent few
weeks. For confidentiality reasons, we hide the axis
for AUC ROC and make the values relative to the
baseline finetuned ALBERT model for each class.

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+0.0%

+10.5%

+12.8%

+37.2%

+19.8%
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+7.5%
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class1
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class4
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class6
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AUC ROC

ALBERT SS MT D/TAPT ALBERT

Figure 4: The AUC ROC of each class for finetuned
ALBERT and SS MT D/TAPT ALBERT

In Figure 4, for each class, we can observe con-
sistent improvement of SS MT D/TAPT ALBERT
over finetuned ALBERT in terms of AUC ROC.
Overall, the SS MT D/TAPT ALBERT model
brings 19.9 points increase in average AUC ROC
and 17 points increase in sample-weighted average
AUC ROC, compared to the finetuned ALBERT
model.

Furthermore, it is interesting to see how each
strategy in the SS MT D/TAPT ALBERT model
contributes to the performance improvement. In
Table 3, we show the average and sample-weighted
average AUC ROC improvement by incrementally
adding one strategy at a time. We can see that the
MT strategy boosts the average AUC ROC by 17.8
points and the sample-weighted average AUC ROC
by 14.3 points, compared to the finetuned ALBERT.
This demonstrates the effectiveness of including
negative signals with MT strategy. On top of MT,

we apply DAPT, D/TAPT and SS incrementally.
Each strategy pushes up the average and sample-
weighted average AUC ROC by roughly 1 point.

5 Discussion

Apart from processing the dismissed recommenda-
tions with this multi-task setting, there is another
heuristic approach that is commonly adopted un-
der this circumstance. We can group all the dis-
missed recommendations into an extra bucket Oth-
ers (Fotso et al., 2018). The advantage of this
approach is that we can pose the problem as a
straightforward multiclass classification. The disad-
vantage is that the dismissed recommendations can
either be mis-classified and belong to other existing
classes, or belong to unknown classes that might
be included in the future taxonomy. In the former
scenario, the dismissed recommendations create
noise for their true class and the Others class; In
the latter scenario, the dismissed recommendations
can seemingly improve performance for current
taxonomy, while they can pollute the future train-
ing when the unknown classes are launched in the
updated taxonomy. In both scenarios, grouping
the dismissed recommendations into Others can
negatively impact the training.

In terms of computational cost, both adaptive
pretraining and semi-supervision consume a con-
siderable amount of power, since the former is typ-
ically trained on the MLM task through a large
corpus and the latter is a iterative finetuning and
inferencing process where the data for inferencing
are often in large volume. In the meantime, the MT
strategy is a cost-effective way to improve model
performance by considering negative samples. By
examining Table 3, compared to the baseline fine-
tuned ALBERT, we can see the MT strategy in-
creases the average AUC ROC by 17.8 points while
D/TAPT and SS add 2.1 points on top of that. The
additional cost for the MT strategy, compared to
the typical multiclass classification strategy, is sim-
ply a binary classifier for each class. It is negligible
in both training and inferencing.

For the sake of easy implementation of the end-
to-end multi-task training, we only feed the training
data related to one task in each batch. In this way,
we can keep the loss function for each task separate.
It is possible that including data for various tasks
in each batch can bring benefits to training. This
assumption can be explored in future studies.

This study is only concerned with corpus in En-
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glish. Similar modeling strategies can be followed
for other high-resource languages which we have
ample training data. However, as in the customer
service departments of most global organizations, it
is common to receive customer contacts in various
low-resource languages, in which case the training
data is scarce. Recent advances in cross-lingual
language models, such as mBERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019), Uni-
coder (Huang et al., 2019) and FILTER (Fang et al.,
2020), can shed light on this situation and we plan
to investigate it in the future.

In the area of customer support, both (Molino
et al., 2018) and (Fotso et al., 2018) propose neu-
ral networks that combine unstructured text fea-
tures from customers’ messages and structured fea-
tures describing customers’ interaction with the
platforms. They empirically demonstrated bene-
fits of including the latter feature group. The next
step for our study is to evaluate the influence of
the customer-website interaction features, when
combining with advanced language models.

For the model candidates with multi-task strat-
egy in this manuscript, we train all tasks jointly
with an end-to-end multi-task deep learning ap-
proach, as described in the left plot of Figure 2.
We want to point out the isolating effect of the end-
to-end training approach. In one experiment, we
trained the tasks independently, i.e. we first trained
the multiclass classification task with the off-the-
shelf ALBERT, and then, for the binary tasks, we
trained n logistic regression binary classifiers with
the classification vector from the multiclass classi-
fication task. We still achieved 12.2 and 8.2 points
above the baseline in terms of average AUC ROC
and sample-weighted average AUC ROC. On one
hand, this shows that even training simpler mod-
els independently can still bring performance lifts,
thus emphasizing the powerful signal brought by
the negative cases; On the other hand, if compared
to the ALBERT + MT model in Table 3, it also
shows the benefits of end-to-end training.

As in most machine learning applications, the
actual model performance is determined by the
choice of the operational point for each intent class
and the operational point is determined from the
precision-recall (PR) curve. For the sake of brevity,
we ignore the PR plots because, for each class, the
PR curve of the baseline ALBERT model is well
under the envelop of the PR curve of the SS MT
D/TAPT ALBERT model. This is expected due

to the large boost presented in Figure 4. We note
that the AUC ROC can be a decent indication of
AUC PR when the data is not so skewed (Davis and
Goadrich, 2006). Therefore, the SS MT D/TAPT
ALBERT indeed outperforms the baseline for every
choice of operational point.

6 Conclusion

In this manuscript, we demonstrated and discussed
the model performance improvement brought by
multi-task learning, adaptive pretraining for AL-
BERT, and semi-supervised learning in the ap-
plication of customer support on an e-commerce
website. We observe ∼20 points performance in-
crease in average AUC ROC when comparing the
final model to the baseline multiclass classification
model. This paradigm can be particularly helpful
when there is a feedback system collecting confir-
mation from labelers. Future studies can extend
this paradigm to more complex situations, such
as when the intent taxonomy is deeply hierarchi-
cal or considering more feedback information than
simple “yes” or “no”.
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Abstract

With the growing footprint of ecommerce
worldwide, the role of contact center is be-
coming increasingly crucial for customer sat-
isfaction. To effectively handle scale and man-
age operational cost, automation through chat-
bots and voice-bots are getting rapidly adopted.
With customers having multiple, often long
list of active orders - the first task of a voice-
bot is to identify which one they are calling
about. Towards solving this problem which we
refer to as order identification, we propose a
two-staged real-time technique by combining
search and prediction in a sequential manner.
In the first stage, analogous to retrieval-based
question-answering, a fuzzy search technique
uses customized lexical and phonetic similar-
ity measures on noisy transcripts of calls to
retrieve the order of interest. The coverage
of fuzzy search is limited by no or limited
response from customers to voice prompts.
Hence, in the second stage, a predictive solu-
tion that predicts the most likely order a cus-
tomer is calling about based on certain features
of orders is introduced. We compare with mul-
tiple relevant techniques based on word em-
beddings as well as ecommerce product search
to show that the proposed approach provides
the best performance with 64% coverage and
87% accuracy on a large real-life data-set. A
system based on the proposed technique is
also deployed in production for a fraction of
calls landing in the contact center of a large
ecommerce provider; providing real evidence
of operational benefits as well as increased cus-
tomer delight.

1 Introduction

With increasing penetration of ecommerce, reliance
on and importance of contact centers is increasing.
While emails and automated chat-bots are gaining
popularity, voice continues to be the overwhelming
preferred communication medium leading to mil-

lions of phone calls landing at contact centers. Han-
dling such high volume of calls by human agents
leads to hiring and maintaining a large employee
base. Additionally, managing periodic peaks (ow-
ing to sale periods, festive seasons etc.) as well
as hiring, training, monitoring make the entire pro-
cess a demanding operation. To address these chal-
lenges as well as piggybacking on recent progress
of NLP and Dialog Systems research, voice-bots
are gaining popularity. Voice-bot is a common
name of automated dialog systems built to conduct
task-oriented conversations with callers. They are
placed as the first line of response to address cus-
tomer concerns and only on failure, the calls are
transferred to human agents. Goodness of voice-
bots, measured by automation rate, is proportional
to the fraction of calls it can handle successfully
end-to-end.

Customers’ contacts in ecommerce domain are
broadly about two types viz. for general enquiry
about products before making a purchase and post
purchase issue resolution; with overwhelming ma-
jority of contacts are of the latter type. For post
purchase contacts, one of the first information that
a voice-bot needs to gather is which product the
customer is calling about. The most common prac-
tice has been to enumerate all products she has
purchased, say in a reverse chronological order,
and asking her to respond with her choice by press-
ing a numeric key. This is limiting in two important
ways. Firstly, it limits the scope to a maximum of
ten products which is insufficient in a large fraction
of cases. Secondly and more importantly, listening
to a long announcement of product titles to select
one is a time-consuming and tedious customer ex-
perience.

In this paper, we introduce the problem of order
identification and propose a technique to identify
or predict the product of interest for which a cus-
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Fuzzy Search Predictive Model
Customer
Utterance

Product titles of active orders
with fuzzy search match

Product titles of active orders
with top-1 match from predic-
tive model

Top-k fea-
tures for the
prediction

maine

order kiya

tha to

toner 25

ke dikha

to uska

[Aiwa Professional 102 //00 High Qual-

ity 40 PCS Socket Set, Hidelink Men

Brown Genuine Leather Wallet, CEDO

XPRO Edge To Edge Tempered Glass for

Realme XT, Realme X2, Protoner 25 kg
PVC weight with 4 rods and Flat bench
Home Gym Combo]

[Sonata 77085PP02 Volt Analog Watch

- For Men, Oxhox HBS-730 Wireless

compatible with 4G redmi Headset with

Mic Bluetooth Headset, MyTech With
Charger M3 Smart Band Fitness Band
]

number of days

since return ini-

tiation, Selling

Price, is incident

created in last 2

days?

i can

2000 green

color

mobile

phone

[Surat Dream Portable Mini Sewing Ma-

chine Handheld Handy Stitch Machine

Manual Cordless Electric Stitching Ma-

chine Electric Sewing Machine, I Kall
K1000 (Green, 64 GB), I Kall K1000

(Blue, 64 GB)]

[ Whirlpool 7.5 kg 5 Star, Hard Water
wash Fully Automatic Top Load Grey,

Asian Running Shoes For Women]

days since in-

cident creation,

days since last

chat, rank wrt

selling price

blue 2

dead phone

ke liye

[Hardys Full Sleeve Solid Men Jacket,

Brawo Party Wear Party Wear For Men, T
GOOD Lite SH12 Bluetooth Headset,
T GOOD Lite SH12 Bluetooth Head-
set, SPINOZA Pink diamond studded at-

tractive butterfly stylish women Analog

Watch - For Girls]

[Ncert Chemistry Class 12 ( Part 1 And 2 )

Combo 2 Book ( K.C.G), STROM COL-
LECTION Men Formal Black Gen-
uine Leather Belt, OPPO F15 (Blazing

Blue, 128 GB)]

is cancelled?, is

incident created

in last 2 days?,

number of days

since return ini-

tiation

Table 1: Examples of top matches from fuzzy search and predictive model. The first column shows transcribed
customer utterances and the second column shows all active orders at the time of the call with the top match from
fuzzy search emphasized. The examples under Predictive Model shows the most likely order at the time of the call
along with top-k features leading to the prediction.

tomer has contacted the contact center1. We do it
in a natural and efficient manner based on minimal
or no explicit additional input from the customer
through a novel combination of two complemen-
tary approaches viz. search and prediction. The
system is not restricted by the number of products
purchased even over a long time period. It has
been shown to be highly accurate with 87% accu-
racy and over 65% coverage in a real-life and noisy
environment.

After customer verification, a question was intro-
duced in the voice-bot flow “Which product
you are calling about?”. Her response
was recorded and transcribed by an automatic
speech recognition (ASR) system to text in real-
time. We modeled the search problem as a task
to retrieve the most matching product considering
this response as a query over the search space of
all active products represented as a set of product
attributes e.g. title, description, brand, color, author
etc. While simple in formulation, the task offers

1We use the terms order and product interchangably to
mean different things customers have purchased.

a few practical challenges. Customers do not de-
scribe their products in a standard manner or as
it is described in the product catalog. For exam-
ple, to describe a “SAMSUNG Galaxy F41 (Fusion
Blue, 128 GB) (6 GB RAM)” phone, they may say
F41, Galaxy F41, mobile, phone, mobile phone,
cellphone, Samsung mobile, etc. (more examples
can be seen in Table1). Secondly, the responses
from customers varied widely from being heavily
code-mixed to having only fillers (ummms, aahs,
whats etc.) to blank responses. This is comple-
mented owing to the background noise as well as
imperfections in ASR systems. Finally, in a not
so uncommon scenario, often customers’ active or-
ders include multiple instances of the same product,
minor variations thereof (e.g. in color), or related
products which share many attributes (e.g. charger
for “SAMSUNG Galaxy F41 (Fusion Blue, 128
GB) (6 GB RAM)”) which are indistinguishable
from their response to the prompt.

We propose an unsupervised n-gram based fuzzy
search based on a round of pre-processing followed
by custom lexical and phonetic similarity metrics.
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In spite of its simplicity, this solution achieves 32%
coverage with an accuracy of 87%, leveraging the
relatively small search space. The custom nature of
this solution achieves much higher accuracy com-
pared to more sophisticated general purpose prod-
uct search available on ecommerce mobile apps
and websites. This simple technique also does
not require additional steps such as named entity
recognition (NER) which has been used for product
identification related work in literature (Wen et al.,
2019). Additionally, NER systems’ performance
are comparatively poor on ASR transcripts owing
to high degree of recognition and lexical noise (e.g.
missing capitalization etc) (Yadav et al., 2020).

While fuzzy search works with high accuracy,
its coverage is limited owing to various mentioned
noise in the data. We observed that about 25% of
callers did not answer when asked to identify the
product they were calling about. To overcome this
challenge, we introduced a complementary solution
based on predictive modeling which does not re-
quire explicit utterances from customers. In simple
words, the model creates a ranking of active orders
on the basis of likelihood of a customer calling
about them. This is based on the intuition that cer-
tain characteristics of orders make them more likely
to call about e.g. a return, an orders which was sup-
posed to be delivered on the day of calling etc.
Based on such features of orders and customer pro-
file, a random forest model gives prediction accu-
racy of 72%, 88% and 94% at top-1, 2, and 3. For
high confidence predictions, the voice-bot’s prompt
is changed to “Are you calling for the
<PRODUCT-NAME> you ordered?” For
right predictions, not only it reduces the duration
of the call, also increases customer delight by the
personalized experience. In combination, fuzzy
search and predictive model cover 64.70% of all
voice-bot calls with an accuracy of 87.18%.
Organization of the paper: The rest of the pa-
per is organized as follows. Section 2 narrates
the background of order identification for voice-
bot, sections 3 discusses the proposed approach
and sections 4 and 5 discuss the datasets used in
our study and experiments respectively. Section
6 briefs some of the literature related to our work
before concluding in section 7.

2 Background
A typical call flow of the voice-bot would start
with greeting followed by identity verification, or-
der identification and confirmation to issue identi-

Welcome to <COMPANY-NAME> ecommerce!
I’m your automated support assistant.    [Greeting]

regarding tv order

Are you calling about your order for Samsung TV ?  [Order Confirmation]
yes

Okay, I just checked and it looks like your order has shipped and will be delivered by 
November 19th.   [Status Announcement]
What help do you need with this order? [Issue Identification]

Please deliver it today itself

I understand you’re looking forward to receiving your order sooner. Sorry, while 
faster delivery is not available, please be assured our delivery agents are delivering 
your order as soon as possible.  [Issue Resolution]

What order are you calling about today?  [Order Identification]

Nothing, that’s it

Goodbye then, Thank you for shopping with <COMPANY-NAME>!

What else do you need help with?

Figure 1: Sample conversation between voice-bot and
the customer.

fication and finally issue resolution or transfer to
human agent if needed. Figure 1 shows a sample
conversation between a bot and a customer with
multiple active orders, where the customer is asked
to identify the order she called for.

Customers’ responses to this question are tran-
scribed to text in real-time using an ASR model.
There were some practical difficulties in identify-
ing the corresponding order from the transcribed
customer utterances. When asked to identify the or-
der, customers were not sure what they had to talk
about, resulting in generic responses like ‘hello’,

‘hai’, ‘okay’, etc. in around 23% of the calls. Some
customers straightaway mentioned about the issue
instead of describing the product - for eg., ‘refund
order’, ‘order return karne ke liye call kiya hai’,

‘mix match pick up cancel’, etc. We also noticed a
prevalence of blank transcripts in around 22% of
the calls, mostly from customers who have inter-
acted with the voice-bot in the past. We believe
this is due to the change in the call flow of voice-
bot from what they have experienced in the past.
Another major challenge comes from the ASR er-
rors especially in the context of code-mixed utter-
ances. The transcription noise especially on prod-
uct tokens (‘mam record’ for ‘memory card’, ‘both
tropage’ for ’boAt Rockerz’) made it more difficult
to identify the right order. Also by nature of ASR,
various lexical signals like capitalization, punctua-
tion are absent in the ASR transcribed text, thereby
making the task of order search more challenging.

After the order is identified or predicted, the cus-
tomer is asked to confirm the chosen order. The
customer can confirm positively and continue the
conversation with the voice-bot or respond neg-
atively and fallback to human agents. The ideal
expectation from order search is to return a single
matching order but in cases where multiple similar
products exist, the voice-bot may prompt again to
help disambiguate.
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3 Proposed Approach
We propose to solve the problem of order identifi-
cation through two steps. In the first phase (fuzzy
search), we model the problem as a retrieval-based
question-answering task where customer utterance
is the query and the set of active orders of the
customer is the search space. Towards solving
this, we employ a sequence of matching techniques
leveraging lexical and phonetic similarities. In the
second phase (order prediction), we build a super-
vised learning model to predict the likelihood of
the customer calling regarding different active or-
ders. This later phase does not depend on customer
utterances and hence does not get affected by tran-
scription inaccuracies. Both of these approaches
are discussed in detail in this section.

3.1 Fuzzy Search
Given the customer utterance and the product at-
tributes of the active orders, fuzzy search proceeds
in multiple rounds of textual similarity measures
like direct, partial and phonetic match to retrieve
the corresponding order, customer called for. These
stages are invoked sequentially until a matching or-
der is found. Sequentiality is introduced in fuzzy
search in order to maximize the coverage while
keeping the false positives low. Various stages in-
volved in fuzzy search is shown in appendix A.
Various stages in fuzzy search are detailed below.
We use the terms {token and word} and {utterance
and query} interchangeably.

3.1.1 Pre-processing
We observed prevalence of generic texts like hello,
haan, ok in the customer utterances, which are of
no use in retrieving the order. Hence, such com-
monly used tokens are to be removed from the
query. Also, by nature of ASR, acronyms are tran-
scribed as single letter split words for eg., a c for
AC, t v for TV, etc. We followed the pre-processing
steps as below.

• Removal of generic tokens: The commonly
used tokens are identified by taking top 5%
of frequently spoken tokens and are manually
examined to ensure no product specific terms
are removed.

• Handle split words: The split words are han-
dled by joining continuous single letter words.

After these pre-processing steps, some of the cus-
tomer utterances containing only the generic tokens
would become blank, such cases are considered to

have no match from the active orders. For non
blank processed queries, we use the following sim-
ilarity measures to identify the matching order(s).

Let q denote the pre-processed customer query
composed of query tokens. Let {pi}Pi=1 denotes list
of active orders where pi denote the product title
corresponding to ith order. Product titles are typ-
ically concatenation of brand, model name, color,
etc- ‘Redmi Note 9 Pro (Aurora Blue, 128 GB) (4
GB RAM)’, ‘Lakme Eyeconic Kajal (Royal Blue,
0.35 g)’ are some sample product titles.

3.1.2 Direct Match
The objective of direct match is to handle relatively
easier queries, where customer utterance contains
product information and is transcribed without any
noise. Direct Match looks for exact text matches
between query tokens and the tokens of product
title. Each product is assigned a score basis the
fraction of query tokens that matches with tokens
from the corresponding product title. Score for the
ith product is obtained as

si =
1

|q|
∑

x:q

1{y:y∈pi,y==x}!=φ

where 1x indicates the indicator function which is
1 if x is true else 0. Product(s) with the maximum
score are considered the possible candidate prod-
ucts for a direct match. Direct match between the
query and any of the products is said to occur in
the following cases.

• Score of 1 would indicate that the product
title includes all query tokens. Hence if the
maximum score is 1, all product(s) with the
score of 1 are returned by direct match.

• If the max score is less than 1, direct match
is limited to single candidate retrieval so as to
avoid false positive due to similar products in
the active orders.

3.1.3 Partial Match
In order to handle partial utterances of product
names by the customers and to account for ASR
errors in product specific terms of customer utter-
ances, partial match is introduced. For example,
partial product utterances like ‘fridge’ for ‘refrig-
erator”, ‘watch’ for ‘smart watch’ and ASR mis-
spelled utterances like ‘sandel’ for ‘sandal’, would
be handled by partial match. Algorithm 1 eluci-
dates various steps in partial matching. It uses
partial similarity (Sim) between the n-grams from
query and the product titles. We start with individ-
ual tokens and then move to bigram, trigram, etc
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till 4-gram. Match at a higher n is clearly more
promising than a lower n. For eg, a customer could
ask for ‘JBL wired headset’ and the active orders
could include ‘boAt Wired Headset’ and a ‘JBL
Wired Headset’. In such cases, token similarity or
bigram similarity might treat both of these head-
sets as matching orders, however trigram similarity
would result in a correct match. i.e., for cases with
similar products in the active orders, going for a
higher n would help reduce the false positives if
customer had specified additional details to narrow
the order.

Algorithm 1: n-gram based partial match
Result: R
R = φ,Q

′
0 = q

for n = {1,2,3,4} do
Qn = ngrams

′
(q, n,Q

′
n−1)

Q
′
n = φ

for i=1:P do
Pin = ngrams(pi, n)

si = 1
|Qn|

∑
x:Qn

1{y:y∈Pin,Sim(x,y)>θ}!=φ

Q
′
n = Q

′
n ∪ {x ∈ Qn : {y ∈ Pin : Sim(x, y) >

θ}! = φ}
p̂ = {pi : si == max(si),max(si)! = 0}
if |p̂| == 1 ormax(si) == 1 then

R = p̂

Let Q
′
n refer to the n-grams in query string that

had a match with any of the product n-grams,
ngrams represent a function to return all possi-
ble n-grams of input string and ngrams

′
return

the surrounding n-grams of Q
′
n−1. For n ≥ 2, Qn

would only contain n-grams with one or more prod-
uct tokens. At a particular n, we obtain a similarity
score si for each active order, based on the pro-
portion of n-grams in Qn, that finds a match with
n-grams in corresponding product titles and the or-
ders with maximum score are considered candidate
orders (p̂) for successful match. At any n, match-
ing order(s) is said to have found if n-grams from
any order finds a match with all n-grams included
in Qn i.e., max(si) == 1 or when there is only
one candidate product i.e., |p̂| == 1.

If none of the products finds a match at higher n,
the matched products as of level n−1 is considered.
A threshold on the similarity measure is imposed
to indicate whether two n-grams match.

3.1.4 Phonetic Match
ASR errors on product specific tokens imposes ad-
ditional challenges in identifying the correspond-
ing order. For example, ‘in clinics hot 94’ for ‘In-
finix Hot 9 Pro’, ‘mam record’ for ‘memory card’,

‘double back’ for duffel bag, etc. To handle such
queries, we consider similarity between phonetic
representations of n-grams of product title with that

of customer utterance. Algorithmically, phonetic
match works similar to fuzzy match (as in algo-
rithm 1), with the important difference the similar-
ity score (Sim) is on phonetic representation of n-
grams. With this, strings like ‘mam record’, ‘mem-
ory card’, ‘double back’, duffel bag are mapped
to ‘MANRACAD’, ‘MANARACAD’, ‘DABLABAC’
and ‘DAFALBAG’ respectively. Clearly, the noisy
transcribed tokens are much closer to the original
product tokens in the phonetic space.

3.2 Order Prediction

The objective of this step is to build a predictive
model for ranking of active orders based on the like-
lihood of why a customer is calling. We formulate
it as a classification problem on active orders and
learn a binary classifier to predict the likelihood of
customer calling for each order.

3.2.1 Feature Engineering:
The features used in the model are broadly catego-
rized into 4 categories, i.e., order specific, transac-
tion specific, product specific and self serve related
features.

• Order-specific features includes order status,
is delivery due today?, is pickup pending?,
Is Refund issued? , etc. These features are
specific to the time when customer calls.

• Transaction-specific features include price
of the product, shipping charges, order pay-
ment type, etc

• Product-specific features include product at-
tributes like brand, vertical, is this a large
item? , etc. These features are not dependent
on the time of the customer call.

• Self-serve features like number of days since
last chat conversation, number of days since
last incident creation, etc.

It is important to note that the likelihood of a cus-
tomer calling for an order is highly related to the
features of other active orders of the customer. For
example, the chances of customer calling for an
order that just got shipped are less when there is
another order whose refund is pending for a long
time. The formulation by default doesn’t consider
the relationship among features of other active or-
ders. Hence this is overcome by creating derived
features that brings in the relative ordering between
features of active orders of a customer. Some of
derived features include rank of the order with re-
spect to ordered date (customers are more likely to
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call for a recent order than older ones), if refund
is pending for any other order, if there are existing
complaints for other orders etc.

Preprocessing: Together with these derived fea-
tures, we have a total of 42 features mix of categor-
ical and numerical. Low cardinality features like
order status are one hot encoded, high cardinality
features like brand, category, etc are label encoded
and the numerical features are standard normalized.
The labels available in our dataset is at a call level.
Since the classification is at an order level, the label
is assigned 1 or 0 depending on whether it’s the
order the customer called for.

3.2.2 Model Details
In order to learn a binary classifier for order pre-
diction, we experiment with various standard ma-
chine learning models like Logistic regression, tree
based ensemble model like Random Forest and
deep learning models like Deep Neural Network
(DNN). As a baseline, we compare with the re-
verse chronological ranking of orders with respect
to date of order. Various hyper parameters involved
in these models are tuned using grid search. More
details on the range of hyper parameters considered
and the chosen best hyper parameter is available in
appendix B.

4 Dataset
This section discusses details of the datasets used
for order search and order prediction experiments.

Search Dataset: In order to collect data for order
search experimentation, customers with multiple
active orders were asked to describe the product
they are calling for. The transcribed customer ut-
terances along with the product attributes of the
orders like product title, brand, etc constitute our
dataset. We had a small development dataset of
about 2.5K calls and a large test set of about 95K
calls. The development set was used to build and
tune the fuzzy search technique. The performance
on both datasets are reported in section 5.1.

Prediction Dataset: The dataset for predictive
modeling is collected from the live customer calls.
The dataset contains features of active orders and
the customer chosen order, which would serve as
ground truth. We came up with a variety of fea-
tures from order, product related ones to self serve
related ones and are collected online or offline de-
pending whether the feature is dependent on the

time when customer calls. The features for the ac-
tive orders and the customer chosen order for 150K
customer calls constitute our prediction dataset.
The experiments and results on this dataset is given
in section 5.2.

5 Experiments and Results
The performance of an order search algorithm is
evaluated using Coverage and Accuracy. Cover-
age refers to the fraction of calls, where proposed
technique gave a match. Among the cases where
match is found, accuracy refers to the fraction of
correct matches. The rest of this section discusses
the experiments and results on the development
and test sets of the search dataset followed by order
prediction experiments and finally the performance
combining search and prediction for order identifi-
cation.

5.1 Order Search Results
We compare our approach fuzzy search with the
following two approaches viz. manual baseline and
ecommerce search. In manual baseline, customer
utterances were tagged for product entities by hu-
man agents handling those calls to get a baseline
on the coverage. Ecommerce search refers to the
general purpose product search used by consumers
on ecommerce websites and mobile apps. This lat-
ter approach relies on NER for detecting product
entities, which we had done through a NER model
based on conditional random fields (CRF) (Lafferty
et al., 2001).

Figure 2 shows the coverage of fuzzy search vs
these two approaches on the development set of
search dataset. As shown, we had a total of 2515
customer utterances, of which human annotators
could spot product entities only in 34% of them
demonstrating the difficulty of the task. Fuzzy
search and ecommerce search had a coverage of
32.1% and 17.2% respectively. Both fuzzy and
ecommerce search have an overlap with the re-
maining 66% data that manual annotations couldn’t
cover, showing that product entity malformations
due to transcription noise is overcome by these
models significantly. The coverage of ecommerce
search is affected by poor NER performance on
noisy ASR transcripts. At this point, an attentive
reader may refer back to Table 1 to see some of the
sample matches returned by fuzzy search. Some
more qualitative results are shown in Appendix-C
to understand the gap between fuzzy and ecom-
merce search further. Clearly, our customized ap-
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Figure 2: Comparison of coverage of fuzzy search
against manual baseline and ecommerce search on de-
velopment set. Vertical placements are indicative of
overlaps between different sets.

proach fuzzy search performs better than ecom-
merce search.

As a second experiment, we compare fuzzy
search against text embedding based approaches
- fasttext based similarity modelling and fuzzy
search on fasttext. The former obtains the rel-
evance of a customer utterance to a product by
taking cosine similarity between their correspond-
ing sentence embeddings and the most relevant
orders(s) with similarity over a threshold is consid-
ered. Sentence embeddings are obtained by aver-
aging the word embeddings obtained from a Fast-
text model(Bojanowski et al., 2017) trained on cus-
tomer utterances and product titles. Fuzzy search
on fasttext combines the benefits of customisations
in fuzzy search and the semantics from fasttext,
where fuzzy search is done on text embeddings,
with textual similarity replaced by cosine similarity
over fasttext embeddings of n-grams.

Table 2 shows the coverage and accuracy of sin-
gle and multiple matches retrieved by various or-
der search approaches on live contact center calls,
that constitute the test set of search dataset. Fuzzy
search is found to perform better with 18.02% sin-
gle order matches with an accuracy of 86.33%.
Similarity modelling on fasttext is found to have
lesser coverage and accuracy than fuzzy search.
Decrease in accuracy is attributed to calls with mul-
tiple similar orders and the retrieval fetches one
of them as a match but customer chose a different
order during the call. Fuzzy search on fasttext per-
forms on par with fuzzy search on text, showing
that semantics captured by word embeddings does
not add incremental value. This, we believe, is
owing to the lexical nature of product titles and un-
ambiguous context of customer utterances. Fuzzy
search despite being unsupervised, experimented

on development data, the coverage and accuracy
hold good on real life calls as well.

Upon deep diving into the multiple order
matches from fuzzy search, we found around 38%
of such multiple matches had exact same prod-
uct (same make and model), 49% of them were
same product type - can be different model, color
etc (e.g., multiple t-shirts), some of them being
similar products (e.g., shampoo, hair conditioner,
hair serum of the same brand). Multiple matches,
though not acted upon by voice-bot, are still valid
matches.

5.2 Order Prediction Results

The performance of order prediction is measured
by top-k accuracy(Ak) given by the fraction of calls
where the model predicted the ground truth order
in top-k predictions. We use Prediction dataset
with train/val/test split of 70/10/20 respectively for
training order prediction models. Table 3 shows
the top-k accuracy of various prediction models.
Random Forest, a decision tree based ensemble
model is found to perform better at both top-1 and
top-2 accuracy of 72.52% and 88.71% respectively
and marginally under performing than Deep Neural
Network (DNN) at top-3 thereby showing the char-
acteristics of the orders indeed decide the order,
customer calls for.

The reader may again refer to Table 1 where the
rightmost two columns show some of the sample
top-1 predictions and the features that led to such
predictions by the Random Forest model. In the
first example shown in table 1, among many orders,
model predicted fitness band, which the customer
has already initiated return process and have an
existing complaint lodged. Upon looking into the
top features that govern the model’s predictions,
we found self serve features like chat before call,
existing complaints before call, etc. in addition to
the rank wrt ordered date and selling price to be on
top, showing that the customers explore self serve
before calling. We show the Shapley Values plot of
the feature importance in figure 3. We introduce a
threshold on the likelihood of top ranked prediction
to improve the accuracy while marginally compro-
mising on coverage. With a threshold of 0.6, top-1
predictions from Random Forest had a coverage
and accuracy of 62.5% and 84% respectively.

Both order search and order prediction is also
evaluated on an out-of-time data, consisting of 13K
customer calls. Table 4 shows the coverage and
accuracy of order search and order prediction indi-
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Approach Coverage (in %) Accuracy (in %)
Single Multiple Single Multiple

Fuzzy Search 18.02 9.62 86.33 70.19
Fasttext based Similarity modelling 17.93 4.28 71.03 63.34
Fuzzy Search on fasttext 17.09 10.47 85.36 71.22

Table 2: Coverage and accuracy of single and multiple matches from order search approaches on the test set

Model A1 A2 A3

Rev. Chronological 40.09 75.17 87.74
Logistic Regression 71.00 88.00 93.70
Random Forest 72.52 88.71 94.09
DNN 70.34 88.33 94.34

Table 3: Top-k accuracies(%) of order prediction mod-
els

Approach Coverage Accuracy
Fuzzy Search 20.32 86.83
Order Prediction 58.1 84.46
Search + Prediction 64.7 87.18

Table 4: Performance of Search and Prediction

vidually and the overall coverage by having both
search and prediction in place. Order prediction
resulted in an incremental coverage of 44% while
maintaining same accuracy.

6 Related work
Order identification has not been much explored
in the literature. Most related problem is on NER
to identify product entities (Putthividhya and Hu,
2011; Joshi et al., 2015; More, 2016). In the lit-
erature, there are many studies focused on NER
for product entity extraction ranging from classical
techniques (Brody and Elhadad, 2010) to recent
deep learning approaches that make use of word
embeddings (Majumder et al., 2018; Jiang et al.,
2019). While entity extraction from text is well
researched in the literature, NER on speech is less
studied. Most initial works on speech had a two
staged approach - ASR followed by NER (Cohn
et al., 2019), recent works directly extract entities
from speech (Ghannay et al., 2018; Yadav et al.,
2020). While NER helps in ecommerce search on
websites and apps, the specific nature of order iden-
tification problem and the limited search space of
active orders make NER unnecessary.

Another related line of works is on sentence sim-
ilarity tasks. Owing to the success of word em-
beddings (Mikolov et al., 2013; Bojanowski et al.,
2017), there is a lot of literature on textual simi-
larity related tasks, that make use of word embed-

Figure 3: Feature importance of top 20 features for
Random Forest model. Features with prefix ‘rank’ or
suffix ‘for any other order’ are derived features intro-
duced to bring relation with other active orders.

dings in a supervised (Yao et al., 2018; Reimers
and Gurevych, 2019; Shen et al., 2017) and un-
supervised fashion (Arora et al., 2016). (Wieting
et al., 2015) showed that simple averaging of word
embeddings followed by cosine similarity could
provide competitive performance on sentence simi-
larity tasks. We have compared word embeddings
based approaches to show that additional semantics
does not help in order identification problem.

7 Conclusion
In this paper, we present one of the first studies ex-
ploring order identification for ecommerce contact
centers. The proposed two-staged fuzzy search and
order prediction technique provide 64% coverage
at 87% accuracy on a large real-life dataset which
are significantly better than manual baseline and
relevant comparable techniques. Order prediction
though developed for voice-bot, could also be used
in other places like chat bot or non bot calls, where
we can ask proactively if this is the order customer
is looking for help. Finally, going beyond the sci-
entific impact of this work, the proposed solution is
also deployed in production for a fraction of calls
landing in the contact center of a large ecommerce
provider leading to real-life impact.
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B Hyper-parameter tuning for Order Prediction

Model Hyper-parameter Range of values Best hyper-parameter

Logistic Regression
penalty l1, l2, elasticnet,none l2
tol [1e-2,1e-6] 1e-5
C [1e2, 1e-2] 1

Random forest

n estimators [10,1000] 50
criterion gini,entropy gini
max depth 10, 20, 50, 100 20
min samples leaf 2,10,50,100 10
bootstrap False, True True

DNN

number of hidden layers 2,3 2
number of neurons 50,100,200 100
lr [1e-2,1e-4] 1e-3
activation relu, sigmoid, leaky relu, tanh leaky relu

Table 5: Range of values for various hyper-parameters and the chosen hyper-parameter with best top-1 accuracy
on validation set for various order prediction models
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C Sample predictions from fuzzy search & ecommerce search

Customer Ut-
terance

Product titles of active orders Comments

mi tv ke baare
mein

[STAMEN 153 cm (5 ft) Polyester Window Curtain (Pack Of 4), Sauran 26-55 inch

Heavy TV Wall Mount for all types of Fixed TV Mount Fixed TV Mount, Mi 4A 100
cm (40) Full HD LED Smart Android TV, Leemara Virus Protection, Anti

Pollution, Face Mask, Reusable-Washable Outdoor Protection Cotton Safety Mask]

3Fuzzy
Search
3Ecommerce
Search

cover ke
baare mein
mobile cover
ke baare mein

[Aspir Back Cover for Vivo V15, Mobi Elite Back Cover for Vivo
V15, RUNEECH Back Camera Lens Glass Protector for VIVO V 20, Shoes Kingdom

Shoes Kingdom LB791 Mocassins Casual Loafers For Men (Brown) Loafers For Men,

Aspir Back Cover for Vivo V20, CatBull In-ear Bluetooth Headset]

3Fuzzy
Search
7Ecommerce
Search

datacable ke
liye

[Easy Way Fashion Doll with Dresses Makeup and Doll Accessories, Vrilliance
Traders Type C Compatible Fast Data Cable Charging Cable for
Type C Android Devices (1.2 M,Black) 1.2 m USB Type C Cable]

3Fuzzy
Search
7Ecommerce
Search

in clinics hot
94

[JOKIN A1 MULTI FUNCTIONAL SMARTWATCH Smartwatch, Infinix Hot 9
Pro (Violet, 64 GB), Vivo Z1Pro (Sonic Blue, 64 GB), Vivo Z1Pro (Sonic Blue,

64 GB), Vivo Z1Pro (Sonic Blue, 64 GB), Tech Unboxing Led Rechargeable Fan With

Torch 120 mm 3 Blade Exhaust Fan]

3Fuzzy
Search
7Ecommerce
Search

chappal ke
liye paanch
sau saat sattar
pe ka product
tha mera

[Highlander Full Sleeve Washed Men Jacket, Oricum Slides, BOLAX Black Slouchy

woolen Long Beanie Cap for Winter skull head Unisex Cap, Oricum Slides, BOLAX

Black Slouchy woolen Long Beanie Cap for Winter skull head Unisex Cap]

7Fuzzy
Search
3Ecommerce
Search

Table 6: Examples of predictions from fuzzy search and ecommerce search. First column shows the customer
utterances along with the NER predictions emphasized. Second column shows all active orders at the time of call,
with matching orders emphasized. Last column shows the correctness of order search approaches.
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Abstract

Fake reviews and review manipulation are
growing problems on online marketplaces
globally. Review Hijacking is a new review
manipulation tactic in which unethical sellers
“hijack” an existing product page (usually one
with many positive reviews), then update the
product details like title, photo, and descrip-
tion with those of an entirely different product.
With the earlier reviews still attached, the new
item appears well-reviewed. However, there
are no public datasets of review hijacking and
little is known in the literature about this tactic.
Hence, this paper proposes a three-part study:
(i) we propose a framework to generate syn-
thetically labeled data for review hijacking by
swapping products and reviews; (ii) then, we
evaluate the potential of both a Twin LSTM
network and BERT sequence pair classifier to
distinguish legitimate reviews from hijacked
ones using this data; and (iii) we then deploy
the best performing model on a collection of
31K products (with 6.5 M reviews) in the orig-
inal data, where we find 100s of previously un-
known examples of review hijacking.

1 Introduction

Reviews are an essential component of many on-
line marketplaces, helping new consumers assess
product quality, legitimacy, and reliability. Recent
surveys indicate that an overwhelming majority of
people read reviews (Murphy, 2020). Indeed, 79%
of people overall and 91% of people ages 18-34
trust online reviews as much as personal recom-
mendations (Kaemingk, 2020). Naturally, reviews
have become a target of manipulation, misuse, and
abuse (Mukherjee et al., 2012).

In this paper, we focus on the problem of review
hijacking, a relatively new attack vector and one
that has received little, if any, research attention.
Review hijacking is a fraud technique wherein a

blackhat seller “hijacks” a product page that typ-
ically has already accumulated many positive re-
views and then replaces the hijacked product with
a different product (typically one without any pos-
itive reviews). The sellers then reap the ratings
“halo” from consumers who assume the new prod-
uct is highly rated. This review hijacking (also
referred to as review reuse or bait-and-switch re-
views) provides the sellers with a shortcut to many
undeserved positive reviews.

Figure 1: An example of review hijacking on Amazon
(May 7, 2021)

Figure 2: Hijacked reviews associated with the hair re-
moval product in Figure 1
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An example is shown in Figure 1 which we dis-
covered in the first week of May 2021. This hair
removal product has 4,069 reviews with an average
rating of close to five stars. On inspection of the
reviews (see Figure 2), we find many that refer to
other products like dishwasher cleaners and dia-
pers. Also, these reviews are for verified purchases
which can provide added weight to the ostensible
veracity of the reviews.

We have identified at least three different meth-
ods that blackhat sellers adopt to conduct review
hijacking depending on the particular e-commerce
platform. A seller can incrementally change as-
pects of their own product (like the title, photo,
description), resulting in an entirely new product,
though still associated with the original reviews.
Alternatively, a seller can add his product as a prod-
uct variation of some other product to aggregate re-
views from the former product. One can also merge
reviews from some other products to their own by
changing country or using some other platform-
specific loopholes.

While review hijacking has been recognized in
the press and social media as a growing problem,
e.g., (Swearingen, 2019; Walsh, 2020; Sterling,
2019; Dascalescu, 2019; Nguyen, 2018; Dzieza,
2019), there has been no structured research to date
on identifying review hijacking. We attribute this
to several key challenges:

• First, there are no standard datasets of review
hijacking, nor are there gold labels of known
examples. Hence, it is challenging to validate
models that aim to uncover review hijacking.

• Second, review hijacking is a targeted attack
vector with a skewed distribution, and so there
are no simple approaches to find examples.
In a preliminary investigation, we manually
labeled hundreds of reviews and found fewer
than 0.01% reviews that could be considered
part of a review hijacking attack.

• Third, many reviews cannot easily be labeled
as hijacked or not. For example, reviews like
“Great product! Five stars!” are generic and
could potentially be associated with any prod-
uct.

• Finally, hijackers may adopt sophisticated
techniques to avoid detection. For example,
some products may have a mix of legitimate
reviews to camouflage the hijacked ones (e.g.,

by incentivizing reviewers to contribute a re-
view about the hair removal product).

Hence, this paper proposes an initial investiga-
tion into the potential of identifying review hijack-
ing. We conduct a three-part study. Due to the
challenges of finding high-quality examples of re-
view hijacking, we first propose a framework to
generate synthetic examples of review hijacking
by swapping products and reviews. We do so both
at the inter-category level (where presumably it
should be easier to determine if a review is associ-
ated with a product) and at the intra-category level
(where product similarity within the category may
make this more challenging). Over this synthetic
dataset, we evaluate the potential of both a Twin
LSTM network and BERT sequence pair classi-
fier to distinguish legitimate reviews from hijacked
ones. Based on the encouraging results from this
experiment, we then deploy the BERT sequence
pair classifier algorithm on a real collection of 31K
products (with 6.5 M reviews). By averaging the
review scores from the classifier for each product,
we find that products with an average review score
(or suspiciousness score) > 0.5 have 99.95% of the
listings containing unrelated or hijacked reviews.
These findings suggest the promise of large-scale
detection of review hijacking in the wild.

2 Related Work

The manipulation of reviews and review platforms
has been widely studied, e.g., (Gössling et al., 2018;
Jindal and Liu, 2007; Kaghazgaran et al., 2017;
Mukherjee et al., 2012, 2013), though there is little
research literature on the problem of review hijack-
ing. Here, we highlight several efforts related to
the methods proposed in this paper. Higgins et
al. developed models for an essay rating system
to detect bad-faith essays by comparing the essay
titles to the essay text to determine whether the
title and text were in agreement through the use of
word similarity (Higgins et al., 2006). A similar
idea motivates our approach that compares product
titles/descriptions with review text. Louis and Hig-
gins continued this line of research to determine
whether a particular essay was related to the essay
prompt or question by expanding short prompts and
spell correcting the texts (Louis and Higgins, 2010).
Rei and Cummins extended this work and com-
bined various sentence similarity measures like TF-
IDF and Word2Vec embeddings with moderate im-
provement over Higgins’ work (Rei and Cummins,
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2016). Apart from the essay space, Ryu et al. inves-
tigated the detection of out-of-domain sentences
(Ryu et al., 2017). They proposed a neural sen-
tence embedding method representing sentences in
a low-dimensional continuous vector space that em-
phasizes aspects in-domain and out-of-domain for
a given scenario. In another direction, fake news
detection and clickbait detection can be viewed as
related tasks. For example, Hanselowski et al.used
a BiLSTM model with attention to determine if
the headline of a news article agrees, disagrees,
or is unrelated to the text as part of a Fake News
Challenge (Hanselowski et al., 2018).

3 Generating Synthetic Examples of
Review Hijacking

In our preliminary investigation, we examined hun-
dreds of reviews from the Amazon dataset provided
by McAuley (Ni et al., 2019). The dataset contains
233.1 million reviews from May 1996 to October
2018, with reviews and product information includ-
ing title, description, etc. However, we find very
few examples of review hijacking. Hence, we con-
cluded that hiring crowd labelers or subject matter
experts to label product-review pairs as hijacked
or not hijacked might not be fruitful. Instead, we
propose a method to generate synthetic examples
for studying the potential of models to identify hi-
jacked reviews.

3.1 Preliminaries

As a first step, we prepared the Amazon dataset.
For each product i, we combined the description
(product text provided by the seller), title (the name
of the product), the brand of the product, and fea-
tures (product features like color or size) into a
single product text Pi. We also removed products
with fewer than five reviews.

For each review j, we combined the reviewText
(the text in the review body), the style (which con-
tains some optional product features like color or
size), and summary (which is the headline of the
review) into a single review text Rj .

Hence, our goal is to determine if each review
j associated with the product i, is actually related
to the product or not. If the review is unrelated,
we can conclude that there is potential evidence
of review hijacking for the product. Of course,
there could be other reasons for a review for being
unrelated to a product, like an error by the reviewer.
We leave this fine-grained determination as future

work.

3.2 Swapping Reviews

Given these products and reviews, we propose to
randomly swap reviews between a pair of distinct
products, yielding a collection of unrelated product-
review pairs. As a first step, we assume that all
reviews are actually related to the associated prod-
uct. Hence, we have a large set of product-review
pairs with the label related (= 0). Of course, we
know that our data has some hijacked reviews (on
the order of < 0.01%), so we will tolerate some
errors in these labels.

By randomly swapping product-review pairs, we
get a set of product-review pairs with the label
unrelated (= 1). For example, Figure 3 shows a
simple example of a basketball and a phone, each
with an associated review. We swap reviews among
the products to generate unrelated (= 1) labels in
addition to the original related (= 0) labels.

Figure 3: Generation of Synthetic Label and Data by
Swapping Reviews among Dissimilar Products

But, how do we select which products to select
for randomly swapping reviews? Randomly select-
ing products may lead to such a clear mismatch
between the review text and the product text that
detection would be trivial. On the other hand, se-
lecting closely related products (e.g., by selecting
Samsung mobile covers from two different brands)
may yield reviews that are essentially undetectable
as possible hijacking. Hence, we propose two meth-
ods for finding pairs of dissimilar products for re-
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view swapping.

Inter-Category Swapping. The first approach
takes a product text Pi composed of the title, fea-
tures, and description from one category (e.g.,
Beauty, Clothing, Electronics) and the review texts
Rj of a product in another category for unrelated
reviews. For related reviews, we take the original
product-review pairs. We obtained a set of ≈ 59k
reviews with ≈ 25k unrelated reviews and ≈ 34k
related reviews.

Intra-category Swapping. The first approach han-
dles hijacking across categories. For hijacking oc-
curring within a product category, we use Jaccard
distance. We converted product titles for each prod-
uct into TF-IDF feature matrices, found pairwise
Jaccard distances between them, and we formed
product pairs (A1, A2) with Jaccard distance 0.
Then, we took the product text Pi of one prod-
uct A1, and the review text Rj of another product
A2 and labeled this as unrelated. Similarly, we
took the product text of A2 and a review of A1 as
unrelated. For related labels, we took the product
text, and the review text of A1, and likewise for A2

to get another set of related data. We obtained a set
of ≈ 56k reviews with ≈ 22k unrelated reviews
and ≈ 34k related reviews.

4 Identifying Synthetic Examples

Given these synthetic datasets of hijacked reviews,
can we detect them? In this section, we report on
experiments with two approaches: one based on a
Twin LSTM and one based on BERT Sentence Pair
Classification.

We shuffled the product-review pairs and split
them into training, validation and test set in ratio
70:10:20 for both of the datasets. The actual num-
ber of reviews in each set depends on the swapping
categories and is discussed in Section 3.2 We train
on the train set, tune models on the validation set,
and have reported results on the test set.

4.1 Twin LSTM Network
The first approach adopts a Twin neural network
which has shown success in comparing images
and text. This network uses the same weights in
parallel in tandem on two inputs to return output
based on the relation or distance between them
(Chicco, 2021). Concretely, we compare sentence
pairs and determine if they are similar or not. We
tokenized our inputs and converted them into se-
quences. Then we used 300-dimensional GloVe

(Pennington et al., 2014) embeddings and formed
an embedding matrix for our tokens. We get two
embedding matrices for both inputs, which we feed
into the LSTM network illustrated in Figure 4. We
use twin LSTM networks with two layers of 64
nodes each, with a dropout of 0.01. We calculate
the cosine similarity between the two input embed-
dings and evaluate the performance by computing
cross-entropy loss using accuracy and AUC (Area
Under Curve). It takes 13 epochs with Adam opti-
mizer and learning rate of 0.00001 to get the result.

Figure 4: Twin LSTM Network

4.2 BERT Sequence Pair Classifier
The second approach adopts the popular BERT pre-
trained language model (Devlin et al., 2019). Since
BERT provides a deep bidirectional representation,
conditioned on text in both directions, we expect
this method to perform better than the twin neural
network, which uses GLOVE embeddings. Our
model is prepared from the BERT BASE model
(bert 12 768 12) from GluonNLP. We add a layer
on top for classification, as shown in Figure 5. We
use Adam optimizer for optimizing this classifica-
tion layer and get results with only 3 epochs.

Now we form the sentence pairs for classifica-
tion. Like the previous method, the first sentence is
the product text Pi (a concatenation of product title,
features, and description). The second sentence is
the review text Rj (a concatenation of the review
summary and review text). We then tokenize the
sentences, insert [CLS] at the start, insert [SEP] at
the end and between both the sentences, and gener-
ate segment ids to specify if a token belongs to the
first sentence or the second one. We now run the
BERT fine-tuning with these sequences as inputs.
We get the output as an unrelated score u(i, j) be-
tween 0 and 1. For texts longer than 512 tokens,
we truncate and take the first 512 tokens for our
model. As 99% of the review texts have fewer than
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512 tokens, this choice impacts very few reviews.

Figure 5: BERT Sequence Pair Classifier

4.3 Results

Table 1 shows the results reported on test data us-
ing these two approaches. We see that the Twin
LSTM Network provides more than 80% accuracy
and high ROC result on both inter-category and
intra-category datasets. The BERT-based classifier
has more than 90% accuracy and ROC result for
both datasets. We see that both methods perform
better on the inter-category dataset than the intra-
category one. In the inter-category dataset, we
obtain unrelated reviews by taking products from
one category and review texts from another. Hence,
models trained on this dataset can learn product
features of one category at a time and develop ex-
pertise in that category. The intra-category dataset
is more challenging for both approaches. Since
products are drawn from the same category, there
can be less clarity in distinguishing features of the
reviews.

Paired with this summary table (Table 1), we
show in Figures 6, 7, 8 and 9 the ROC curve for
the BERT-based model and Twin LSTM network.
We can clearly see that BERT-based model per-
forms better than LSTM. We can also see how both
models perform better on the inter-category dataset
rather than the intra-category one.

5 Detecting Hijacked Reviews
In-the-Wild

Even though encouraging, these results are on syn-
thetic data, and the data itself may contain noisy
labels. Hence, we next turn to the task of uncov-

Figure 6: ROC curve for Twin LSTM network run on
Intra-category data (Jaccard distance)

Figure 7: ROC curve for BERT seq. pair classifier run
on Intra-category data (Jaccard distance)

Figure 8: ROC curve for Twin LSTM network run on
Inter-category data

Figure 9: ROC curve for BERT seq. pair classifier run
on Inter-category data
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Model Synthetic Data Accuracy ROC result
Twin LSTM Network Intra-category 0.823 0.770

Inter-category 0.885 0.910
BERT Sequence Pair Classifier Intra-category 0.916 0.948

Inter-category 0.965 0.993

Table 1: Hijacked review detection accuracy reported on the test set

ering hijacked reviews in-the-wild. Can a model
trained over synthetic data identify actual hijacked
reviews?

5.1 Approach and Results
For this experiment, we used the BERT sequence
pair classifier and applied it to a dataset of 31K
products (with 6.5 M reviews) with the original
product-review pairs intact. These 31K products
were held out and not used during the training.

For each product-review pair, we take the un-
related score output from the trained BERT-based
model as u(i, j). For a product i with n reviews, we
calculate an average suspiciousness review score
as follows:

scorei =

∑n
j=1 u(i, j)

n

Based on this suspiciousness score, we plot the
distribution of all 31K products in Figure 10. Un-
surprisingly, the vast majority of products have
a very low suspiciousness score. About 99% of
products have scored < 0.3, reinforcing our ini-
tial assumption about a skewed class distribution.
In other words, the vast majority of the reviews
on listings seem to be related to the product itself.
However, we find many cases of potential review
hijacking (see the right side of Figure 10), indicat-
ing that this targeted attack is indeed a threat to
review platforms.

We manually checked a sample of 200+ prod-
ucts with a suspiciousness score of > 0.5. We
found that all but one of the products contained re-
views referring to a different product. While there
is uncertainty as to the mechanism leading to an
unrelated review, we hypothesize that these are in-
deed previously unknown cases of review hijacking.
And in an encouraging direction, these results indi-
cate the promise of training models over synthetic
hijacked reviews for uncovering actual instances.

5.2 Case Study
In this section, we discuss three sample products
three sample products and their distribution of unre-

lated scores u(i, j) that are assigned by the BERT-
based model. These three products are from the
Cellphone & Accessories category.

Figure 11 shows the unrelated score distribution
for all of the reviews of product-1. Product-1 has
an average unrelated review score of 0.9 to 1.0.
We can see from the distribution that most reviews
have a high unrelated score (> 0.9). We manu-
ally inspect these reviews and observe that these
reviews are indeed unrelated. Hence, we conclude
that this product is an example of review hijacking.

Figure 12 shows the unrelated score distribution
for product-2. Product-2 has an average review
score of 0.0 to 0.1, meaning most of the reviews
seem appropriate. We can see from the distribution
that most reviews have a low unrelated score (<
0.1), and a few have a high score (> 0.9). We
manually inspect the reviews with high unrelated
scores (> 0.9) and observe that these reviews are
either misclassified by our BERT-based model or
do not have enough information to determine the
label (e.g., reviews like “Great Product!”). Thus,
we conclude that this product is not an example of
review hijacking.

Finally, Figure 13 shows the unrelated review
score distribution for product-3. Product-3 has an
average review score of 0.5 to 0.6. We can see from
the distribution that about 55% of the reviews have
a high unrelated score, while 35% reviews have a
low unrelated score. We manually inspect reviews
with high unrelated scores (> 0.9) and observe that
these reviews are indeed unrelated to the product.
We also inspect the reviews with low unrelated
scores (< 0.1 and < 0.2) and observe that most are
related to the product. As this product has a mix of
related and unrelated reviews, we hypothesize that
it is also an example of review hijacking containing
some related reviews.

6 Conclusion, Limitations and Next
Steps

This paper has examined the challenge of identify-
ing hijacked reviews. Since we know little about
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Figure 10: Average Review Score vs. Number of Products

Figure 11: Unrelated Review Score Distribution for
Product-1 showing predominantly unrelated reviews

Figure 12: Unrelated Review Score Distribution for
Product-2 showing predominantly related reviews

these hijacked reviews, we first proposed to gen-
erate synthetic examples by swapping the reviews
of a product with reviews on an unrelated prod-
uct. We then tested the viability of a Twin LSTM
network and BERT sentence pair classifier to un-
cover these unrelated reviews. Both approaches
provided excellent results on synthetic data, but
do they actually identify hijacked reviews in the
wild? Our preliminary investigation showed that
a model trained over synthetic data could detect
many examples of previously unknown cases of
review hijacking.

Figure 13: Unrelated Review Score Distribution for
Product-3 showing a roughly equal mix of related and
unrelated reviews

Our method also has some limitations. First, the
major drawback occurs because the data is labeled
synthetically. Hence, there is no way to find the
actual recall for our approach. Calculating recall re-
quires manual labeling of all product-review pairs,
which is an expensive process. Second, our method
is dependent on the accuracy of labeling methods.
For the intra-category case, our method cannot de-
tect products hijacked with similar wording in the
same category since their Jaccard distance is low.
For example, if there are two products, “iPhone
X” and “iPhone 5C cover”, the products will have
a low Jaccard distance, and the reviews hijacked
among them cannot be labeled correctly. There-
fore, our ML model can also not learn this kind
of review hijacking. Third, generic reviews like
“Good product!” and “Product shipped fast” were
labeled hijacked and not hijacked depending on
what product they belonged to. Ideally, we would
want to label all of them as not hijacked. This
random labeling adds to the noise in the labels.

In our continuing work, we are interested in two
main directions: data and methods. From a data per-
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spective, we are investigating more refined methods
to generate synthetic labels. Can we couple crowd
labelers with our swapping approach to construct
better product-review pairs? We are also interested
in updating the data itself. Our dataset covers re-
views up to 2018, though many media reports of
review hijacking were not until 2019. There could
have been a rise in review hijacking that is not
as prominent in our data. From a methods per-
spective, we have focused purely on text-based
signals. Incorporating image-based features like
from the product itself and user-submitted images
could help identify examples of review hijacking.
We are also interested in adopting recent advances
in pre-trained language models like T5, DeBERTa,
and RoBERTa. We are also focusing on using e-
commerce specific text (like product catalog data)
to instill domain-specific knowledge during the pre-
training of language models versus BooksCorpus
and English Wikipedia used in BERT.

References

Davide Chicco. 2021. Siamese Neural Networks: An
Overview, pages 73–94. Springer US, New York,
NY.

Dan Dascalescu. 2019. Swapped product listings on
amazon - web applications stack exchange. We-
bapps Stackexchange.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Josh Dzieza. 2019. Even amazon’s own products are
getting hijacked by imposter sellers. The Verge.
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Abstract

Automatic extraction of product attribute-
value pairs from unstructured text like prod-
uct descriptions is an important problem for e-
commerce companies. The attribute schema
typically varies from one category of products
(which will be referred as vertical) to another.
This leads to extreme annotation efforts for
training of supervised deep sequence labeling
models such as LSTM-CRF, and consequently
not enough labeled data for some vertical-
attribute pairs. In this work, we propose a tech-
nique for alleviating this problem by using an-
notated data from related verticals in a multi-
task learning framework. Our approach re-
lies on availability of similar attributes (labels)
in another related vertical. Our model jointly
learns the similarity between attributes of the
two verticals along with the model parameters
for the sequence tagging model. The main ad-
vantage of our approach is that it does not need
any prior annotation of attribute similarity.
Our system has been tested with datasets of
size more than 10000 from a large e-commerce
company in India. We perform detailed ex-
periments to show that our method indeed in-
creases the macro-F1 scores for attribute value
extraction in general, and for labels with low
training data in particular. We also report top
labels from other verticals that contribute to-
wards learning of particular labels.

1 Introduction

Online e-commerce marketplaces (e.g., Flipkart)
operate by efficiently matching customer queries
and browsing habits to appropriate seller inven-
tory. Inventory is stored in a catalog which
consists of images, structured attributes (key-
value pairs) and unstructured textual description
as shown in figure 1. Products of same kind (e.g.,
digital camera) are thus described using a unique
set of attributes (e.g., zoom, resolution) – helping

Figure 1: A snapshot of structured attributes and
product description - underlined words wherein is
important, additional information not provided by
seller in attributes.

faceted navigation, merchandizing, search ranking
and comparative summary.

Onboarding products in a catalog requires pop-
ulating the structured as well as unstructured parts.
The time a seller has to spend on a product ad-
dition request is proportional to the quantum of
information that he/she has to provide. On the
other hand, correctness and completeness of cata-
log results in better product discovery, leading to a
trade-off with its onboarding time. A good amount
of attributes information is present in product de-
scription as well. This motivates us to extract the
information from unstructured text instead of ex-
plicitly asking sellers for attributes. Additional
information in description (e.g., precise features,
relation between products) as shown in figure 1
helps to enrich the catalog as well. The extracted
attributes can be used to check consistency be-
tween unstructured and structured data provided
by seller and thus quality control of addition re-
quest.
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We design supervised deep learning techniques
for the problem of attribute value extraction. Fig-
ure 2, shows a typical input sentence and the cor-
responding B, I, O tags. The task of our model
is to predict the tags given an input sentence. This
problem is related supervised sequence labelling
problem (Zheng et al., 2018; Lample et al., 2016).
However, this technique needs a lot of training
data points (sentence - label pairs) to perform ef-
fectively, which in turn requires massive annota-
tion efforts on the part of e-commerce companies -
reduction of which is an ongoing challenge; Open-
Tag (Zheng et al., 2018) uses active learning to an-
notate only most informative examples.

E-commerce companies however have the prod-
ucts categorized as different verticals, e.g. dress,
jeans, etc. Each of these verticals have a different
set of attributes, and hence needs to annotated us-
ing different models. A lot of the attributes among
these verticals are common, or related though.
Hence, it should be possible to borrow information
from annotations given in different verticals, to
improve the prediction performance of a given ver-
tical. The only challenge is that correspondences
between similar labels of different verticals is not
available readily.

Our main contribution here is thus to develop
a multi-task learning (MTL) model (Ruder, 2017)
which can simultaneously learn attribute extrac-
tion and attribute-attribute similarity for multiple
verticals (here we report with only two verticals
at a time). We do so by using a soft coupling
loss function across pairs of similar (context,label)
combinations between the two tasks, where simi-
larity is learned using attention mechanism. The
naive version of such an objective will be pro-
hibitively large to optimize. We propose to use a
cosine similarity based shortlist, which makes the
solution feasible.

We validate our method using a large corpus
(more than 10000 product descriptions, across 6
verticals) collected from the e-commerce com-
pany - Flipkart. Extensive experimentation shows
that our method improves performance of predic-
tion on almost all the verticals, and especially
shows upto 50% improvement for many labels
which have low number of training examples. This
is especially interesting since we find that num-
ber of instances with an attribute is highly skewed
across the attributes. Detailed analysis also con-
firms that the attention mechanism indeed discov-

Figure 2: Sample tagged data from Jean Vertical.

ers similar attributes from other verticals to bor-
rrow information from.

2 Related Work

Attribute extraction: Various tokens (e.g., Ap-
ple) in an offer title are classified into attribute
names (e.g., brand) relevant to the product (e.g.,
smartphone) (Joshi et al., 2015). For recognizing
attributes (e.g., product family) in a short text seg-
ment, missing KB entries are leveraged through
word embeddings learned on an unlabeled corpus
(Kozareva et al., 2016). (Joshi et al., 2015) in-
vestigates whether distributed word vectors benefit
NER in the e-commerce domain where entities are
item properties (e.g., brand name, color, material,
clothing size). (Xu et al., 2019) regards each at-
tribute as a query and adopts only one global set
of BIO tags for any attribute to reduce the bur-
den of attribute tag or model explosion. Open-
Tag (Zheng et al., 2018) uses active learning along
with a deep tagging model to update a product
catalog with missing values for many attributes
of interest from seller-provided title/description.
To create the initial labeled data set, (Rezk et al.,
2019) proposes bootstraping of seed data by ex-
tracting new values from unstructured text in a
domain/language-independent fashion. Through
category conditional self-attention and multi-task
learning, a knowledge extraction model Attribute
prediction and value extraction tasks are jointly
modelled (Zhu et al., 2020) from multiple aspects
towards interactions between attributes and values.
Contrastive entity linkage (Embar et al., 2020)
helps identify grocery product attribute pairs that
share same value (e.g., brand, manufacturer, prod-
uct line) and differ from each other (e.g., pack-
age size, color). Retailers do not always provide
clean data as textual descriptions in product cat-
alog (e.g., non-distinctive names (cotton, black t-
shirt), blurred distinction (Amazon is a product/vs.
brand), homonyms (Apple)). (Alonso et al., 2019)
discovers such attribute relationships towards a
brand-product knowledge graph from diverse in-
put data sources.

Multi-task Learning (MTL): Significant theo-
retical interest exists in MTL since it offers excel-
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lent generalization performance in domains where
training data is scarce (Maurer et al., 2016). In
NLP, (Collobert and Weston, 2008) proposed a
unified deep learning architecture for many com-
mon tasks e.g. POS tagging, chunking, etc. (Yang
and Hospedales, 2017) presented a new represen-
tation MTL framework that learns cross-task shar-
ing structure at every layer in a deep network. (Ri-
jula Kar, 2018) proposed a task-sensitive repre-
sentation learning framework that learns mention-
dependent representations for NED, and violates
norm to share parameters in the final layer.

(Wang et al., 2020) treats each attribute as a
question finding the best answer span correspond-
ing to its value in product context - modelled by a
BERT encoder shared across all attributes for scal-
ability. A distilled masked language model im-
proving generalizability is then integrated with the
encoder into a unified MTL framework. (Kara-
manolakis et al., 2020) applies to thousands of
product categories organized in a hierarchical tax-
onomy. However, existing methods do not au-
tomatically discover attribute-attribute similarity
from data, without taking attribute hierarchy as in-
put.

3 Methods

In this section, we describe a novel multi-task
approach to improving the accuracy of a super-
vised attribute value extraction system. We start
with the attribute-value extraction system, based
on deep bidirectional LSTM model, described in
OpenTag (Zheng et al., 2018). Our main idea
here is to leverage the information contained in in-
stances of related tasks, e.g. in our case related
domains / verticals of products. The key challenge
in our case is that the set of labels across verti-
cals need not be same, or even aligned. For ex-
ample, the label PROCESSOR TYPE is a valid la-
bel for LAPTOP vertical but does not make sense
for DRESS vertical. On the other hand, the set of
values for the common label BRAND will be very
different for the vertical DRESS compared to the
vertical LAPTOP. Hence, our core challenge here
is to determine the similarities between labels au-
tomatically in the context of each vertical in order
to leverage the information from a related vertical.
The proposed architecture is described in figure 3.

3.1 Problem setup
Each instance of the (single-task) attribute-value
extraction problem comes with an input sen-
tence denoted by a sequence of words w =
{w1, . . . , wn} and a corresponding set of labels
y = {y1, . . . , yn}. The task is to design a su-
pervised ML algorithm which given the input sen-
tence w, predicts the output labels y. Here, the
labels correspond to the attributes, e.g. COLOR,
and words correspond to the predicted values. Fol-
lowing common practice, we use 3 types of labels
(also called tags): B, I, O. Here B and I are
prepended to the label to indicate begining and end
of a multi-word tag, respectively, while O refers to
no tag for the word. For example, the multi-word
color “light green” may be tagged as B COLOR
and I COLOR.

This is an instance of sequence labeling prob-
lem (Lample et al., 2016), and the LSTM-CRF
model proposed by Lample et al. (Lample et al.,
2016) is the a state of the art model for this task.
For each word wi, we obtain the corresponding
word embedding xi using a concatenation of its
glove embedding (Pennington et al., 2014) and
it’s character based embedding. The word embed-
dings of a sentence x = {x1, . . . , xn} is passed
through a Bidirectional LSTM (BiLSTM) layer to
produce the context sensitive word embedding h:

h = BiLSTM(x) (1)

We call this the the embedding layer for our in-
put which is common to both single and multi-task
models. Figure 3(a) describes the architecture in
detail.

For the multi-task attribute-value extraction
problem, the input is a sentence wtjj = 1, . . . , n,
and the output of model is a sequence of labels
ytj , j = 1, . . . , n, where t = 1, . . . , T . In this pa-
per we only consider the setting of T = 2, i.e.
we learn from 2 tasks at a time, due to scalability
reasons. However, in theory our method can be
extended to learning from more than 2 tasks. We
compute the word embeddings x and context de-
pendent word embeddings h in a similar manner
as described above.

3.2 Single-task attribute-value extraction
We use the LSTM-CRF model with character em-
beddings (Lample et al., 2016; Zheng et al., 2018)
as our baseline single task model. For a given in-
put sentence the word embeddings x and the con-
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(a) (b)

Figure 3: (a) Architecture of single task model showing the sentence embedding layers (b) High-level architecture
of the multi-task attribute-value extraction model

text sensitive word embeddings h are computed as
described above. The context sensitive word em-
beddings hi, i = 1, . . . , n is then passed through
a fully connected layer to produce the score s(y)
for every possible label y. This is parameterized
by the matrix W ∈ Rd×k and b ∈ Rk where d is
the dimension of hi and k is the total number of
possible labels. Hence the score vector for every
label is computed as:

si(.|x) =W × hi + b∀i = 1, . . . , n

where n is the length of sentence. We can interpret
the kth component of si, denoted as si(y = k|hi),
as the score of class k for word wi . Now, given a
sequence of words vectors x , a sequence of score
vectors {s1(y|x), . . . , sn(y|x)}, and a sequence of
keys y, a linear-chain CRF defines a global score
C ∈ R as,

C(x,y) =

n∑

i=1

si(yi|x) +
n−1∑

i=1

T (yi, yi+1|x)

Here, s(y|x) is the yth component of the s vector
and T (y, y′) is the transition score from label y to
y′, which is used to capture label dependency.

A softmax over all possible tag sequences yields
a probability for the sequence y. P (y|x) =

eC(x,y)

∑
y
′∈Y e

C(x,y
′
)

During training, we maximize

the log-probability of the correct key sequence:
log(P (y|x)) = C(x,y) − log(

∑
y′∈Y e

C(x,y
′
))

Here Y is the set of all possible labellings for se-
quence x. Given a dataset of sequences and labels
D = {(xj ,yj), j = 1, . . . ,m, we can define the
CRF loss as the negative log-likelihood:

LCRF (W, b) =

m∑

j=1

−log(P (yj |xj))

(Lample et al., 2016) describes a method for learn-
ing the model parameters and inferring the parti-
tion function and scores by minimizing the above
objective w.r.t. W and b.

3.3 Multi-task attribute-value extraction

As mentioned above, for multi-task attribute-value
extraction, we have sequence and label combina-
tions (xt,yt) for two tasks, t ∈ {1, 2}. We also
note that we have a common set of embedding lay-
ers (both word representation and BiLSTM) for
the two tasks. However, the feedforward layer
used for scoring the labels are specific to the tasks.
Hence:

sti(.|x) =W t×hi+bt, ∀i = 1, . . . , n ; ∀t = {1, 2}
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The score and loss functions can be
defined analogously to the single task
model as: Ct(x,y) =

∑n
i=1 s

t
i(yi|x) +∑n−1

i=1 T
t(yi, yi+1|x), and log(P t(y|x)) =

Ct(x,y) − log(
∑

y′∈Y e
Ct(x,y

′
)). Given

the multi-task dataset Dt = {(xtj ,ytj), j =
1, . . . ,mt, t = {1, 2}, our loss function can be
written as:

LCRF (W, b) =
2∑

t=1

mt∑

j=1

−log(P t(ytj |xtj))

Hence, only parameters of the embedding lay-
ers get affected by the multi-task paradigm here,
since those are the only shared layers between the
tasks. However, these parameters are indepen-
dent of the labels and are thus relatively robustly
learned by just using a reasonably large corpus
of input sentences. Another mechanism for bor-
rowing information between tasks is through “soft
coupling” (Ruder, 2017) of various scores or pa-
rameters which are not explicitly shared. In the
next section, we devise a soft coupling loss be-
tween instances of the two tasks which achieve
transfer of information at the granularity of labels.

3.4 Coupling loss

The principle we use for coupling of scores
sti(y|x) is: similar labels in similar contexts
should have similar scores. Recall that the dataset
for multi-task attribute value extraction consists of
two sets of instances D1 and D2, for each of the
two tasks. Since we are attempting to compare the
model predictions for the two tasks, the coupling
loss depends on two contexts, one from each task:
(xj ,yj , i) and (xj′ ,yj′ , i

′). Here, j and j′ denotes
indices of instances for the two tasks, and i and
i′ indices within the each sentence instance to the
two tasks. We note that since the are ∼ 1000 in-
stances for each task, and ∼ 10 length sentences
for each instance, the total number of terms for this
loss will be ∼ 108 ((10 × 1000)2). This is pro-
hibitively large for our training purpose, and also
is wasteful, since not all contexts (combination of
instance j and position i) are related to each other.

Hence, as a first step we create a shortlist of
pairs of contexts ((i, j), (i′, j′)) which can bor-
row informations from each other, by threshold-
ing on the cosine similarity between the a windows

around the contexts ui,j and u′i′,j′ :

L = {((i, j), (i′, j′)) |
cosine sim(ui,j , u

′
i′,j′) > thresh}

Here, note that u(i, j) is the word embedding of a
window around the context (i, j).

Context coupling error: Our next challenge is
to design a mechanism to figure out similar con-
texts and similar labels. We use the softmax atten-
tion mechanism to automatically learn the similar
label-context combinations, simultaneously as we
also learn the scoring function. For efficiency of
parameters, we use the Luong attention. Hence
the attention score for context (i, j) from task 1
over context (i′, j′) from task 2 is given by:

A(j, i, j′, i′) =
eα(j,i,j

′,i′)

∑
(ĵ ,̂i)∈L(j,i) e

α(j,i,ĵ,̂i)

α(j, i, j′, i′) = u(i, j)T diag(a)u(i′, j′)

Here, a = (a1, ...., ad) are learnable parameters
of same dimension as the word embeddings, and
L(j, i) = {(j′, i′)|((i, j), (i′, j′)) ∈ L}. The
context-coupling error is defined as:

CCE(L,a) =
∑

((j,i),(j′,i′))∈L
A(j, i, j′, i′)×

|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

We note that this score is selecting the similar con-
texts from second task since it normalizes the at-
tention score over the contexts of the second task.
Symmetrically, we can define the attention score
of context (i′, j′) from task 2 over (i, j) from task
1 as:

A′(j, i, j′, i′) =
eα

′(j,i,j′,i′)

∑
(ĵ ,̂i)∈L(j′,i′) e

α(ĵ ,̂i,j′,i′)

α′(j, i, j′, i′) = u(i, j)T diag(a′)u(i′, j′)

Hence the context coupling error in reverse direc-
tion is given by:

CCE′(L,a′) =
∑

((j,i),(j′,i′))∈L
A′(j, i, j′, i′)×

|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

Label coupling error In addition to the context
coupling error defined above, we also take into ac-
count the explicit similarity between only labels,
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using a character k-gram based embedding of the
labels in the context (i, j) as: vi,j . Hence, the label
coupling error is given as:

LCE((i, j), (i′, j′)) = SoftMax(vi,j · v′i′,j′)×
|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

LCE′ is defined analogously. The label embed-
dings, vi,j , are learned jointly with the model. The
total coupling error between contexts (i, j) and
(i′, j′) from the two tasks respectively, is the sum
of context coupling error and the label coupling
error:

TCE(L,a,a′,v) =
∑

((i,j),(i′,j′))∈L

[CCE((i, j), (i′, j′)) + CCE′((i, j), (i′, j′))

+ LCE((i, j), (i′, j′)) + LCE′((i, j), (i′, j′))]

We optimize the sum total of all the CRF
losses and total coupling error in order to ob-
tain model parameters. We use stochatic gradient
descent, where minibatches are constructed from
three lists: D1, D2, and L. Samples from the
first two lists are used to calculate the CRF losses,
while samples from L are used to calculate total
coupling error, and the corresponding updates.

4 Experimental Results

In this section, we report results from our proposed
method for multi-task attribute extraction, against
single task attribute extraction. We implemented
our model using tensorflow on a 8-core Centos
machine. We used 300 dimensional pre-trained
Glove vectors. We have also experimented with
other customized word embeddings e.g. fasttext,
but did not achieve significantly better results. For
this work, we use single layer BiLSTM as the em-
bedding layer. The hidden layer size for BiLSTM
layer was set to 700. We have experimented with
other embedding layer architectures, e.g. hidden
layer sizes ranging from 300 to 900, and also two
layer BiLSTMs with hidden layer sizes (500,700).
However, the performance of single layer LSTM
with hidden layer size 700 was found to be similar
or better than others. For training, the batch size
was chosen to be 30 for both the CRF loss batches
and for coupling loss batches sampled from the
shortlist L. ADAM was used as optimizer and we
trained for maximum of 30 epochs. We trained the
model for 30 epochs.

Table 1: Dataset Characterstics.

Vertical # labels # Examples # Exmpl. / label
(Train, Test) (max , min )

Jean 37 2206 , 948 1387,1
Trouser 38 1993, 856 1350, 1
Dress 30 4088, 1753 2241, 1

Mangalsutra 38 363, 157 333, 1
Chain 76 2068, 888 1195, 1

Jewellery 68 4863, 2085 4518, 1

Table 2: Similar Task Pairs for MTL

(Dress, Jean), (Mangalsutra, Jewellary)
(Trouser , Jean), (Chain, Jewellary),
(Mangalsutra, Chain)

Evaluation Metric As reported below, the
datasets for this problem show extreme skew in
terms of occurrence of labels. Hence, we use the
standard metrics of macro precision, macro recall,
and macro F1 score. We also report the micro-
accuracy. While computing the macro-metrics
(precision, recall and F1), we ignore the ’O’ la-
bel. It is clear that macro-F1 score without the ’O’
label, is the most representative metric here, from
an application point of view.

4.1 Datasets
The dataset used here are taken from actual
systems for product delivery used in Flipkart.
We performed our experiments using data (both
product descriptions, and ground truth anno-
tations) from six verticals: Dress, Jean,
Mangalsutra1, Chain, Trouser and
Jewellery available on Flipkart. These verti-
cals are chosen based on three factors (1) GMV
(Gross Merchandise Value), (2) Volume of data
available and (3) Verticals with rich product
descriptions. Number of labels in each vertical
and number of tagged description in train and test
data for each vertical is shown in table 1. The
words in product descriptions for each vertical are
tagged using B,I,O (short for beginning, inside,
and outside) format where the B prefix before a
tag indicates that the token is the beginning of a
tag, and an I prefix before a tag indicates that the
token is inside a tag and An O tag indicates that a
token belongs to no tag.

Table 2 shows the pairs of similar tasks (verti-
cals) which were trained togather for MTL. The
pairs were chosen manually based on probability

1A type of Necklace
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of occurrence similar labels in these tasks. The
results for the each of the verticals is the best
achieved for these pairs of tasks. Note that, while
we have to manually provide a similar pair of
tasks, the similarity between labels is automati-
cally deciphered.

4.2 Performance Comparison

Table 3: Comparison of macro-F1 scores between
single-task and multi-task models for various verticals

Vertical Prec. Recall Acc. F1
Single-task

Dress 91.28 84.85 98.44 87.95
Jean 80.18 74.78 97.49 77.39

Mangalstr. 87.41 83.58 98.27 85.45
Trouser 78.52 71.91 98.83 75.07

Jewellery 71.06 72.13 97.94 71.59
Chain 58.61 49.63 96.59 53.75

Multi-task
Dress 91.14 85.70 98.48 88.23
Jean 84.66 76.41 98.94 80.32

Mangalstr. 90.06 84.71 98.45 87.30
Trouser 78.94 75.32 98.90 77.08

Jewellery 70.94 69.60 97.83 70.26
Chain 64.51 55.90 96.75 59.90

In this section, we illustrate the effectiveness
of our multi-task learning method. Table 3, re-
ports the best performances of single and multi-
task models for all the six verticals studied here.
We can see that except for jewellery, multi-task
model improve performance in terms of F1 score
for all other verticals. For some verticals, e.g.
chain, the improvement is more than 5 percent,
while for other verticals the improvement lies in
the 2 percent range. We note that the improve-
ment depends on two main factors: whether we
can find a close enough vertical to borrow from,
and the number of examples already present in the
current vertical. For example we can see that the
vertical “Jewellery” has about 5000 examples, and
also does not have a very close other vertical to
borrow information from. Hence in it’s case MTL
is not able to improve the performance.

In table 4, we report the fine-grained improve-
ments of top 5 labels for the verticals: Trouser,
Jean, Mangalsutra, and Chain. We note that the
top improvements for these verticals are in the
range of 51%, 46%, 29% and 22% respectively.
We also note that number of examples for these

labels in the training dataset (#ex column) are re-
spectively 6, 15, 6, and 7. Hence this table further
corroborates our claim that MTL improves the per-
formance for labels with lower amount of informa-
tion in the single task training set.

Table 4: Attribute-wise percentage improvement on
various tasks

Attribute #Ex. Task Prec. Recall F1-Sc. %Imp.
Trouser

I occas. 6 single 1.0 0.17 0.29 0.51multi 1.0 0.67 0.8

I suitab. 3 single 1.0 0.33 0.5 0.3multi 1.0 0.67 0.8

B suitab. 6 single 0.4 0.33 0.36 0.1multi 0.43 0.5 0.46

I brand 283 single 0.91 0.88 0.89 0.03multi 0.92 0.92 0.92

B pattern 308 single 0.88 0.9 0.89 0.03multi 0.88 0.95 0.92
Jean

I pattern 15 single 0.33 0.07 0.11 0.46multi 1.0 0.4 0.57

I suitab. 2 single 0.5 0.5 0.5 0.17multi 1.0 0.5 0.67

B suitab. 5 single 0.5 0.4 0.44 0.13multi 1.0 0.4 0.57

I ref. fit 14 single 1.0 0.57 0.73 0.05multi 1.0 0.64 0.78

B pattern 206 single 0.9 0.89 0.89 0.02multi 0.92 0.91 0.91
Mangalsutra

I diamnd 6 single 0.0 0.0 0.0 0.29multi 1.0 0.17 0.29

B diamnd 19 single 0.82 0.47 0.6 0.09multi 0.85 0.58 0.69

B chain 19 single 0.94 0.84 0.89 0.03multi 0.94 0.89 0.92

B brand 112 single 0.97 0.92 0.94 0.03multi 0.97 0.97 0.97

I gemst. 37 single 1.0 0.89 0.94 0.02multi 1.0 0.92 0.96
Chain

I warr. 7 single 0.64 1.0 0.78 0.22multi 1.0 1.0 1.0

I weight 51 single 0.68 0.8 0.74 0.08multi 0.76 0.88 0.82

I width 18 single 0.68 0.83 0.75 0.04multi 0.75 0.83 0.79

B weight 26 single 0.76 0.85 0.8 0.04multi 0.79 0.88 0.84

I color 92 single 0.93 0.59 0.72 0.04multi 0.86 0.67 0.76

4.3 Validation of Attribute Similarity
In this section, we validate the learned attribute-
attribute similarity, by studying the attribute-wise
F1-scores for the similar attribute pairs. Figure 4-
(a) shows the full attention heatmap for all labels
between the pair of tasks: Mangasutra - Chain.
Here the attention is normalised over the attributes
of y-axis (task chain). It is clear from the heatmap
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(a)

Borrower-Chain Lender-Mangalstr.(Att.2)
B base mat. B base mat. (0.86)

I weight I weight (0.28)
B necklace type B gemstone (1.0)

B color B color (0.56)
B gemstone B gemstone (1.0)

I brand B mat. purity (0.79)
B plating B plating (0.9)
B brand B type (0.9)

I base mat. I base mat. (0.83)
B weight B weight (0.67)

(b)

Figure 4: (a) Attention Heatmap between labels of Chain (task 1) and Mangalsutra (task 2). (b) Attribute pairs
with highest attention values, and the corresponding attention score.

that attention mechanism is indeed choosing the
similar labels between the pairs of tasks, irrespec-
tive of whether there is an improvement in accu-
racy for the pair of labels.

In figure 4-(b), we report the topmost pairs
of labels with the highest attention scores, along
with the corresponding increase in accuracy. The
left column borrower labels(Chain) and right col-
umn shows Lender labels(Mangalsutra) which got
the highest average attention weights across all
contexts-pairs in the list L. The value in brack-
ets shows the attention value. The bold entries
appear in top-5 attributes, with highest F1-scores
in table 4. One can also see non-obvious corre-
spondences, e.g. Necklace type from chain
can borrow all the information from Gemstone
from lender vertical Mangalsutra. We can also see
that in most of the cases, the labels from task 1 bor-
row information from corresponding labels of task
2, even though this information was not explicitly
furnished. This observation provides us further
confidence that the attention mechanism used for
discovery of similar labels and similar contexts,
indeed works effectively.

This observation further validates the effective-
ness of our attention model in extracting similar
pairs of labels between two tasks using the cou-
pling loss. We believe this mechanism can be ap-
plied in many more situations to shortlist impor-
tant and similar attributes in other contexts, while
jointly learning a prediction model.

5 Conclusion

In this paper, we study attribute-value extraction
from production description in the e-commerce
domain. Many of the attributes occur in very
few descriptions. Hence the amount of super-
vised training data available for these attributes
is very low, which leads to low prediction perfor-
mance We thus propose a novel multi-task learn-
ing based algorithm which borrows information
from related domains (i.e., category/vertical) in or-
der to improve prediction performance of infre-
quently occurring attributes. We validate the pro-
posed method with extensive experimental eval-
uation on a large dataset of six verticals from a
prominent, e-commerce company. The proposed
technique not only achieves higher accuracy on
verticals with similar labels, but also can be used
for discovering attribute similarities across verti-
cals.
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Abstract

Large-scale unsupervised abstractive summa-
rization is sorely needed to automatically scan
millions of customer reviews in today’s fast-
paced e-commerce landscape. We address
a key challenge in unsupervised abstractive
summarization – reducing generic and unin-
formative content and producing useful infor-
mation that relates to specific product aspects.
To do so, we propose to model reviews in
the context of some topical classes of inter-
est. In particular, for any arbitrary set of topi-
cal classes of interest, the proposed model can
learn to generate a set of class-specific sum-
maries from multiple reviews of each product
without ground-truth summaries, and the only
required signal is class probabilities or class
label for each review. The model combines
a generative variational autoencoder, with an
integrated class-correlation gating mechanism
and a hierarchical structure capturing depen-
dence among products, reviews and classes.
Human evaluation shows that generated sum-
maries are highly relevant, fluent, and repre-
sentative. Evaluation using a reference dataset
shows that our model outperforms state-of-the-
art abstractive and extractive baselines.

1 Introduction
As volume and scope of online customer reviews
continue to explode, so does the need for online
sellers to digest and draw insights to improve prod-
ucts. Today, both sellers and customers manually
sift through hundreds of reviews across competing
products to decipher systemic or trending concerns
from isolated or irrelevant issues. Opinion summa-
rization technology run across millions of reviews
has drawn much attention due to its potential for
streamline defect discovery, trend analysis, product
development, provided that summaries are infor-
mative and fluent.

∗Product Assurance, Risk, and Security
https://www.amazon.jobs/en/teams/
product-assurance-risk-security

This work concerns abstractive summarization
of product reviews. Abstractive summaries which
contain new phrases and words not found in origi-
nal documents are often more fluent, more concise
and more informative given the same length than
extractive ones which only contain words, phrases
and sentences from the original documents.

Current state-of-the-art methods for abstrac-
tive summarization are based on supervised deep-
learning language models (Sutskever et al., 2014;
Nallapati et al., 2016; Gu et al., 2016; See et al.,
2017), and rely on large amount of human-written
ground-truth summaries. Because text summariza-
tion systems are domain-sensitive (Isonuma et al.,
2017) and ground-truth opinion summaries are ex-
pensive to obtain, unsupervised opinion summa-
rization has recently garnered significant attention
with noteworthy efforts (Ma et al., 2018; Wang
and Ren, 2018; Bražinskas et al., 2020b). Unfortu-
nately, summaries generated by unsupervised mod-
els are often generic and uninformative, and do not
provide useful information about different aspects
of the product.

To make review summaries more useful to users,
we propose a class-specific unsupervised abstrac-
tive summarization model, which can generate
class-specific summaries from multiple reviews of
each product, according to any predefined set of
topical classes of interest for the users. The model
can be trained without using any ground-truth sum-
maries. The only additional signal required for the
model is the class probabilities or class label for
each review generated by an independent black-box
classifier, or provided by annotators. An example
set of such topical classes is the set of major issue
classes that products might be subjected to, includ-
ing misleading product description, poor quality,
sizing/fit/style issues, etc. See Table 1 for example
class-specific summaries generated from reviews
of a product according those topical classes.

To generate class-specific summaries for arbi-
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trary classes, existing opinion summarization mod-
els require either i) a large training set of ground-
truth summaries per class, or ii) a complicated
and costly training set comprising multiple types
of manual annotations such as token tags, aspect-
opinion phrase pairs, and phrase labels (Suhara
et al., 2020). In contrast, our model only needs
review-class label pairs.

The proposed model Class-CopyCat combines
a generative variational autoencoder (VAE) model
with a hierarchical structure that captures depen-
dence among products, reviews and classes, allow-
ing the representation of class-specific information
through class latent variables. We also propose
an integrated two-layer filter mechanism consist-
ing of a class-correlation gate and a set of class-
specific importance coefficients which focus on
class-related words, and thus reduce irrelevant or
generic information and increase informativeness
with respect to (w.r.t.) each class of interest.

Our contributions can be summarized as follows:
• We solve a new, practical problem that has

not been addressed before: to train a model to
generate class-specific summaries from multi-
ple reviews of each product using only class
probabilities or class label for each review.

• We propose a novel hierarchical latent vari-
able generative model to capture dependence
among group/class/review latent variables and
reviews. This allows us to generate class-
specific summaries from the variational distri-
butions of respective class latent variables.

• We propose a two-layer filter mechanism
to extract class-specific information and key
words, and reduce irrelevant information in
the summaries, as detailed in Sec. 3.2.3.

• Our human evaluation and experiments with
a reference dataset show that the proposed
model outperforms state-of-the-art baselines
in a wide range of evaluation metrics.

2 Prior Work

2.1 Abstractive Summarization
Prior to deep-learning language models, ab-

stractive summarization is considered a very hard
problem, with limited success using graph mining
(Ganesan et al., 2010; Filippova, 2010; Yang and
Fang). More recent approaches view abstractive
summarization as a text-to-text generation problem
using sequence to sequence (Seq2Seq) neural mod-
els (Sutskever et al., 2014). These models usually

Summ.
for chosen
classes of
interest

Class 1. Misleading Product Description:
These tights are not pink. The color is very
much nude.
Class 2. Poor Quality:
The tights ripped after one wash. I would
not buy these.
Class 3. Sizing/fit/style issue:
The sizing was way off.

Reviews ... the "pink" color these come in is not the
pink ... ‖ It lasted through one wear and one
wash. After that the threads started streak-
ing. Not worth the buy... ‖ ... The sizing
for these tights was not clear, ... way too big.
‖ ... These tights ripped the first time my
daughter wore them. Take a pass on these. ‖
... these tights are not pink... ‖ ... They all
have holes after first time wear... ‖ The color
says pink, but these are not pink. They are
nude... ‖ These tights are incredibly small
compared to other brands and the pink color
is more in line with nude...

Table 1: Summaries generated by our model for chosen
classes; colors encode their alignment to input reviews.
The reviews are truncated, and delimited with ‘‖’.
employ an encoder-decoder structure. The encoder
encodes documents into feature space, from which
the decoder generates summaries. Such models
tend to be “over creative” and may generate com-
pletely new outputs, which is not desirable. The
prominent strategy to mitigate this problem is to
use pointer networks as used in (Nallapati et al.,
2016; Gu et al., 2016). Pointer networks (Vinyals
et al., 2015) are an extension of attentive recur-
rent neural networks (RNN); they use attention as a
pointer to select which tokens of the input sequence
should be copied to the output. More recently,
pointer-generator networks (See et al., 2017) add
a switching mechanism to select between copying
and generating new words. These supervised deep
models require a large amount of text and human-
written summary pairs for training (Hermann et al.,
2015; Sandhaus, 2008; Narayan et al., 2018). Re-
cent works on unsupervised abstractive summariza-
tion include SummaryLoop (Laban et al., 2020)
for single document summarization, and Mean-
Sum (Chu and Liu, 2019) and CopyCat (Bražinskas
et al., 2020b) for multi-document summarization.

2.2 Context-aware document summarization
Our class-specific summarization problem is

also related to context-aware summarization. In
(Ma et al., 2018) and (Wang and Ren, 2018), the
sentiment class of a product review is used as con-
textual information for summarization. In (Kha-
tri et al., 2018), a contextual text summarization
model based on Seq2Seq architecture is proposed
for product description summarization. It includes
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three different components as contextual informa-
tion: metadata provided by sellers (e.g. product ti-
tle, tags and category), search query, and document
titles used to discover the document (e.g. via recom-
mendation). In (Narayan et al., 2018) and (Wang
et al., 2018), document topics are pre-learned by a
Latent Dirichlet Allocation topic model, and used
as contextual information for text summarization.
These context-aware models are useful for gener-
ating more document centric summaries, overcom-
ing the problem of generic summaries. However,
these models only target single-document summa-
rization, and they must be trained via supervised-
learning using a large set of human-written ground-
truth summaries.

OpinionDigest is an opinion summarization
framework that does not rely on gold summaries
for training (Suhara et al., 2020). However, to gen-
erate summaries specific to an arbitrary topic or
class, OpinionDigest has to use an Opinion Extrac-
tion model (Miao et al., 2020) pretrained for that
topic using a training set produced with significant
human annotation effort for each review, includ-
ing token tagging, aspect-opinion phrase pairing,
and labelling selected phrases per topic. The high
cost of obtaining such training sets motivated our
proposed solution.

3 Proposed Abstractive Class-Specific
Multi-Review Summarization

We start with a high level description of the pro-
posed model (Sec. 3.1), before presenting in greater
detail the encoder and decoder subnets (Sec. 3.2,
3.3). Later, we introduce the loyalty term that dis-
courages summaries containing false information
(Sec. 3.4), and describe how the trained model gen-
erates class-specific summaries (Sec. 3.5).

3.1 Overview of the proposed model
Given a predefined set of T topical classes,

our model generates multiple summaries, one for
each class that may be present in a group of re-
views; each group corresponds to a product. The
model makes use of an independent classifier β(.),
which probabilistically assign each review to these
classes; β(ri)j denotes the probability that review
ri belongs to a class j for j = 1, ..., T . We propose
a hierarchical latent variable structure to capture
relation among products, reviews and classes as
shown in Figure 1.

The model defines three sets of latent variables
to represent products, classes, and individual re-
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Figure 1: Graphical representation of the model

views. Each product (or group) is associated with a
group variable g, which captures the group’s over-
all semantics. Within each product, each class j is
associated with a class variable tj (j = 1, ..., T ).
Each class latent variable conditions on g, but fo-
cuses more on class-related words and information;
and hence, it captures common themes and opin-
ions about the product for that class. Finally, each
review ri (i = 1, ..., N ) is associated with a review
latent code zi = [zij ]

T
j=1, which conditions on the

class representation and captures content of indi-
vidual reviews; zij denotes the review code for ri
given a class j. The class distribution β(ri) is used
to soft-gate zi in review reconstruction.

Our model’s posterior inference is based on the
VAE model (Kingma and Welling, 2013), also used
in the CopyCat summarization model (Bražinskas
et al., 2020b), with the latter serving as the inspira-
tion for our model. As is standard with VAEs, our
encoder, parameterized with φ, produces the varia-
tional posterior distributions of the latent variables
g ∼ qφ(g|r1:N ), tj ∼ qφ(tj |r1:N , [β(ri)]

N
i=1, g),

and zij ∼ qφ(zij |ri, tj). As shown in Sec. 3.2, the
variational posterior of tj is designed to depend
on class distributions of all reviews in the group
[β(ri)]

N
i=1, and that class-related information rep-

resented by tj is computed using a two-layer filter
mechanism. We also note that we choose to rep-
resent each review ri using a collection of review
variables [zij ]

T
j=1, each corresponding to a class,

instead of using a single review encoding as in
CopyCat and typical VAE models, for better rep-
resentation of class-related information. Encoder
design is discussed in details in Sec. 3.2.

The decoder, parameterized by θ, reconstructs
the review ri from the posterior samples zi, β(ri)
and all other reviews in the group r−i. The
reconstruction probability is hence defined as
pθ(ri|β(ri), zi, r−i). Here, we follow CopyCat’s
recommendation and let the decoder to directly ac-
cess other reviews in the group to allows the recon-
struction of fine-grain common group details, such
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Figure 2: Generation of the latent code zi for a review
ri by the encoder. Yellow boxes represent the neural
networks that compute the prior and variational poste-
rior distributions of latent codes.

as product names, product-specific attributes and
characteristics. As we detail in Sec. 3.5, the trained
model can generate a summary for a group of re-
views for a given class j by decoding the mean of
the class-dependent and review-agnostic z∗j prior.

The variational loss objective for our model is

LVAE(θ, φ, r1:N )= E
g∼qφ(g|r1:N )

[
E

t∼qφ(t|r1:N, [β(ri)]Ni=1, g)(
N∑

i=1

E
zi∼qφ(zi|ri,t)

[− log pθ(ri|zi, β(ri), r−i)]

+
N∑

i=1

DKL[qφ(zi|ri, t)||pφ(zi|t)]
)

+DKL[qφ(t|r1:N , [β(ri)]
N
i=1, g)||pφ(t|g)]

]

+DKL[qφ(g|r1:N )||pφ(g)], (1)

where pφ(.) denotes a prior distribution, and DKL

denotes Kullback Leibler divergence between the
variational posterior and prior distributions of a
latent variable. Later, in Sec. 3.4, we will improve
this loss with an additional loyalty term.

3.2 The Encoder
Fig. 2 shows how the encoder produces latent

codes g, t, and zi. As with standard VAE, we use
Gaussian distributions with diagonal covariances
for the prior and variational distributions.
3.2.1 Text representation component

The encoder starts with a text representation
component which includes a word embedding unit,
a GRU encoder (Cho et al., 2014), and a class-

correlation gate, as shown in Fig. 3.
Words in reviews are embedded into word em-

beddings, and then transformed by a GRU encoder
to obtain hidden states. Let Li denote the length of
review ri; wli and hli denote the word embedding
and GRU hidden state for the l-th word in review
ri, for l = 1, ..., Li. Word embeddings and GRU
hidden states are concatenated into word context
states: ml

i = [wli ◦ hli]. They are later used to
compute group latent codes g (Sec. 3.2.2).

Word context states are also fed to a class-
correlation gate to generate class-based word
representation, which pays more attention to
words related to the class of the review. First,
the concatenation of each word context state and
the class vector β(ri) of the review is fed to a
feed-forward neural network (FFNN) with tanh
non-linearity to give a class influence vector for
each word:

cli = tanh(W [ml
i ◦ β(ri)] + b),

where cli has the same dimension as mi. The
class-based word representation is then computed
as m̌l

i = ml
i � cli,

where � is the element-wise multiplication oper-
ation. The class-based word representations later
contribute to the class latent codes (Sec. 3.2.3).
3.2.2 Distributions for group latent codes g

The group latent code in our model plays a sim-
ilar role to that in Copycat model, and its distri-
butions are computed in a similar way. Its prior
p(g) is set to the standard normal distribution. To
compute the variational posterior qφ(g|r1:N ), we
first compute the importance coefficient of each
word in the review group, which is

αli =
exp(fαφ (ml

i))
∑N
i′=1

∑Li′
l′=1 exp(fαφ (ml′

i′))
, (2)

for the l-th word in review ri. Here, fαφ is a 2-
layer FFNN with tanh non-linearity, which takes
as input the word context states and returns a scalar.
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Figure 3: Generation of context states and class-based
representations by text representation component.
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The mean and log covariance of qφ(g|r1:N ) are
then computed by separate affine projections of
the intermediate group representation ĥg, which
is the weighted sum of the word context states:
ĥg =

∑N
i=1

∑Li
l=1 α

l
im

l
i.

We can then sample a latent code g from the
above posterior distribution. The reparameteriza-
tion trick (Kingma and Welling, 2013) is applied
during sampling to allow backpropagation of the
reconstruction error.
3.2.3 Distributions for class latent codes t

The prior for class latent codes is condi-
tioned on the common group latent code g and
shared across different classes, i.e., pφ(tj |g) =
N (tj ;µ

t
φ(g), σtφ(g)I) for j = 1, ..., T , where the

mean and log covariance are computed as a linear
transformation of g.

The variational posterior for latent code tj of
each class j depends on the common group code g,
reviews r1:N , and class probabilities [β(ri)]

N
i=1; it

is qφ(tj |r1:N , [β(ri)]
N
i=1, g). To compute this pos-

terior of tj , we also first compute the importance
coefficient of each word in each review to the class
representation tj , but now we use class-based word
representations instead of word context states as in
g:

α̌lji =
exp(f

α̌j
φ (m̌l

i))
∑N
i′=1

∑Li′
l′=1 exp(f

α̌j
φ (m̌l′

i′))
. (3)

We then compute the intermediate class representa-
tion ĥtj =

∑N
i=1

∑Li
l=1 α̌

l
jim̌

l
i. The computation of

ĥtj can be viewed as a two-layer filter mechanism
to extract class-specific information and key words,
and reduce irrelevant and generic information to be
represented in class latent codes. First, the class-
correlation gate pays attention to key words related
to the class of each review. Then, among those
key words from different reviews, the importance
coefficients α̌lji pay attention to those related to the
class j of interest.

Finally, we apply affine transformations on the
concatenation of ĥtj and g to give the mean and
log variance of the variational posterior for tj . We
can sample a latent code tj from this posterior and
generate an assembled code t = [tj ]

T
j=1.

3.2.4 Distributions for review latent codes zi
The prior on the review code zij correspond-

ing to review ri and class j is conditioned on the
class code tj and is shared across different re-
views, i.e. pφ(zij |tj) = N (zij ;µ

z
φ(tj), σ

z
φ(tj)I)

for j = 1, ..., T , where the mean and log covari-
ance are computed as a linear transformation of tj .

To compute the mean and log covariance of vari-
ational posterior qφ(zij |ri, tj), we perform affine
transformation on the concatenation of hLii and tj .
zi = [zij ]

T
j=1 is then sampled from these posteriors.

3.3 The Decoder
The decoder reconstructs the original reviews

by computing the distribution pθ(ri|zi, β(ri), r−i).
First, the aggregated latent code ẑi for each review
ri can be computed as: ẑi =

∑N
j=1 β(ri)jzij . After

that, we follow the structure of CopyCat’s decoder
(Bražinskas et al., 2020b). The decoder takes ẑi and
r−i as input and computes pθ(ri|ẑi, r−i). We use
an auto-regressive GRU decoder with the attention
mechanism and a pointer generator network.

3.4 Loyalty term
The VAE lower bound in Eq. (1) focuses

on reconstructing a review ri from its latent
representation and other reviews r−i of the same
group. Because reviews may vary largely, and it is
not always possible to reconstruct a review from
other reviews, the decoder tends to be creative, and
inclines toward generating a new word, instead of
copying a word from other reviews. As a result, the
generated summaries at test phase often contain
many new words and possibly false information
that is not present in original reviews. To remedy
this problem, inspired by (Bražinskas et al., 2020a),
we add a loyalty term L0 that encourages assigning
the probability mass to words that appear in r−i:

L0(θ, φ, r1:N ) =

E
g∼qφ(g|r1:N )

[
E

t∼qφ(t|r1:N ,[β(ri)]Ni=1,g)

(
N∑

i=1

E
zi∼qφ(zi|ri,t)[

Li∑

l=1

∑

w∈V (r−i)
−pθ(w|zi, β(ri), r−i, r

1:l−1
i )

])]
,

where V (r−i) is the vocabulary of all words in r−i.
The final loss function is computed as

L = LV AE + α ∗ L0, (4)

where α is the trade-off hyperparameter. L is mini-
mized w.r.t. both the inference network’s parameter
φ and the generative network’s parameter θ.

3.5 Summary Generation
At test time, we can generate a summary per

class for a new group of reviews r1:N . This is
equivalent to generating a new review that reflects
common information from the reviews r1:N . To do
so, the latent variables are fixed to their respective
means. The steps to generate a summary r∗ for a
class j from a group of reviews r1:N are as follows:
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1. Fix g at the mean of its posterior qφ(g|r1:N ).
2. Fix tj at the mean of its posterior
qφ(tj |r1:N , [β(ri)]

N
i=1, g).

3. Fix z∗j at the mean of its prior pφ(z∗j |tj).
4. Assign ẑ∗ = z∗j , and compute the decoder’s

probability for r∗: pθ(r∗|ẑ∗, r1:N ).

4 Experimental Results
4.1 Experimental setup

Our experiment is conducted on a subset of the
public dataset of Amazon product reviews (He and
McAuley, 2016). In this dataset, each review is
written for a particular product, and accompanied
by a rating value between 1 and 5. We apply our
model to generate summaries for a group of av-
erage and low-rating reviews (1 to 3-star rating
reviews) belonging to a product according to the
classes of issues behind the poor ratings. Follow-
ing (Bražinskas et al., 2020b), we use reviews from
four product categories: Clothing Shoes and Jew-
elry, Electronics, Health and PersonalCare, and
Home and Kitchen. We obtain reviews with 1 to 3-
star ratings, and group them by products with each
group having no less than 8 reviews. The dataset
consists of 773,797 reviews for 54,706 products.
From this, we sampled 1000 products for test, and
split the remaining products into training/validation
sets with a 9 : 1 ratio. See Appendix A.3 for more
details in data pre-processing, and Appendix A.4
for hyperparameter settings and implementation
details of our model.

We created an independent classifier β(.) that
classifies reviews into 6 classes of possible is-
sues: POOR QUALITY OR DEFECTIVE, SIZ-
ING/FIT/STYLE ISSUE, BAD/MISLEADING
PRODUCT DESCRIPTION, COMPATIBILITY
ISSUE, WRONG ITEM RECEIVED, and OTH-
ERS. Definition for each class is given in Ap-
pendix A.2. The classifier produces a class prob-
ability for each issue class per review. Using the
class probability output of this classifier β(.) as in-
put, we train our Class-CopyCat model to generate
class-specific summaries for these 6 issue classes
from product reviews. At test time, we compute
an aggregated probability for each issue class per
product by averaging the classifier probability out-
puts across all reviews for that product, and only
generate summaries for classes whose aggregated
class probabilities for the product is greater than
a threshold of 0.1. This threshold is adjustable.
This is meant to filter out those issues that are not
supported by the reviews, assuming that there are

much more pronounced issues that we want to sum-
marize. Reading class-specific summaries for top
issue classes enable users to quickly understand dif-
ferent predominant issues for a product. We note
that our model can be applied for any set of topical
classes and classifiers. The choice to use the 6 prod-
uct issue classes is arbitrary, and we could easily
choose some other classification (e.g. sentiment,
rating, author).

For evaluation, we sampled 100 products and 8
reviews per product from the test set. We obtained
gold summaries for these products from 2 external
workers. We asked each worker to write a set of
gold summaries per product, one for each issue
class of the product, provided that the aggregated
class probability for the product is greater than 0.1.

Table 2 shows an example of average and low-
rating reviews for a product, the gold summaries,
and summaries produced by different models. Ad-
ditional examples are given in Appendix A.1.

4.2 Baseline Models
We prepare 7 baseline models for class-specific

summarization.
Abstractive baselines
CopyCat with Class-embedding. We combine

CopyCat model for multi-document review summa-
rization (Bražinskas et al., 2020b) with the class-
embedding mechanism proposed in (Narayan et al.,
2018) for class-specific summarization. Particu-
larly, the class probability vector β(ri) for a review
ri is appended to each word embedding of that
review at both encoder and decoder during train-
ing. When generating a class-specific summary,
the class probability vector at decoder becomes a
one-hot encoding of that class.

Collection of CopyCat models. We train one
CopyCat model for each issue class. Each class-
specific Copycat model is trained only on reviews
that are classified into that class (the top class).
Class-specific summaries are generated by the cor-
responding class-specific model.

Collection of MeanSum models. MeanSum is
another state-of-the-art multi-review summariza-
tion method (Chu and Liu, 2019). This baseline is
similar to the second baseline above.

Extractive baselines
Highest probability. The review with highest

class probability is used as class-specific summary.
Clustroid. The clustroid review among the set

of reviews belonging to a class is used as the class-
specific summary. It is the review with the highest
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Top issue classes POOR QUALITY OR DEFECTIVE COMPATIBILITY ISSUE
Gold summary
for each issue

The mount does not hold weight when closed. It
doesn’t work properly. It bends down.

The mount is not suitable for big TV screens. It does
not fit a 42" TV. It should be for 32" or less.

Our class-specific
summaries

I am very disappointed in this product. It is hard to get
it to hold the weight of the TV, and it will not work.

I bought this for my 42 inch TV. It does not fit the TV.
It is too small.

Collection of
CopyCat models’
summaries

I bought this to use with my Samsung TV. It did not
work at all. I tried to adjust the TV but it didn’t work.
I would not recommend this product to anyone. Very
disappointed.

The title of this says it would fit a 49 inch TV, but my
TV will not fit. The mount didn’t work either. Would
not recommend this product for the specific model of
TV.

Collection of
MeanSum mod-
els’ summaries

Bought this for my Samsung TV and it did not fit
my LG TV. I would not recommend this product to
anyone. Don’t waste your time and money on this
piece of junk. Do not buy!

The end of this mount doesn’t work with my Samsung
TV. The mount is too wide and there is no space for my
TV, which defeats the purpose of being able to mount it
in my TV!

Review 1 I would not use this mount for any big tvs . I had a hard time trying to make this work and junked it in the end.
Review 2 JUNK!!! I have a 65 " Toshiba 91 # bigger than stated but weight is weight. Sags, will not hold weight when

closed. Also very hard the hook the tv mount to the wall mount. I am afraid to even pull it out to full length. I
am taking it down tomorrow.

Review 3 don ’t work well with heavy lcd tvs. installation was easy, find two stud screw it in. mount my samsung 52 "
lcd and just points down, tilt all the way up and as soon as i let go off my hand it just tilt down just cant have
the tv parallel to the wall. you get what you pay for.

Review 4 This mount will not hold a 50 LCD TV. As soon as we placed the tv on the mount it sagged and bent a little.
When we tried to angle it it tilted a lot. If you have a 40 or under TV you will be fine.

Review 5 size of the bracket is too small trying to mount a 55 inch - please reconsider buying this product this product
only safe with 15 - 32 inch only not recommended for 55inch tv.

Review 6 I bought this item for a 42 " TV. It does not fit the TV ! Partially my own fault for not doing a bit more research
but it is way to small to holder an older 42 " TV. I used it on a smaller 32 " TV which saved me some trouble
but it is a bit of overkill for a smaller TV.

Review 7 12 inches too narrow for my 37 inch LG TV. This mount should only be used on a 32 inch or less.
Review 8 The product hung on the wall crooked. Cheap. Don ’t buy. Had to return. Waste of time. I guess you get what

you pay for.

Table 2: Examples of reviews, gold summaries, and summaries generated by various models. Generic or redundant
information not related to the class is marked in Blue; hallucinating or incorrect information is marked in Red.

ROUGE-L score w.r.t. other reviews in the set.
Lead. We construct the class-specific summary

by concatenating leading sentences from reviews
belonging to that class. "Lead" baseline has been
shown to be a strong baseline for both single- and
multi-document summarization (See et al., 2017;
Bražinskas et al., 2020b; Chu and Liu, 2019).

Random. A random review belonging to a class
is used as the class-specific summary.

See Appendix A.5 for training procedure of our
model and those of the abstractive baselines.

4.3 Automatic Evaluation
We measure semantic overlap between generated

and gold summaries using ROUGE scores (Lin,
2004). A higher ROUGE score associates with
more semantic overlap between pairs of texts. The
class-specific gold summaries are used as reference.
Table 3 reports ROUGE scores based on F1 on the
100 test products.

Class-Copycat outperforms all the baselines.
The summaries of extractive baselines ("Highest
probability" , "Clustroid", "Lead" and "Random")
are extracted from the subset of reviews that be-
long to the class of interest only, and therefore, con-
tain a good amount of class-specific information.
This results in relatively higher ROUGE scores for
these baselines compared to abstractive ones, ex-

cept for Class-CopyCat. The low ROUGE scores
for "CopyCat with Class-embedding" indicate that
class-embedding mechanism does not sufficiently
extract class-specific information from reviews.
Similarly, limiting the training set to only reviews
belonging to the class of interest as in "Collection
of CopyCat models" and "Collection of MeanSum
models" does not allow the models to sufficiently
focus on class-related information and omit generic
and irrelevant information from reviews, as shown
in Table 2 and in Appendix A.1. This results in
low ROUGE scores for these two methods, and is
confirmed with human evaluation (Sec. 4.4).

Model R1 R2 RL
Class-CopyCat (ours) 0.308 0.102 0.238
CopyCat w Class-embed 0.186 0.037 0.133
Collection of CopyCat(s) 0.190 0.038 0.141
Collection of MeanSum(s) 0.182 0.034 0.138
Highest probability 0.254 0.092 0.207
Clustroid 0.242 0.085 0.204
Lead 0.258 0.098 0.210
Random 0.213 0.061 0.171

Table 3: ROUGE scores on the 100 test products.

4.4 Human evaluation
We performed human evaluation on 50 products

from the test set. Two annotators are asked to rate
each summary on a scale of 1 (very poor) to 5 (very
good) based on 6 criteria as follows:
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Informativeness Conciseness & Content Opinion Fluency Overall
Model non-redundancy support consensus

Collection of CopyCat models 2.87 2.69 2.91 3.09 3.83 2.80
Collection of MeanSum models 2.80 2.55 2.63 2.70 3.80 2.54

Class-CopyCat 3.60 4.30 3.98 3.72 4.57 3.84

Table 4: Average scores of human evaluation for six criteria. Score ranges from 1 (very poor) to 5 (very good).

• Informativeness: how well summary covers
dominant and repeated issues in the class.

• Content support: how well the content of sum-
maries is supported by input reviews

• Conciseness and non-redundancy: The sum-
mary should be concise and not contain unre-
lated information or unnecessary repetition.

• Opinion consensus: the summary should re-
flect common opinions expressed in reviews.

• Fluency: summary sentences should be gram-
matically correct, and easy to understand.

• Overall: based on annotators’ judgment.

Class-CopyCat outperforms both reference mod-
els by a large margin across all criteria (Table 4).
The biggest gain of Class-CopyCat over the two
baselines is in conciseness and non-redundancy
(4.30 vs 2.55 and 2.69). Examples in Table 2
and Appendix A.1 show qualitatively that our sum-
maries are more concise compared to baselines.
The latter contains more generic and irrelevant in-
formation (highlighted in blue in the examples).

Class-CopyCat also outperforms the two base-
lines in terms of content support. Both baselines
produce much information not present in original
reviews; such information is highlighted in red in
Table 2 and Appendix A.1. Our model performs
well in this criteria due to the loyalty term intro-
duced in Sec. 3.4. Moreover, since our model often
generates more concise and non-redundant sum-
maries from salient class-related information, it has
less chance of introducing incorrect information.

As our model focuses on and includes more
class-related information, it also does better in in-
formativeness (3.60 vs 2.80 and 2.87). Because
class-related key information is often salient and
consistent, this also results in better opinion con-
sensus.

4.5 Model Variant Ablation Studies
Here, we compare Class-CopyCat with its vari-

ants. The result is shown in Table 5. In "without
class-correlation gate" variant, we omit the class-
correlation gate in Fig. 3, and use word context
states directly (in place of class-based representa-
tion in Fig. 2) to compute the posterior of the class
latent code t. In "class-embedding" variant, instead

of using class-correlation gate, we append the class
probability vector β(ri) to each word context state
of the review ri to generate class-based word repre-
sentations as in (Narayan et al., 2018). In "without
loyalty term" variant, the loyalty term (Sec. 3.4) is
not added to loss function. Finally, in "without g"
variant, we remove the group latent code g, as we
question whether g is still needed, in the presence
of the class code t per class per group.

The result in Table 5 shows that each model
component indeed contributes to final performance.
Without class-correlation gate, performance drops
most significantly. Using class-embedding instead
improves ROUGE scores compared to not using
any class-based representation, but its performance
is still far from using class-correlation gate in
the final Class-CopyCat. Without loyalty term,
the model generates more ‘hallucinating’ words
(eg. product names, models), resulting in lower
ROUGE scores. Finally, "without g", ROUGE
scores reduce slightly. This is because the class
latent code t is designed to focus more on key-
words for each class and without conditioning on
g, it cannot represent differences among various
products (eg. pants vs shirt).

Model R1 R2 RL
Class-CopyCat 0.312 0.107 0.216
Without class-correlation gate 0.272 0.092 0.209
Class-embedding 0.287 0.098 0.212
Without loyalty term 0.282 0.096 0.216
Without g 0.304 0.103 0.208
Random 0.213 0.061 0.171

Table 5: Ablation results: ROUGE scores for different
model variants using the gold summary dataset.

5 Conclusion
We have proposed a model for generating class-
specific summaries from a collection of reviews.
Our evaluation results show that our model out-
performs many abstractive and extractive base-
lines, including state-of-the-art models, in term
of ROUGE scores that measure the semantic over-
lap between generated and gold summaries. We
also show through human evaluation that gener-
ated summaries of our model are highly relevant to
the classes of interest, fluent, and representative of
common opinion.
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A Appendices

A.1 Additional examples of reviews and
summaries

Table 6 and Table 7 show additional examples
of reviews for a product, the gold summaries, and
the class-specific summaries produced by differ-
ent models. Additionally, we also show the class-
agnostic summaries produced by 3 opinion summa-
rization models: CopyCat, MeanSum, and Lexrank
(Erkan and Radev, 2004). Lexrank is an unsuper-
vised extractive algorithm which selects sentences
based on graph centrality. Sentences represent
nodes in a graph whose edge weights denote tf-
idf similarity.

Top issue classes POOR QUALITY OR DEFECTIVE MISLEADING PRODUCT DESCRIPTION
Gold summary for
each issue

The stand and the screen angle are not ad-
justable. The monitor is too bright and the
picture looks washed out.

The product did not have HDMI hook as it
says on the description.

Our class-specific
summaries

I was very disappointed in this monitor. It is
not worth the price. The picture is very bright
and the stand is not adjustable.

Bad description of the product. It didn’t have
a HDMI hookup.

Collection of CopyCat
models’ summaries

I bought this monitor for my husband for
Christmas. It was a Christmas gift for Christ-
mas and it was already broken. I would not
recommend this monitor to anyone. Very dis-
appointed in the quality of it.

It’s not compatible with my monitor, even
though it is advertised as a Samsung 46 inch
memory. Very disappointed! Don’t waste
your time and money on this item. Don’t buy
this.

Collection of Mean-
Sum models’ sum-
maries

The monitor is not bright enough to adjust
the monitor. I had to send it back because it
was a waste of my time and money. Don’t
waste your money on this one. Do not buy!

What a waste of money, but when I received
it in the mail it looked much better. You can’t
see through the screen. It’s not worth the
trouble of returning it and returning.

CopyCat’s summary It’s a nice monitor, but I had to return it for a refund. Also, the monitor doesn’t work with
the monitor. I would not recommend this product to anyone. Save your money

MeanSum’s summary It’s a nice looking monitor, but it is not what I expected. I have tried everything to get it to
work, but the screen resolution is terrible. I would not recommend this product.

Lexrank’s summary
(Erkan and Radev,
2004)

It is the worst monitor i have ever purchased, the stand is not adjustable and their is something
wrong with the base. I was unable to adjust the viewing angle and therefore returned the
monitor.

Review 1 Like someone who reviewed this before me... this monitor is too bright. It looks like there is
a bright white haze on everything and i do not like it. I just received this monitor and i will
be returning it as soon as possible. Very disappointed.

Review 2 Disappointment. The monitor does not allow you to adjust the screen angle without weaken-
ing the stability of the monitor. I sent it back. Amazon did refund full purchase price with no
hassle.

Review 3 Had to return this one. the plugin in the back didn ’t work. Pain to get it and it not work,
especially since it was a gift.

Review 4 Picture is dusty looking! the stand is not adjustable. Not worth the low price. You don ’t
even get what you pay for!

Review 5 The color is terrible, the contrast does not adjust, unless you look it from one very specific
unrealistic angle the picture is washed out

Review 6 Would be nice to have known it didn ’t have hdmi hookup before is wasted money. Worst
description of a product features

Review 7 It is the worst monitor i have ever purchased, the stand is not adjustable and their is something
wrong with the base.

Review 8 I was unable to adjust the viewing angle and therefore returned the monitor. There was
nothing in the instructions about this.

Table 6: Example reviews for a product, the corresponding gold summaries written by human, and the summaries
generated by different models. For class-specific summaries, generic or redundant information not related to the
class is marked in Blue; hallucinating or incorrect information is marked in Red.
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Top issue classes SIZING/FIT/STYLE ISSUE POOR QUALITY OR DEFECTIVE
Gold summary for
each issue

The size is not true. The pants are too small
and super skinny.

The material is shoddy, the stitch quality is
terrible. They are not Levi’s.

Our class-specific
summaries

These pants are too small for me. They are
too tight.

These pants are not what I expected. Their
quality is very poor. The material is very
cheap and the stitch quality is really poor.

Collection of CopyCat
models’ summaries

These are not true to size, I ordered a large
and they are still too tight. I will not be buy-
ing these again. I’m a size 6 and these pants
are not flattering at all.

These are not the same quality Levi’s pants
I have ever seen. They are made out of thin
material and tear apart easily. I would not
recommend these to anyone, especially for
the price.

Collection of Mean-
Sum models’ sum-
maries

It’s a shame because the pants are too small
for me. I normally wear a medium, but these
pants were way too big for me and I could
barely zip them up. Very disappointed.

The stitching on the pants are so stiff that
they are uncomfortable. I would not recom-
mend these pants to anyone. I had to return
them because they were a waste of my money.
Don’t buy them.

CopyCat’s summary These are not the relaxed fit for me. I ordered a 34, and they were way too big for my legs. I
would not recommend these pants to anyone else in the future.

MeanSum’s summary These are not true to size. I ordered a large and they were too tight around the waist. I will
have to return them. They are not worth the hassle of returning them. I am returning them.

Lexrank’s summary
(Erkan and Radev,
2004)

These pants are not real Levi’s. Super skinny jeans , more like chick pants guys shouldn’t be
wearing these, more like a joke cant believe i bought these pants

Review 1 I bought "Levi ’s Men’s 513 Slim Straight Jean, Mr Blue, 28Wx32L". Size is good fit. But
this item is too small. Same brand, same size is not same.

Review 2 The jeans missing a loop what the ass ah hold loop in the back poor really poor need to
inspect the items before

Review 3 It is too big it is not the correct size I have another Levi s size 40 and its perfect.
Review 4 Super skinny jeans, more like chick pants guys shouldn’t be wearing these, more like a joke

cant believe i bought these pants
Review 5 I ordered up two sizes after reading that these run tight, but before putting them on I realized

they aren’t even real. The material is shoddy, the stitch quality is terrible, and the color
doesn’t resemble the photo online at all! Beware of these pants and hope that you don’t get
ripped off like I have.

Review 6 you need legs like broomsticks for these guys to fit. Could barely slip them over my calves
without splitting the seams, if you have muscular legs, these are not for you...

Review 7 These pants aren’t what I expected. The quality is really low and I’m pretty sure these pants
won’t last very long. It ’s simply cheap material. The fit is good though.

Review 8 These pants are not real Levi’s. I was comparing the 511’s I just bought in store to these ones
and they are barely anything alike. The material is not the same. The only place it says Levi
is on the button and the back patch. The stitching isn ’t the same either.

Table 7: Example reviews for a product, the corresponding gold summaries written by human, and the summaries
generated by different models. For class-specific summaries, generic or redundant information not related to the
class is marked in Blue; hallucinating or incorrect information is marked in Red.
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A.2 Definition of issue classes

Issue class Class definition
POOR QUALITY
OR DEFECTIVE

Product is defective and
does not perform its func-
tion, or contains a flaw
that results in objectively
poor performance and
utilization of the product.

COMPATIBILITY
ISSUE

Product is incompatible
with another product that
it is meant to be used
with/for.

SIZING/FIT/STYLE
ISSUE

Product is either too
small/big to fit the cus-
tomer’s use case, without
mentioning size incom-
patibility with another
product.

BAD/MISLEADING
PRODUCT DE-
SCRIPTION

Product description con-
tains misleading or insuf-
ficient information.

WRONG ITEM RE-
CEIVED

Product shipped is differ-
ent than the one the cus-
tomer ordered.

OTHERS Product issues that do
not belong to any of the
above classes.

Table 8: Definition of the issue classes.

A.3 Data Pre-Processing
We select only the reviews of which the star rat-

ing is between 1 to 3, and the length is between 20
to 70 words. These reviews are grouped by prod-
ucts, and only the products that have no less than 8
reviews satisfying the above conditions are selected.
In addition, popular products with the number of
reviews above the 90th percentile are removed, so
that the dataset is not dominated by a small portion
of products. During both training and test time,
each group of reviews is formed from 8 reviews
which are sampled without replacement from the
set of reviews belonging to a same product.

A.4 Hyperparamters and Implementation
Details

We use similar hyperparameter settings to those
used in (Bražinskas et al., 2020b). The word em-
beddings are shared by both the encoder and de-
coder; their dimension is set to 200. The vocabu-
lary size is 80000. Both the GRUs at encoder and

decoder have the hidden state dimension of 600.
The dimension of all the latent variables (g, t and
z) is set to 600. Both the FFNNs that are used
to compute the importance coefficients toward the
posteriors of g and t in Eq. (2) and (3) have a 300-
dimensional hidden layer. The decoder’s attention
network has a 200-dimensional hidden layer with
a tanh non-linearity. The network for computing
copy gate in the pointer-generator network also has
a 100-dimensional hidden layer with the same non-
linearity. The trade-off hyperparameter α in Eq. (4)
is set to 2.

A.5 Initialization and Training
The CopyCat model (Sec. 4.6) and its variants

(CopyCat with Class-embedding and the collec-
tion of class-specific CopyCat models, described
in Sec. 4.2), which are used as baselines in our
evaluation, are initialized with the CopyCat refer-
ence model provided by the authors of CopyCat
(Bražinskas et al., 2020b). This reference model
was previously trained on a larger dataset (183,103
products and 4,566,519 reviews) consisting of all
the reviews with star rating from 1 to 5, unlike our
training set which contains only the reviews with
star rating from 1 to 3. We find that initializing
the above baseline models (the CopyCat model and
its variants) with this reference model gives a bet-
ter performance for these baselines compared to
training from scratch with our training set. For
our Class-CopyCat model, the word embedding
module and the two GRUs are also initialized with
the corresponding components of the reference
CopyCat model. Other 2D weights are initialized
with Xavier uniform initialization (Glorot and Ben-
gio, 2010), and 1D weights are initialized with the
scaled normal noise with 0.1 standard deviation.

After initialization, we train each of the Class-
CopyCat model, the CopyCat model, the CopyCat
with Class-embedding and the collection of class-
specific CopyCat models for 5 epoches on our train-
ing set of average and poor rating reviews (Sec. 4.1)
using Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.0001. For decoding a summary
at test time, length-normalized beam search of size
5 is used. Cycling annealing (Fu et al., 2019) is
applied for all the KL terms to mitigate the problem
of “posterior collapse” (Bowman et al., 2016).

The MeanSum model and its variants are also
pre-trained on the larger dataset of reviews with 1 to
5-star rating before being fine-tuned on our smaller
training set of average and poor rating reviews.
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Abstract

In this paper, we present SANTA, a scal-
able framework to automatically normalize E-
commerce attribute values (e.g. “Win 10 Pro”)
to a fixed set of pre-defined canonical values
(e.g. “Windows 10”). Earlier works on at-
tribute normalization focused on fuzzy string
matching (also referred as syntactic match-
ing in this paper). In this work, we first
perform an extensive study of nine syntactic
matching algorithms and establish that ‘co-
sine’ similarity leads to best results, showing
2.7% improvement over commonly used Jac-
card index. Next, we argue that string simi-
larity alone is not sufficient for attribute nor-
malization as many surface forms require go-
ing beyond syntactic matching (e.g. “720p”
and “HD” are synonyms). While semantic
techniques like unsupervised embeddings (e.g.
word2vec/fastText) have shown good results in
word similarity tasks, we observed that they
perform poorly to distinguish between close
canonical forms, as these close forms often oc-
cur in similar contexts. We propose to learn
token embeddings using a twin network with
triplet loss. We propose an embedding learn-
ing task leveraging raw attribute values and
product titles to learn these embeddings in a
self-supervised fashion. We show that provid-
ing supervision using our proposed task im-
proves over both syntactic and unsupervised
embeddings based techniques for attribute nor-
malization. Experiments on a real-world at-
tribute normalization dataset of 50 attributes
show that the embeddings trained using our
proposed approach obtain 2.3% improvement
over best string matching and 19.3% improve-
ment over best unsupervised embeddings.

1 Introduction

E-commerce websites like Amazon are market-
places where multiple sellers can list and sell their
products. At the time of product listing, these sell-

ers often provide product title and structured prod-
uct information (e.g. color), henceforth, termed
as product attributes1. During the listing process,
some attribute values have to be chosen from drop-
down list (having fixed set of values to choose
from) and some attributes are free-form text (al-
lowing any value to be filled). Multiple sellers may
express these free-form attribute values in different
forms, e.g. “HD”, “1280 X 720” and “720p” rep-
resents same TV resolution. Normalizing (or map-
ping) these raw attribute values (henceforth termed
as surface forms) to same canonical form will help
improve customer experience and is crucial for
multiple underlying applications like search filters,
product comparison and detecting duplicates. E-
commerce websites provide functionality to refine
search results (refer figure 1), where customers can
filter based on attribute canonical values. Choos-
ing one of the canonical values restricts results to
only those products which have the correspond-
ing attribute value. A good normalization solution
will ensure that products having synonym surface
form (e.g. ‘720p’ vs ‘HD’) are not filtered out on
applying such filters.

Normalization can be considered as a two step
process consisting of - a) identifying list of canoni-
cal forms for an attribute, and, b) mapping surface
forms to one of these canonical forms. Identifica-
tion task is relatively easier as most attributes have
only few canonical forms (usually less than 10),
whereas attributes can have thousands of surface
forms. Hence, we focus on the mapping task in this
paper, leaving identification of canonical forms as
a future task to be explored.

Building an attribute normalization system for
thousands2 of product attributes poses multiple

1We use the terms ‘product attributes’ and ‘attributes’ in-
terchangeably in this paper.

2E.g. Xu et al. (2019) have 77K attributes only from
‘Sports & Entertainment category’
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Figure 1: Search filters widget on Amazon.

challenges such as:

• Presence of spelling mistakes (e.g. “grey” vs
“gray”, “crom os” vs “chrome os”)

• Requirement of semantic matches (e.g.
“linux” vs “ubuntu”, “mac os” vs “ios”)

• Existence of abbreviations (“polyurethane” vs
“PU”, “SSD” vs “solid state drive”)

• Presence of multi-token surface forms and
canonical forms (e.g. “windows 7 home”)

• Presence of close canonical forms (e.g. “win-
dows 8.1” and “windows 8” can be two sepa-
rate canonical forms)

Addressing these challenges in automated man-
ner is the primary focus of this work. One can
use lexical similarity of raw attribute value (sur-
face form) to a list of canonical values and learn
a normalization dictionary (Putthividhya and Hu,
2011). For example, lexical similarity can be used
to normalize “windows 7 home” to “windows 7” or
“light blue” to “blue”. However, lexical similarity-
based approaches won’t be able to handle cases
where understanding the meaning of attribute value
is important (e.g. matching “ubuntu to “linux” or
“maroon” to “red”). Another alternative is to learn
distributed representation (embeddings) of surface
forms and canonical forms and use similarity in
embedding space for normalization. One can use
unsupervised word embeddings (Kenter and De Ri-
jke, 2015) (e.g. word2vec and fastText) for this.
However, these approaches are designed to keep
embeddings close by for tokens/entities which ap-
pear in similar contexts. As we shall see, these
unsupervised embeddings do a poor job at distin-
guishing close canonical attribute forms.

In this paper, we describe SANTA, a scalable
framework for normalizing E-commerce text at-
tributes. Our proposed framework uses twin net-
work (Bromley et al., 1994) with triplet loss to learn
embeddings of attribute values (canonical and sur-
face forms). We propose a self supervision task for
learning these embeddings in automated manner,
without requiring any manually created training
data. To the best of our knowledge, our work is
first successful attempt at creating an automated
framework for E-commerce attribute normaliza-
tion that can be easily extended to thousands of
attributes.

Our paper has following contributions : (1)
we do a systematic study of nine lexical match-
ing approaches for attribute normalization, (2) we
propose a self supervision task for learning em-
beddings of attribute surface forms and canonical
forms in automated manner and describe a fully
automated framework for attribute normalization
using twin network and triplet loss, and, (3) we
curate an attribute normalization test set of 2500
surface forms across 50 attributes and present an
extensive evaluation of various approaches on this
dataset. We also show an independent analysis
on syntactic and semantic portions of this dataset
and provide insights into benefits of our approach
over string similarity and other unsupervised em-
beddings. Rest of the paper is organized as follows.
We do a literature survey of related fields in Section
2. We describe string matching and embeddings
based approaches, including our proposed SANTA
framework, in Section 3. We describe our experi-
mental setup in Section 4 and results in Section 5.
Lastly, we summarize our work in Section 6.

2 Related Work
2.1 E-commerce Attribute normalization
The problem of normalizing E-commerce attribute
values have received limited attention in literature.
Researchers have mainly focused on normalizing
brand attribute, exploring combination of manual
mapping curation or lexical similarity-based ap-
proaches (More, 2016; Putthividhya and Hu, 2011).
More (2016) explored use of manually created key-
value pairs for normalizing brand values extracted
from product titles. Putthividhya and Hu (2011)
explored two fuzzy matching algorithms of Jaccard
similarity and Jaro-Winkler distance and found n-
gram based Jaccard similarity to be performing
better for brand normalization. We use this Jaccard
similarity approach as a baseline for comparison.
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2.2 Fuzzy String Matching
Fuzzy string matching has been explored for mul-
tiple applications, including address matching,
names matching (Cohen et al., 2003; Christen,
2006; Recchia and Louwerse, 2013), biomedical
abbreviation matching (Yamaguchi et al., 2012)
and query spelling correction. Although extensive
work has been done for fuzzy string matching, there
is no consensus on which technique works best.
Christen (2006) explored multiple similarity mea-
sures for personal name matching, and reported
that best algorithm depends upon the character-
istics of the dataset. Cohen et al. (2003) experi-
mented with edit-distance, token-based distance
and hybrid methods for matching entity names
and reported best performance for a hybrid ap-
proach combining TF-IDF weighting with Jaro-
Winkler distance. Recchia and Louwerse (2013)
did a systematic study of 21 string matching meth-
ods for the task of place name matching. While
they got relatively better performance with n-gram
approaches over commonly used Levenshtein dis-
tance, they concluded that best similarity approach
is task-dependent. Gali et al. (2016) argued that
performance of the similarity measures is affected
by characteristics such as text length, spelling ac-
curacy, presence of abbreviations and underlying
language. Motivated by these learnings, we do a
systematic study of fuzzy matching techniques for
the problem of E-commerce attribute normaliza-
tion. Besides, we use latest work in the field of
neural embeddings for attribute normalization.

3 Overview

Attribute normalization can be posed as a matching
problem. Given an attribute surface form and a list
of possible canonical forms, similarity of surface
form with each canonical form is calculated and
surface form is mapped to the canonical form with
highest similarity or mapped to ‘other’ class if none
of the canonical forms is suitable (refer Figure 2
for illustration). Formally, given a surface form
si (i ∈ [1, n]) and a list of canonical forms cj (j ∈
[0, k]), where c0 is the ‘other’ class, n is number of
surface forms and k is number of canonical forms.
The aim is to find a mapping function M such that:

M(si) = cj where i ∈ [1, n] , j ∈ [0, k] (1)

In this paper, we explore fuzzy string match-
ing and similarity in embedding space as matching

Figure 2: Illustration of Attribute Normalization Task

Figure 3: SANTA framework for training embeddings
suitable for attribute normalization

techniques. We describe multiple string match-
ing approaches in Section 3.1, followed by un-
supervised token embedding approaches in Sec-
tion 3.2 and our proposed SANTA framework in
Section 3.3.

3.1 String Similarity Approach
We study three different categories of string match-
ing algorithms3 and explore three algorithms in
each category4:

• Edit distance-based: These algorithms com-
pute the number of operations needed to trans-
form one string to another, leading to higher
similarity score for less operations. We ex-
perimented with six algorithms in this cat-
egory, a) Hamming, b) Levenshtein, and c)
Jaro-Winkler.

• Sequence-based: These algorithms find com-
mon sub-sequence in two strings, leading to
higher similarity score for longer common
sub-sequence or a greater number of com-
mon sub-sequences. We experimented with
three algorithms in this category, a) longest
common subsequence similarity, b) longest
common substring similarity, and c) Ratcliff-
Obershelp similarity.

3https://itnext.io/string-similarity-the-basic-know-your-
algorithms-guide-3de3d7346227

4For algorithms which return distance metrics rather than
similarity, we use lowest distance as substitute for highest
similarity.
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• Token-based: These algorithms represent
string as set of tokens (e.g. ngrams) and com-
pute number of common tokens between them,
leading to higher similarity score for higher
number of common tokens. We experimented
with three algorithms in this category - a) Jac-
card index, b) SorensenDice coefficient, and
c) Cosine similarity. We converted strings to
character ngrams of size 1 to 5 before apply-
ing this similarity.

We used python module textdistance5 for all string
similarity experiments. For detailed definition of
these approaches, we refer readers to Gomaa and
Fahmy (2013) and Vijaymeena and Kavitha (2016).
3.2 Unsupervised Embeddings
Mikolov et al. (2013) introduced word2vec model
that uses a shallow neural network to obtain dis-
tributed representation (embeddings) of words, en-
suring words that appear in similar contexts are
closer in the embedding space. To deal with unseen
and rare words, Bojanowski et al. (2017) proposed
fastText model that improves over word2vec em-
beddings by considering sub-words and represent-
ing word embeddings as average of embeddings
of corresponding sub-words. To learn domain-
specific nuances, we trained a word2vec and fast-
Text model using a dump consisting of product
titles and attribute values (refer Section 4 for de-
tails of this dump). We found better results with
using concatenation of title with attribute value as
compared to using only title, likely due to includ-
ing surface form from title and attribute canonical
form (or vice versa) in a single context.
3.3 Scalable Approach for Normalizing Text

Attributes (SANTA)
Figure 3 gives an overview of learning embeddings
with our proposed SANTA framework. We de-
fine an embedding learning task using twin net-
work with triplet loss to enforce that embeddings
of attribute values are closer to corresponding titles
as compared to embeddings of a randomly cho-
sen title from the same product category. To deal
with multi-word values, we use a simple step of
treating each multi-word attribute value as a single
phrase. Overall, we observed 40K such phrases,
e.g. “back cover”, “android v4.4.2”, “9-12 month”
and “wine red”. For both attribute values and prod-
uct titles, we converted these multi-token phrases
to single tokens (e.g. ‘back cover’ is replaced with
‘back cover’).

5https://pypi.org/project/textdistance/

We describe details of the embedding learning
task and triplet generation in Section 3.3.1, and
twin network in Section 3.3.2.
3.3.1 Triplet Generation
There are scenarios when title contains canonical
form of attribute value (e.g. “3xl” could be size
attribute value for a title ‘Nike running shoes for
men xxxl’). We can leverage this information to
learn embeddings that not only capture semantic
similarity but can also distinguish between close
canonical forms. Motivated by work in answer
selection (Kulkarni et al., 2019; Bromley et al.,
1994), we define an embedding learning task of
keeping surface form closer to corresponding title
as compared to a randomly chosen title. We cre-
ated training data in form of triplets of anchor (q),
positive title (a+) and negative title (a−), where q
is attribute value, a+ is corresponding product title
and a− is a title selected randomly from product
category of a+. One way to select negatives is to
pick a random product from any product category,
but that may provide limited signal for embedding
learning task (e.g. choosing an Apparel category
product when actual product is from Laptop cate-
gory). Instead, we select a negative product from
same product category, which acts as a hard nega-
tive (Kumar et al., 2019; Schroff et al., 2015) and
improves the attribute normalization results. Se-
lecting products from same category may lead to
few incorrect negative titles (i.e. negative title may
contain the correct attribute value). We screen out
incorrect negatives where anchor attribute value (q)
is mentioned in title, reducing noise in the training
data.
3.3.2 Twin Network and Triplet Loss

Figure 4: Illustration of Twin network with Triplet loss.

We choose twin network as it projects surface
forms and canonical forms in same embedding
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space and triplet loss helps to keep surface forms
closer to the most appropriate canonical form. Fig-
ure 4 describes the architecture of our SANTA
framework. Given a (q, a+, a−) triplet, the model
learns embedding that minimize the triplet loss
function (Equation 2). Similar to fastText, we rep-
resent each token as consisting of sub-words (n-
gram tokens). Embedding for a token is created us-
ing a composite function on sub-word embeddings,
and similarly, embeddings for title are created us-
ing composite function on word embeddings. We
use averaging of embeddings as composite func-
tion (similar to fastText), though the framework is
generic and other composite functions like LSTM,
CNN and transformers can also be used.

Let E denote the embedding operator and cos
represent cosine similarity metric, then triplet loss
function is given as:

Loss = max {0,M − cos(E(q), E(a+))

+ cos(E(q), E(a−))}
(2)

where M is margin.
The advantage of this formulation over unsuper-

vised embeddings (Section 3.2) is that in addition
to learning semantic similarities for attribute values,
it also learns to distinguish between close canon-
ical forms, which may appear in similar contexts.
For example, the embedding of surface form ‘720p’
will move closer to embedding of ‘HD’ mentioned
in a+ title but away from embedding of ‘Ultra HD’
mentioned in a− title.

4 Experimental Setup

In this section, we describe our experimental setup,
including dataset, metrics and hyperparameters of
our model. There is no publicly available data set
for attribute normalization problem. More (2016)
and Putthividhya and Hu (2011) worked on brand
normalization problem but the datasets are not pub-
lished for reuse. Xu et al. (2019) published a
dataset collected from AliExpress ‘Sports & Enter-
tainment’ category for attribute extraction use-case.
This dataset belongs to a single category and is re-
stricted to samples where attribute value is present
in title, hence limiting its applicability for attribute
normalization. To ensure robust learnings, we cu-
rate a real-world attribute normalization dataset
spread across multiple categories and report all our
evaluations on this dataset.

4.1 Training and Test data
We selected 50 attributes across 20 product cate-
gories including electronics, apparel and furniture
for our study and obtained their canonical forms
from business teams. These selected attributes have
on average 7.5 canonical values (describing the ex-
act selection process for canonical values is outside
the scope of current work). For each of these at-
tributes, we picked top 50 surface forms and manu-
ally mapped these values to corresponding canon-
ical forms, using ‘other’ label when none of the
existing canonical forms is suitable. We, thus, ob-
tain a labelled dataset of 2500 samples (50 surface
forms each for 50 attributes), out of which 38%
surface forms are mapped to ‘other’ class. Surface
forms mapping to ‘other’ are either junk value (e.g.
“5MP” for operating system) or coarser value (e.g.
“android” when canonical forms are “android 4.1”,
“android 4.2” etc.). It took 20 hours of manual ef-
fort for creating this dataset. We split this data into
two parts (20% used as dev set and 80% as test
set).

For training, we obtain a dump of 100K prod-
ucts corresponding to each attribute, obtaining a
dump of 5M records (50 attributes X 100K prod-
ucts per attribute), having title and attribute values.
This data (5M records) is used for training unsuper-
vised embeddings (Section 3.2). For each record,
we select one negative example for triplet genera-
tion (Section 3.3.1) and use this triplet data (5M
records) for learning SANTA model. Kindly note
that training data creation is fully automated, and
does not require any manual effort, making our
approach easily scalable.

4.2 Metric
There are no well-established metrics in literature
for attribute normalization problem. One simple
approach is to consider canonical form with highest
similarity as predicted value for evaluation. How-
ever, we argue that an algorithm should be penal-
ized for mapping a junk value to any canonical
form. Based on this motivation, we define two
evaluation metrics that we use in this work.

4.2.1 Accuracy

Figure 5: Illustration for Accuracy metric.
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We divide predictions on all samples (N ) into
two sets using a threshold x1 (see Figure 5). ‘Other’
class is predicted for samples having score less
than x1 (low similarity to any canonical form) and
canonical form with highest similarity is consid-
ered for samples having score greater than x1 (con-
fident prediction). We consider prediction as cor-
rect for samples in X1 set if true label is ‘other’
and for samples in N −X1 set, if model prediction
matches the true label. We define Accuracy as ratio
of correct predictions to the number of cases where
prediction is made (N in this case). The threshold
x1 is selected based on performance on dev set.
4.2.2 Accuracy Coverage Curve

Figure 6: Illustration for Accuracy Coverage metric.

It can be argued that a model is confident about
surface forms when prediction score is on either
extreme (close to 1 or close to 0). Motivated by this
intuition, we define another metric where we divide
predictions into three sets using two thresholds x1
and x2 (see Figure 6). ‘Other’ class is predicted for
samples having score less than x1 (low similarity to
any canonical form), no prediction is made for sam-
ples having score between x1 and x2 (model is not
confidently predicting any canonical form but con-
fidence score is not too low to predict ‘other’ class)
and canonical form with highest similarity is con-
sidered for samples having score greater than x2.
We define Coverage as fraction of samples where
some prediction is made ((X1+N −X2)/N ), and
Accuracy as ratio of correct predictions to the num-
ber of predictions. For samples in X1 set, we con-
sider prediction correct if true label is ‘other’ and
for samples in N −X2 set, we consider prediction
correct when model prediction matches the true
canonical form. The thresholds are selected based
on performance on dev set and based on different
choice of thresholds, we create Accuracy-Coverage
curve for comparison.

4.3 SANTA Hyperparameters
We set the value of M as 0.4, embedding dimen-
sion as 200, minimum n-gram size as 2 and maxi-
mum n-gram size as 4. We run the training using
Adadelta optimizer for 5 epochs, which took ap-
proximately 8 hours on a NVIDIA V100 GPU. The
parameters to be learned are ngram embeddings

Table 1: Evaluation of String similarity approaches.

STRING SIMILARITY ACCURACY

EDIT DISTANCE BASED
HAMMING 51.6
LEVENSHTEIN 61.1
JARO-WINKLER 62.1

SEQUENCE BASED
LC SUBSEQUENCE 57.6
LC SUBSTRING 64.7
RATCLIFF-OBERSHELP 64.9

TOKEN BASED
JACCARD INDEX 74.6
SORENSEN-DICE 74.6
COSINE SIMILARITY 76.6

(0.63M ngrams X 200 embedding dimension =
127M parameters). Ngram embeddings are shared
across the twin network.

5 Results
We present systematic study on string similarity ap-
proaches in Section 5.1, followed by experiments
of unsupervised embeddings in Section 5.2. We
compare best results from Section 5.1 and Section
5.2 with our proposed SANTA framework in Sec-
tion 5.3. We study these algorithms separately on
syntactic and semantic portion of test dataset in
Section 5.4 and perform qualitative analysis based
on t-SNE visualization in Section 5.5.

5.1 Evaluation of String Similarity
Table 1 shows comparison of string similarity ap-
proaches for attribute normalization. We observe
that token based methods performs best, followed
by comparable performance of sequence based
and edit distance based methods. We believe that
token based approaches outperformed other ap-
proaches as they are insensitive to the position
where common sub-string occurs in the two strings
(e.g. matching “half sleeve” to “sleeve half ” for
sleeve type attribute). Putthividhya and Hu (2011)
evaluated n-gram based ‘Jaccard index’ (token
based approach) and ‘Jaro-Winkler distance’ (char-
acter based approach) for brand normalization and
got similar observations, obtaining best results with
‘Jaccard index’. We observe that ‘Cosine similarity’
obtains 2.7% accuracy improvement over Jaccard
index in our experiments.

5.2 Evaluation of Unsupervised Embeddings
Table 2 shows performance of word2vec and fast-
Text approach. We observe that presence of n-
grams information in fastText leads to significant
improvement over word2vec, as use of n-grams
helps with matching of rare attribute values. How-
ever, fastText is not able to match string similarity
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Table 2: Comparison of normalization approaches

MODEL ACCURACY

RANDOM 37.8
MAJORITY CLASS PREDICTION 48.5

JACCARD INDEX 74.6
COSINE SIMILARITY 76.6

WORD2VEC 48.4
FASTTEXT 65.7

SANTA (WITHOUT NGRAMS) 47.4
SANTA (WITH NGRAMS) 78.4

baseline (refer Table 1). We believe unsupervised
embeddings shows relatively inferior performance
for attribute normalization task, as embeddings are
learnt based on contexts in product titles, keeping
different canonical forms (e.g. “HD” and “Ultra
HD”) close by as they occur in similar context.

5.3 Evaluation of SANTA framework
Table 2 shows comparison of SANTA with multiple
normalization approaches, including best solutions
from Section 5.1 and Section 5.2. To understand
the difficulty of this task, we introduce two base-
lines of a) randomly mapping surface form to one
of the canonical forms (termed as ‘RANDOM’),
and b) predicting the most common class based
on dev data (termed as ‘MAJORITY CLASS’).
We observe 37.8% accuracy with ‘RANDOM’ and
48.5% accuracy with ‘MAJORITY CLASS’, es-
tablishing the difficulty of the task. SANTA (with
ngrams) shows best performance with 78.4% accu-
racy, leading to 2.3% accuracy improvement over
‘Cosine Similarity’ (best string similarity approach)
and 19.3% over fastText (best unsupervised embed-
dings). We discuss few qualitative examples for
these approaches in appendix.

Figure 7 shows Accuracy-Coverage curve for
these algorithms. As observed from this curve,
SANTA consistently outperforms string similarity
and fastText across all coverages.

5.4 Study on Syntactic and Semantic Dataset
In this section, we do a separate comparison of
normalization algorithms on samples requiring se-
mantic and syntactic matching. We filtered test
dataset where true label is not ‘Others’, and manu-
ally labelled each surface form as requiring syntac-
tic or semantic similarity. Based on this analysis,
we observe that 45% of test data requires syntac-
tic matching, 17% requires semantic matching and
remaining 38% is mapped to ‘other’ class. For
current analysis of syntactic and semantic set, we

Figure 7: Accuracy-Coverage plot for various Normal-
ization techniques.

Figure 8: Study of various normalization algorithms on
semantic and syntactic dataset

use a special case of metric defined in section 4
(since ‘other’ class is not present). We set x1 = 0,
ensuring that ‘other’ class is not predicted for any
samples of test data. We show Accuracy-Coverage
plot for semantic and syntactic cases in Figure 8.

For semantic set, we observe that fastText per-
forms better than string similarity, due to its ability
to learn semantic representation. Our proposed
SANTA framework, further improves over fastText
for better semantic matching with close canoni-
cal forms. For syntactic set, we observe compa-
rable performance of SANTA and string similar-
ity. These results demonstrate that our proposed
SANTA framework performs well on both syntac-
tic and semantic set.

5.5 Word Embeddings Visualization
For qualitative comparison of fastText and SANTA
embeddings, we project these embeddings into 2-
dimensions using t-SNE (van der Maaten and Hin-
ton, 2008). Figure 9 shows t-SNE plots6 for 3 at-
tributes (Headphone Color, Jewelry Necklace type
and Watch Movement type). For color attribute,
we observe that values based on SANTA have ho-

6https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE
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mogenous cohorts of canonical values and corre-
sponding surface forms (e.g. there is a cohort for
‘black’ color on bottom-right and ‘blue’ color on
top-left of the plot.). However, with fastText, the
color values are scattered across the plot without
any specific cohorts. Similar patterns are seen with
necklace type where SANTA results show better co-
horts than fastText. These results demonstrate that
embeddings learnt with SANTA are better suited
than fastText embeddings to distinguish between
close canonical forms.

6 Conclusion
In this paper, we studied the problem of attribute
normalization for E-commerce. We did a sys-
tematic study of multiple syntactic matching al-
gorithms and established that use of ‘cosine simi-
larity’ leads to 2.7% improvement over commonly
used Jaccard index. Additionally, we argued that at-
tribute normalization requires combination of syn-
tactic and semantic matching. We described our
SANTA framework for attribute normalization, in-
cluding our proposed task to learn embeddings in
a self-supervised fashion with twin network and
triplet loss. Evaluation on a real-world dataset for
50 attributes, shows that embeddings learnt using
our proposed SANTA framework outperforms best
string matching algorithm by 2.3% and fastText by
19.3% for attribute normalization task. Our evalua-
tion based on semantic and syntactic examples and
t-SNE plots provide useful insights into qualitative
behaviour of these embeddings.
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(a) FastText: Headphone Color (b) SANTA: Headphone Color

(c) FastText: Necklace type (d) SANTA: Necklace type

(e) FastText: Watch movement type (f) SANTA: Watch movement type

Figure 9: Figure showing t-SNE plot of fastText and SANTA embeddings for three attributes. Surface forms are
shown with green dots and canonical forms with red triangles. For better understanding of results, we use green
oval selection to show correct homogenous cohorts and red oval selection for incorrect cohorts. This figure is best
seen in colors.
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7 Appendix

We list few interesting examples in Table 3. It
can be observed that string similarity makes cor-
rect predictions for cases requiring fuzzy match-
ing (e.g. matching “multi” with “multicoloured”),
but, makes incorrect predictions for examples re-
quiring semantic matching (e.g. incorrectly match-
ing “cane” with “polyurethane”). With fastText,
we get correct predictions for many semantic ex-
amples, however, we get incorrect predictions for
close canonical forms (e.g. incorrectly mapping
“3 seater sofa set” to “five seat” as “three seat”
and “five seat” occur in similar contexts in title).
Our proposed SANTA model does well for most
of these examples, but it fails to make correct pre-
dictions for rare surface forms (e.g. “no assembly
required, pre-aseembled”).

Surface Form
Actual

Canonical Form
Cosine Similarity

Prediction
FastText

Prediction
SANTA

prediction
Comment

multi multicoloured multicoloured green multicoloured
thermoplastic plastic plastic silicone plastic
amd radeon r3 ati radeon ati radeon nvidia geforce ati radeon

free size one size one size small one size

FastText fails

2 years 2 - 3 years 11 - 12 years 3 - 4 years 2 - 3 years
Both String

Similarity and
fastText fails
but SANTA
gives correct

mapping

elbow sleeve half sleeve 3/4 sleeve short sleeve half sleeve
cane bamboo polyurethane rattan bamboo

product will
be assembled

requires
assembly

already assembled d-i-y
require

assembly

3 seater
sofa set

three seat four seat five seat three seat

nokia os symbian palm web os symbian symbian
silicone rubber silk rubber rubber
coffee brown off-white brown brown

String Similarity
fails

no assembly
required,

pre-aseembled

already
assembled

requires assembly already assembled
requires

assembly

mechancial hand driven hand driven hand driven automatic

SANTA fails

Table 3: Qualitative Examples for multiple normaliza-
tion approaches. Correct predictions are highlighted in
green color and incorrect predictions are highlighted in
red color.
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Abstract

The Transformer has proven to be a power-
ful feature extraction method and has gained
widespread adoption in natural language pro-
cessing (NLP). In this paper we propose a
multimodal item categorization (MIC) system
solely based on the Transformer for both text
and image processing. On a multimodal
product data set collected from a Japanese e-
commerce giant, we tested a new image clas-
sification model based on the Transformer and
investigated different ways of fusing bi-modal
information. Our experimental results on real
industry data showed that the Transformer-
based image classifier has performance on par
with ResNet-based classifiers and is four times
faster to train. Furthermore, a cross-modal at-
tention layer was found to be critical for the
MIC system to achieve performance gains over
text-only and image-only models.

1 Introduction

Item categorization (IC) is a core technology in
modern e-commerce. Since there can be millions
of products and hundreds of labels in e-commerce
markets, it is important to be able to map these
products to their locations in a product category tax-
onomy tree efficiently and accurately so that buyers
can easily find the products they need. Therefore,
IC technology with high accuracy is needed to cope
with this demanding task.

Products can contain text (such as titles) and
images. Although most IC research has focused
on using text-based cues, images of products also
contain useful information. For example, in some
sub-areas like fashion, the information conveyed
through images is richer and more accurate than
through the text channel. In this paper, we propose
an MIC model entirely based on the Transformer
architecture (Vaswani et al., 2017) for achieving

∗Equal contributor

a simplification of the model and faster training
speed. We conducted experiments on real product
data collected from an e-commerce giant in Japan
to (a) test the performance of the Transformer-
based product image classification, and (b) system-
atically compare several bi-modal fusion methods
to jointly use both text and image cues.

2 Related works

(Zahavy et al., 2016) is a seminal work on MIC
where multi-label classification using both titles
and images was conducted on products listed on the
Walmart.com website. They used a convolutional
neural network to extract representations from both
titles and images, then designed several policies
to fuse the outputs of the two models. This led
to improved performance over individual models
separately. Since this work, further research has
been conducted on MIC such as (Wirojwatanakul
and Wangperawong, 2019; Nawaz et al., 2018).

Recently, a MIC data challenge was organized
in the SIGIR’20 e-commerce workshop1. Rakuten
France provided a dataset containing about 99K
products where each product contained a title, an
optional detailed description, and a product image.
The MIC task was to predict 27 category labels
from four major genres: books, children, house-
hold, and entertainment. Several teams submitted
their MIC systems (Bi et al., 2020; Chordia and
Vijay Kumar, 2020; Chou et al., 2020). A common
solution was to fine-tune pre-trained text and im-
age encoders to serve as feature extractors, then
use a bi-modal fusion mechanism to combine pre-
dictions. Most teams used the Transformer-based
BERT model (Devlin et al., 2019) for text feature
extraction and ResNet (He et al., 2016) for image
feature extraction, including the standard ResNet-

1https://sigir-ecom.github.io/
ecom2020/data-task.html
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152 and the recently released Big Transfer (BiT)
model (Kolesnikov et al., 2020). For bi-modal fu-
sion, the methods used were more diverse. Roughly
in order of increasing complexity, the methods in-
cluded simple decision-level late fusion (Bi et al.,
2020), highway network (Chou et al., 2020), and
co-attention (Chordia and Vijay Kumar, 2020). It
is interesting to note that the winning team used
the simplest decision-level late fusion method.

In other recent work, a cross-modal attention
layer which used representations from different
modalities to be the key and query vectors to
compute attention weights was studied. In (Zhu
et al., 2020), product descriptions and images were
jointly used to predict product attributes, e.g., color
and size, and their values in an end-to-end fashion.
In addition, based on the fact that product images
can contain information not clearly aligned with or
even contradicting the information conveyed in the
text, a special gate was used to control the contribu-
tion of the image channel. A similar idea was used
in (Sun et al., 2020) on multimodal named entity
recognition research on Twitter data.

Although the field has converged on using
Transformer-based models for processing text in
recent years, ResNet-based image processing is
still the dominant approach in MIC research. One
immediate difficulty in combining the two types of
models is the big gap between the training speeds.
Owing to the superior parallel running capability
enabled by self-attention in the Transformer archi-
tecture, text encoder training is much faster than the
image encoder, and the training bottleneck of the
MIC system becomes solely the image encoder. In
addition, using two different deep learning architec-
tures simultaneously makes building and maintain-
ing MIC systems more complex. One solution is to
use Transformers as the encoder of choice for both
modalities. Furthermore, a detailed comparison of
different fusion methods on large-scale multimodal
industry product data is still missing. Our work
addresses these two directions of research.

3 Model

Our MIC model is depicted in Figure 12. It consists
of feature extraction components using a Trans-
former on uni-modal channels (i.e., text titles and
images), a fusion part to obtain multimodal repre-
sentations, and a Multi-Layer Perceptron (MLP)

2The image of the can of tea is from https://item.
rakuten.co.jp/kusurinokiyoshi/10016272/

Word_1, ... Word_N 1 2

4 5

3

6

7 8 9

BERT ViT

v_0 v_1 h_2 ... v_9h_0 h_1 h_2 ... h_N

CLS P_1 P_2 ... P_9CLS W_1 W_2 ... W_N

MLP MLP

Late fusion
(decision)

Early fusion
(Shallow)

MLP

Cross-modal
attention

MLP

Early fusion
(Cross-Attention)

(a) (b) (c)

alpha 1-alpha

category

category category

Figure 1: Our Transformer-based MIC system consists
of a BERT model to extract textual information and a
ViT model to extract visual information. Three differ-
ent types of multimodal fusion methods are compared,
including (a) late fusion, (b) early fusion by concatenat-
ing textual and image representations (shallow), and (c)
early fusion by using a cross-modal attention. Wide ar-
rows indicate that the entire sequence, e.g., h0 to hN ,
is used in the computation. For illustration we show
3× 3 patches for ViT but in our actual implementation
a higher P was used.

head to make final predictions.

3.1 BERT text model

We fine-tuned a Japanese BERT model (Devlin
et al., 2019) trained on Japanese Wikipedia data.
The BERT model encodes a textual product title,
x = ([CLS], x1, ..., xN ), into text representation
sequence h = (h0, h1, ...hN ), where hi is a vector
with a dimension of 768.

3.2 ViT image model

Although originally developed for NLP applica-
tions, in recent years the Transformer architec-
ture (Vaswani et al., 2017) has been increasingly
applied to the computer vision domain. For ex-
ample, (Han et al., 2020) is a recent survey paper
listing many newly emerging visual models using
the Transformer.

Among the many visual Transformer models
we used the ViT model (Dosovitskiy et al., 2020),
which is a pure Transformer that is applied directly
on an image’s P × P patch sequence. ViT utilizes
the standard Transformer’s encoder part as an im-
age classification feature extractor and adds a MLP
head to determine the image labels. The ViT model
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was pre-trained using a supervised learning task on
a massive image data set. The size of the super-
vised training data set impacts ViT performance
significantly. When using Google’s in-house JFT
300M image set, ViT can reach a performance su-
perior to other competitive ResNet (He et al., 2016)
models.

The ViT model encodes the product image. Af-
ter converting a product image to P × P patches,
ViT converts these patches to visual tokens. After
adding a special [CLS] visual token to represent the
entire image, the M = P × P + 1 long sequence
is fed into a ViT model to output an encoding as
v = (v0, v1, v2, ...vM ), where M = P × P .

3.3 Multimodal fusion

The fusion method plays an important role in MIC.
In this paper we compared three methods, corre-
sponding to Figure 1 (a), (b), and (c).

3.3.1 Late fusion

The simplest fusion method is combining the deci-
sions made by individual models directly (Bi et al.,
2020; Chou et al., 2020). We used weights α and
1− α to interpolate the probabilities estimated by
BERT and ViT models. The α value was chosen
using a held-out set.

3.3.2 Early fusion – shallow

The [CLS] token, the first token of every input
sequence to BERT and ViT, is used to provide a
global representation. Therefore we can concate-
nate the two encoded [CLS] tokens to create a mul-
timodal output. The concatenated feature vectors
are sent to an MLP head for predicting multi-class
category labels. This method is called a shallow
fusion (Siriwardhana et al., 2020).

3.3.3 Early fusion – cross-modal attention

A cross-modal attention layer provides a more so-
phisticated fusion between text and image chan-
nels (Zhu et al., 2020; Sun et al., 2020). Cross-
modal attention is computed by combining Key-
Value (K-V) pairs from one modality with the
Query (Q) from the other modality. In addition,
(Zhu et al., 2020) used a gate to moderate potential
noise from the visual channel.

Specifically, the multimodal representation h′ is
computed from the addition of the self-attention
(SA) version of text representation h and the cross-
modal attention version by considering the visual

representation v as

h′ = SA(h,h,h) + V G� SA(h, v, v), (1)

where

SA(q,k, v) = softmax
(
(WQq)(WKk)T√

dk

)
WV v,

(2)

V Gi = σ(W1hi +W2v0 + b), (3)

WQ, WK , and WV are trainable query, key, and
value parameters, dk is the dimension of the key
vectors, and the visual gate, V G, can be learned
from both the local text representations hi and
global visual representation v0, with W1, W2, and
b as trainable parameters. The category label pre-
diction ŷ is determined as

ŷ = softmax

(
W3

∑

i

h′i

)
, (4)

where W3 is a trainable parameter.

4 Experiment

4.1 Setup

Data set: Our data consisted of about 500,000
products from a large e-commerce platform in
Japan, focusing on three major product categories.
Our task, a multi-class classification problem, was
to predict the leaf-level product categories from
their Japanese titles and images. Further details of
our data set are shown in the left part of Table 1.
We used the macro-averaged F1-score to evaluate
model performance.

Models: We compared the following models.

• Text-only: Japanese BERT model3 fine-tuned
on product titles.

• Image-BiT: BiT image model (Kolesnikov
et al., 2020) fine-tuned on product images.
In particular, we used BiT-M.4 BiT showed
a considerable performance advantage than
other conventional ResNet models in the SI-
GIR’20 MIC data challenge (Chou et al.,
2020).

3https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

4https://tfhub.dev/google/bit/
m-r152x4/1
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Root genre Class size Train size Test size Ma-F1 (BiT) Ma-F1 (ViT)
Beverages (B) 32 29,269 7,332 0.666 0.610
Appliances (A) 280 200,552 50,283 0.574 0.639
Men’s Fashion (M) 70 228,148 57,077 0.715 0.733

Table 1: Summary of our data set obtained from a large e-commerce platform in Japan. Right two columns report
image classification macro-F1 values using BiT and ViT models, respectively.

• Image-ViT: ViT image model (Dosovitskiy
et al., 2020) fine-tuned on product images. We
used ViT-L-16.5 16 means that we used 16×
16 patches when feeding images.

• Fusion: The late fusion method described in
Section 3.3.1 and depicted in Figure 1 (a),
the early fusion method described in Sec-
tion 3.3.2 and depicted in Figure 1 (b), and
the cross-modal fusion method described in
Section 3.3.3 and depicted in Figure 1 (c).

Implementation details: Our models were imple-
mented in PyTorch using a GPU for training and
evaluation. The AdamW optimizer (Loshchilov
and Hutter, 2017) was used. Tokenization was per-
formed with MeCab.6

4.2 Result
Table 1 reports on macro-F1 values for the
three genres using the ResNet-based BiT vs.
Transformer-based ViT. ViT shows higher perfor-
mance compared to BiT on two of the three genres.
In addition, consistent with the speed advantage
reported in (Dosovitskiy et al., 2020), we also ob-
served that the training for ViT is about four times
faster than BiT. This is critical for an MIC system
deployable in industry since image model training
time is the main bottleneck.

Model F1 (B) F1 (A) F1 (M)
Text-BERT 0.718 0.733 0.802
Image-ViT 0.610 0.639 0.733

Fusion-late 0.725 0.709 0.814
Fusion-early 0.714 0.726 0.788
Fusion cross-modal 0.729 0.740 0.815

Table 2: Macro-F1 on the three product genres. Uni-
modal models, i.e., BERT text model and ViT image
model, and different fusion models are compared.

Table 2 reports on uni-modal model perfor-
mance, i.e., text-BERT and image-ViT separately,

5https://github.com/asyml/
vision-transformer-pytorch

6https://taku910.github.io/mecab/

as well as the results of fusing these models in
various ways. We found that the early (shallow)
fusion method leads to poor model performance.
One possible reason is that product images used in
e-commerce product catalogs sometimes do not ap-
pear to be clearly related to its corresponding titles.
For example, a bottle of wine may be packaged in
a box and its image only shows the box. We also
found that late (decision) fusion does not lead to
consistent gains. In the appliance genre, we found
that the fused model was worse than the text model.
On the other hand, the cross-modal attention fusion
method showed consistent gains over both the text
and image models separately on all three genres.

5 Discussion

Although various approaches have been explored in
MIC research, we found that a MIC system built en-
tirely out of the Transformer architecture was miss-
ing. Combining the well-established BERT text
model and the newly released ViT image model,
we proposed an all-Transformer MIC system on
Japanese e-commerce products. From experiments
on real industry product data from an e-commerce
giant in Japan, we found that the ViT model can be
fine-tuned four times faster than BiT and can have
improved performance. Furthermore, fusing both
text and image inputs in an MIC setup using the
cross-modal attention fusion method led to model
performance better than each model separately, and
we found that this fusion method worked better
than late fusion and the early (shallow) fusion of
simply concatenating representations from the two
modalities.

There are several directions to extend the cur-
rent work in the future, including (1) considering
jointly modeling texts and images in one Trans-
former model like FashionBERT (Gao et al., 2020),
and (2) using self-training to go beyond the limit
caused by the size of labeled image data for the
image model.
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Abstract

In this paper, we explored different levels of
textual representations for cross-lingual infor-
mation retrieval. Beyond the traditional to-
ken level representation, we adopted the sub-
word and character level representations for
information retrieval that had shown to im-
prove neural machine translation by reducing
the out-of-vocabulary issues in machine trans-
lation. Additionally, we improved the search
performance by combining and re-ranking the
result sets from the different text representa-
tions for German, French and Japanese.

1 Introduction

Cross-lingual information retrieval (CLIR) systems
commonly use machine translation (MT) systems
to translate the user query to the language of the
search index before retrieving the search results
(Fujii and Ishikawa, 2000; Pecina et al., 2014; Saleh
and Pecina, 2020; Bi et al., 2020).

Traditionally, information retrieval and machine
translation systems convert search queries to tokens
and n-grams level textual representation (Jiang and
Zhai, 2007; McNamee and Mayfield, 2004; Level-
ing and Jones, 2010; Yarmohammadi et al., 2019).
Modern neural machine translation (NMT) systems
have shown that subwords and character represen-
tations with flexible vocabularies outperform fixed
vocabulary token-level translations (Sennrich et al.,
2016; Lee et al., 2017; Kudo and Richardson, 2018;
Wang et al., 2019). This study explores the shared
granularity of textual representations between ma-
chine translation and cross-lingual information re-
trieval.

Textual representations of varying granularity en-
code queries differently, resulting in more diverse
and robust search retrieval. Potentially, subwords
and character-level representations are less sensi-
tive to irregularities in noisy user-generated queries,
e.g. misspellings and dialectal variants.

Tokens: americium ist ein chemisches
element ...

Subwords: am er ic ium ist ein
chemische s element ...

Characters: a m e r c i u m i s t e i n
c h e m i s c h e s e l e m e n t

Table 1: Example of a Pre-processed Document with
Different Text Representations

2 Related Work

Neural machine translation had shown to outper-
form older paradigm of statistical machine trans-
lation models significantly and even “achieved hu-
man parity in specific machine translation tasks”
(Hassan et al., 2018; Läubli et al., 2018; Toral,
2020). Moving from fixed token-level vocabulary
to a subword representation unlocks open vocab-
ulary capabilities to minimize out-of-vocabulary
(OOV) issues1.

Byte-Pair Encoding (BPE) is a popular subword
algorithm that splits tokens into smaller units (Sen-
nrich et al., 2016). This is based on the intuition
that smaller units of character sequences can be
translated easily across languages.

For instance, these smaller units appear when
handling compound words via compositional trans-
lations, such as

For instance, subword units can better handle
compound words via compositional German to En-
glish translations, schokolade → chocolate and
schoko-creme→ chocolate cream. Suwbords can
also cope with translations where we can easily
copy or translate part of the source tokens or trans-
late cognates and loanwords via phonological or
morphological transformations, e.g. positiv →

1Although subwords allow more flexibility than tokens in
creating unseen words, most NMT systems cannot support
a genuinely open vocabulary thus a backoff token <unk> is
often used during inference to represent subwords that is not
seen in the training data.
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positive and negativ (German)→ negative.
While BPE reduces the OOV instances, it re-

quires the input to be pre-tokenized before apply-
ing the subword compression. Alternatively, Kudo
and Richardson (2018) proposed a more language-
agnostic approach to subword tokenization directly
from raw string inputs using unigram language
models.

Completing the whole gamut of granular text rep-
resentations, Lee et al. (2017) explored character-
level neural machine translations that do not re-
quire any form of pre-processing or subword or
token-level tokenization. They found that multi-
lingual many-to-one character-level NMT models
are more efficient and can be as competitive as
or sometimes better than subwords NMT models.
Moreover, character-level NMT can naturally han-
dle intra-sentence code-switching. In the context
of CLIR, they will be able to handle mixed lan-
guage queries. Following this, Wang et al. (2019)
found that using byte-level BPE vocabulary is 1/8
the size of a full subword BPE model. A multi-
lingual NMT (many-to-one) setting achieves the
best translation quality, outperforming subwords
models and character-level models.

While finer granularity of text representations
was exploited for machine translation, to our best
knowledge, information retrieval studies have yet
to study the impact of using these subword repre-
sentations on traditional information retrieval sys-
tems (Robertson, 2004; Robertson and Zaragoza,
2009; Aly et al., 2014). However, many previous
works have leapfrogged to using fully neural in-
formation retrieval systems representing text with
underlying various subword representations and
neural dense text representation.

Often, these neural representations are available
in multilingual settings in which the same neural
language model can encode texts in multiple lan-
guages. Jiang et al. (2020) explored using the pop-
ular multilingual Bidirectional Encoder Represen-
tations from Transformers (BERT) model to learn
the relevance between English queries and foreign
language documents in a CLIR setup. They showed
that the model outperforms competitive non-neural
traditional IR systems on a few of the sub-tasks.

Alternatively, previous researches have also used
a cascading approach to machine translation and
traditional IR where (i) the documents are trans-
lated to the foreign languages with neural machine
translation and/or (ii) the foreign queries are trans-

lated before retrieval from the source document
index (Saleh and Pecina, 2020; Oard, 1998; Mc-
Carley, 1999).

Saleh and Pecina (2020) compared the effects of
statistical machine translation (SMT) and NMT in
a cascaded traditional CLIR setting. They found
that the better quality translations from NMT out-
performs SMT and translating queries to the source
document language that achieved better IR results
than using foreign language queries on an index of
translated documents.

Although fully neural IR systems are changing
the paradigm of information retrieval, traditional
IR (e.g. TF-IDF or BM25) approaches remain very
competitive and can still outperform neural IR sys-
tems for some tasks (Boytsov, 2020; Jiang et al.,
2020). In this regard, we follow up on the cascad-
ing approach to machine translation and informa-
tion retrieval on traditional IR systems. This study
fills the knowledge gap of understanding the effects
of subword representation in traditional IR indices.

3 Experiments

We report the experiments on different textual rep-
resentations on traditional IR in a cross-lingual
setting using a large-scale dataset derived from
Wikipedia Sasaki et al. (2018).

Sasaki et al. (2018) focused their work on a su-
pervised re-ranking task using relevance annota-
tions. We use those annotations from the same
Wikipedia dataset to perform the typical retrieval
task. The dataset was designed so that the English
queries are expected to retrieve the Wikipedia doc-
uments in the foreign languages, and the foreign
documents with the highest relevance are annotated
with three levels of relevance. Formally, the ground
truth data is a set of tuples: (English query, q, for-
eign document, d and relevance judgement r, where
r ∈ {0, 1, 2}).2

Lang #Docs #Tokens #Subwords #Chars
DE 2.08 344 580 2,086
FR 1.89 289 405 1,508
JA 1.07 510 475 734

Table 2: Corpus statistics on Wikipedia documents in
dataset from Sasaki et al. (2018). (All numbers are in
units of one million)

We note that the Wikipedia documents in the
dataset are not parallel (i.e. not translations of

2Note that a single English query can be mapped to multi-
ple documents with varying relevance judgements
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each other) but they are comparable in nature de-
pending on the varying amounts of contributions
available on the official Wikipedia dumps across
different languages. For our study, we use the Ger-
man, French and Japanese document collections
and report retrieval performance of English queries
translated to these languages.3

The Wikipedia corpus came pre-tokenized, so
we had to detokenize the documents4(Tan, 2018)
before putting them through the subword tokenizer.
We used pre-trained SentencePiece subword to-
kenizers used by the OPUS machine translation
models(Tiedemann and Thottingal, 2020)5. Addi-
tionally, we emulated the typical pre-processing
steps for character-level machine translation and
split all individual characters by space, replacing
the whitespaces with an underscore character.

Table 2 shows the corpus statistics of the number
of documents, tokens, subwords, and characters for
the respective languages. Although Latin alpha-
betic languages benefit from the extra information
produced by splitting the tokens into subwords,
Japanese presents an opposite condition. Japanese
became more compact when represented by the sub-
words in place of the tokens. The examples in Table
1 show an instance of a sentence pre-processed in
different levels of granularity. The underscore in
the subword sequence represents a symbolic space
and is usually attached to the following subword
unit, whereas the whitespace represents the unit
boundary between the subwords.

The English queries were translated using the
same OPUS machine translation models.6 Al-
though these machine translation models are open
source and free to use under a permissive CC-BY
license, it takes a significant amount of GPU com-
putation and major changes to the HuggingFace
API (Wolf et al., 2020) to efficiently translate the
query samples parallelized inference. We will re-
lease the modified code for parallel GPU inference
and translation outputs for the data used in this
experiment for future convenience to improve the

3We use the raw dataset from http://www.cs.jhu.
edu/˜kevinduh/a/wikiclir2018/ for the document
indices.

4https://github.com/alvations/
sacremoses

5https://huggingface.co/Helsinki-NLP
6We use the opus-mt-en-de, opus-mt-en-fr, and

opus-mt-en-jap models, their BLEU and ChrF scores
(Papineni et al., 2002; Popović, 2015) can be found on
https://huggingface.co/Helsinki-NLP (Tiedemann and Thot-
tingal, 2020; Tiedemann, 2020)

replicability of this paper.

3.1 Information Retrieval System

We use the Okapi BM25 implementation in
PyLucene as the retrieval framework with hyper-
parameter setting (k1 = 1.2, b = 0.75) (Manning
et al., 2008). We consider the top 100 documents
(topk = 100) in the search ranking as search results
for each query.

3.1.1 Building index for the documents

For each foreign language, we created an index for
the documents with 5 TextField as follows:

• id: the unique index of the document

• surface: the raw text of the document

• tokens: the document after tokenization

• subword: the document in SentencePiece
subwords

• char: the document in characters

3.1.2 Querying the document index

During retrieval, each translated query is first pro-
cessed into its respective text representations (to-
kens, subwords or characters) and parsed using
Lucene’s built-in query parser and analyzer. Addi-
tionally, we tried to improve the search results by
combining and re-ranking the result sets from the
different text representations.

3.1.3 Search result expansion

Our intuition is that queries of more granular text
representation can improve the robustness of the
retrieval and potentially override the textual noise
(e.g., misspellings are handled better for some lan-
guages). Hence, we attempt to expand the list of
possible candidate documents by combining the
search results from the token and the subword rep-
resentations.

Given a query q and its token qtoken and sub-
word qsubword representations, we obtained two
sets of search results from their respective indices
Rtokens and Rsubword. We concatenated Rtokens

and Rsubword, and remove the repeated candidates
that appear in both sets from Rsubword as illustrated
in Figure 1.
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Figure 1: Search Results Expansion

3.1.4 Search result re-ranking
Aside from expanding the search results, we tried
a re-ranking technique. We presumed that if dif-
ferent representations retrieve a document from a
single query, it is more relevant than the documents
that appear solely from one representation. Thus,
we boosted the rank of the documents (Dshared)
that are retrieved both in Rtokens and Rsubword

from the same query. After boosting the rank
of such documents (Dshared) by 1: d ∈ Dshared,
ranknew(d) = rankoriginal(d)−2, we re-rank the
token-based search result, as illustrated in Figure 2
to get the final search result R.

3.2 Evaluation Metrics

We choose the following ranking metrics to evalu-
ate the retrieval performance of the different text
representations of query translation. Those rank-
ing metrics are Mean Reciprocal Ranking (MRR),
Mean Average Precision (MAP), normalized Dis-
counted Cumulative Gain (nDCG);

• MRR measures the ranking of the first docu-
ment that is relevant to a given query in the
search result.

• MAP evaluates the rankings of top 100 docu-

Figure 2: Search Results Re-ranking

ments that are relevant to a given query in the
search result.

• nDCG calibrates the ranking and relevance
score of all the documents that are relevant to
a given query in the search result. We com-
pute nDCG@16 for the top-16 search results
respectively.

4 Results

Table 3, 4 and 5 show the result for the CLIR ex-
periments on the translated English queries and the
German, French, and Japanese documents of dif-
ferent textual representations. For all the German
and French setups, the token level representation
achieved the best MAP, MMR, and NDCG scores,
followed by subwords at significantly lower per-
formance. Character-level representation performs
the words at a magnitude 104̂ times worse than
token-level results.

We expected a margin between the token and
subword level performance but the stark difference
was surprising. Although machine translation can
exploit the sequential nature of the open vocabulary
with the subwords representation, traditional infor-
mation retrieval methods disregard the other tex-
tual representation to a lesser extent. However, for
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Metric Token Subword Characters Expansion Re-ranking
MAP 0.31299 0.10072 0.00031 0.30432 0.30688
MRR 0.39938 0.12783 0.00033 0.39956 0.40368
nDCG 0.40410 0.13461 0.00021 0.13461 0.00021

Table 3: Results of CLIR Experiments on Translated English Queries on German Wikipedia

Metric Token Subword Characters Expansion Re-ranking
MAP 0.30330 0.06931 0.00035 0.29859 0.29898
MRR 0.37866 0.08492 0.00039 0.37872 0.37830
nDCG 0.36810 0.09153 0.00060 0.36397 0.36537

Table 4: Results of CLIR Experiments on Translated English Queries on French Wikipedia

Metric Token Subword Characters Expansion Re-ranking
MAP 0.00039 0.00036 0.00024 0.00036 0.00024
MRR 0.00038 0.00037 0.00025 0.00037 0.00025
nDCG 0.00076 0.00054 0.00022 0.00074 0.00075

Table 5: Results of CLIR Experiments on Translated English Queries on Japanese Wikipedia

Japanese, we see that the subword representation
performs very similarly to the tokens counterparts.

For German and French documents, the intuition
behind the poor performance of the character-level
representation can be attributed to the meaningless
and arbitrary nature of the unordered bag of char-
acters. Whereas in Japanese, with its mix of syl-
labic and logographic orthography, the individual
characters can potentially encode crucial semantic
information.

We can see that both search result expansion
and re-ranking techniques can improve the final
search results for some languages. Table 3, 4 and
5 show that the search result expansion technique
improves MRR for all three languages compared
with the token-based retrieval baseline, and it im-
proves both MRR and MAP for Japanese. The
re-ranking technique achieves the highest MRR for
both German and Japanese. Improvement in the
MRR indicates that those two techniques can im-
prove the ranking of the first relevant document
appearing in the search results, which can be bene-
ficial for cross-lingual e-commerce search systems.
Neither the expansion nor the re-ranking technique
achieves a better nDCG score, which is consistent
with our expectation of improving the accuracy and
robustness of retrieval with minimal changes to the
relevance score that affects nDCG.

5 Conclusion

We explored the different granularity of textual
representations in a traditional IR system within
the CLIR task by re-using the subword representa-
tion from the neural machine translation systems.
Our experiments in this paper provide empirical
evidence for the underwhelming impact of sub-
words in traditional IR systems for Latin-based
languages as opposed to the advancements that
subword representation has made in machine trans-
lation.7 In some scenarios, it is possible to achieve
better CLIR performance by combining and ex-
panding retrieval results of token and subword rep-
resentations.

We conducted the experiments in this study us-
ing well-formed queries and documents. Our intu-
ition is that a combination of the different textual
representations can improve the robustness of the
indexing and retrieval systems in realistic situations
with noisier data (e.g. queries spelling or transla-
tions errors). For future work, we want to explore
similar experiments with noisy e-commerce search
datasets.8

7The processed datasets, code to generate the translations
and evaluations will be made available under an open source
license upon paper acceptance.

8We note that many open-source CLIR experiments are
constrained to Wikipedia document searches. Although the
lesson learned from these experiments can impact industrial
e-commerce applications, the lack of open source e-commerce
IR datasets limited the results reported in this study.
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Abstract

With the rapid growth of online video stream-
ing, recent years have seen increasing con-
cerns about profane language in their content.
Detecting profane language in streaming ser-
vices is challenging due to the long sentences
appeared in a video. While recent research
on handling long sentences has focused on de-
veloping deep learning modeling techniques,
little work has focused on techniques on im-
proving data pipelines. In this work, we de-
velop a data collection pipeline to address long
sequence of texts and integrate this pipeline
with a multi-head self-attention model. With
this pipeline, our experiments show the self-
attention model offers 12.5% relative accuracy
improvement over state-of-the-art distilBERT
model on profane language detection while re-
quiring only 3% of parameters. This research
designs a better system for informing users of
profane language in video streaming services.

1 Introduction

Streaming services such as Netflix and Prime Video
have dramatically changed the media habits of
young people, with six-in-ten primarily watch-
ing television today with streaming services (Pew,
2017). The increased exposure of online content
has raised concerns about profane language ap-
peared in these contents (Chen et al., 2012; Phan
and Tan, 2017; Obadimu et al., 2019). Expo-
sure to profane language can increase aggressive
thoughts, angry feelings, physiological arousal, and
aggressive behavior (Bushman, 2016; Phan and
Tan, 2017) .

Profane language is a type of language that in-
cludes dirty words, swearing, and obscenity con-
tents. Previous research has focused on developing
automated techniques to detect profane language in
user generated contents on social media. For exam-
ple, there have been growing interests in detecting

hate speech and racism on Twitter (Xiang et al.,
2012; Badjatiya et al., 2017; Lozano et al., 2017).
Some recent works have also studied offensive con-
tents in Youtube (Alcântara et al., 2020). However,
few studies have focused on profane language de-
tection in streaming services that host movies and
TV shows.

Recent works have shown the importance of data
techniques such as pre-processing and augmenta-
tion in improving machine learning models. For ex-
ample, there has been research on applying transfer
learning or semi-supervised learning for learning
word embedding and addressing insufficient data
issues in tasks with limited sample sizes (Howard
and Ruder, 2018; d’Sa et al., 2020). In addition,
using text pre-processing methods such as text nor-
malization, lowercasing, lemmatizing, tokenizing
and multiword grouping can help increase senti-
ment, topic and polarity classification accuracy (Sa-
tapathy et al., 2017; Camacho-Collados and Pile-
hvar, 2017). However, few studies have focused
on improving data techniques to better handle long
sequence of text appeared in streaming videos. Re-
search on addressing data issue have primarily fo-
cused on improving data quantity, rather than qual-
ity. Also, our problem has its novelty in that the
data sets of most previous studies are on written
text, which can have a different distribution from
the spoken-form video captions.

In this work, we study the problem of profane
language with a specific online video streaming
service, Amazon Prime Video (PV), as an example.
Specifically, we develop a data pipeline that can
be integrated sentence level model to automatically
predict the level of profanity in video titles accord-
ing to their caption contents. We collect data from
both the targeted service and public data set, and
augment training data by merging multiple data
sources. Our experiments show that this data col-
lection pipeline that can be used to address long

123



sequence of text and help non-hierarchical models
to achieve state-of-the-art performance. Using this
pipeline, we train a multi-head self-attention model
on embedding pre-trained on PV caption dataset,
and show this simple self-attention model (with 2
million parameters) can outperform the pre-trained
distilBERT model (with 66 million parameters) that
is fine-tuned on the same dataset by 9% accuracy.

2 Related Work

Profane language is a type of language that includes
dirty words, swearing, and obscenity contents. Pre-
vious research in this area has primarily focused
on detecting profane language in social media. For
example, a recent work studied the diffusion of pro-
fanity in Sina Weibo, one of the largest Chinese so-
cial media platforms (Song et al., 2020). Research
on abusive and hate speech detection (a close re-
lated research area to profane language detection)
has focused on developing automatic techniques
to identify racists and sexist on Twitter (Badjatiya
et al., 2017; Lozano et al., 2017), Reddit (Chan-
drasekharan et al., 2017; Mohan et al., 2017), and
Youtube (Obadimu et al., 2019). However, few
studies have focused on detecting profane language
in video stream services such as Netflix, Hulu, and
Prime Video.

Research on this area has also shifted from us-
ing traditional machine learning methods to using
deep learning methods. For example, while early
work uses traditional machine learning classifiers,
such as logistic regression, support vector machine,
and tree-based methods (Xiang et al., 2012; Warner
and Hirschberg, 2012), there has been a growing
interest in applying LSTM, CNN, and BERT (Bidi-
rectional Encoder Representations from Transform-
ers) for detecting racism, sexism, hate, or offensive
content (Badjatiya et al., 2017; Founta et al., 2019;
Basile et al., 2019; Mozafari et al., 2019). However,
one of the limits of these deep learning method is
its capacity of working memory. This is because
processing long texts (even for BERT) will quadrat-
ically increasing memory and time consumption
and slicing the text by a sliding window or simpli-
fying transformers, suffer from insufficient long-
range attentions or need customized CUDA kernels
(Ding et al., 2020). Due to this issue, these prior
methods are not directly applicable for detecting
profane language in video stream services since the
video captions are often very long, with an average
length of hundreds of sentences per video.

3 Data

Our data collection pipeline aims to address two
challenges. First, there is no labeled data for pro-
fane language detection task in streaming service.
To address this challenge, we collect data from a
popular streaming service, design an annotation
guideline, and hire human annotators to label the
levels of profanity in video titles. Then, we aug-
ment training data by collecting additional labeled
contents from a publicly available database. Last,
we perform pre-processing on the collected data to
improve its quality. Second, the title caption is so
long that it is very challenging for a model to learn
from context. To address this challenge, we de-
velop a pipeline for creating sentence-level profan-
ity labels using domain knowledge and title-level
labeling information. We provide details about our
data collection pipeline in the sections below.

3.1 Data Collection and Annotation
Figure 1 below shows the overall steps of our data
collection and pre-processing technique pipeline.
Specifically, we collected 150k titles that occupy
the top streaming volume from Prime Video, a
stream service that hosts movie and television
shows. The titles include popular movies and TV
shows in the most recent decades from global mar-
ketplaces, with duration ranging from 10 minutes
to 3 hours (with 70% as TV). The titles are diverse
and come from 200 genres such as kids cartoon,
drama, romance, and horror. Their caption lengths
range from a few sentences to thousands with aver-
age at about 700 sentences. We randomly sampled
5,260 titles from them for annotation.

Figure 1: Data Collection and Pre-processing Pipeline

We develop codebook based on standard pol-
icy from movie and TV series rating associations,
including Motion Picture Association of America
(MPAA) and TVPG (TV Parental Guidelines Moni-
toring Board). In the codebook, we define the level
of profanity in video titles based on their captions
used. In total, the codebook includes 92 keywords
and instructs on how the usage of them can lead
to profanity. Some keywords always have mali-
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cious meaning while others depend on their con-
texts. Based on the keyword frequency and the
context severity, each title has a label from one
of the following categories: None (all age), Mild
(7+ kids), Moderate (13+ kids), Strong (16+ young
adults), Severe (18+ adults), indicating the severity
of profane language. For example, the singular in-
stance use of disparaging slurs in the captions of
a movie, such as Fag or Faggot in racism context,
is rated as strong; and more than singular use of
disparaging slurs is rated as severe.

A total of 15 human annotators are recruited
to label the video captions. When annotating the
captions of a video, the annotators go through the
context of each keyword and decide whether the
keyword is profane or not. After checking all such
keywords in the entire caption, they make the final
decision on the severity of the video title based on
the counts and severity of the keywords appeared
in the captions of a video. The maximum sever-
ity across all keywords in the captions of a video
is used as the title-level rating. Throughout the
whole annotation process, we randomly audit their
labeling results to ensure the labeling quality.

3.2 Training Data Augmentation
Considering the small sample size collected in the
above process, we add additional training data by
collecting labeled data from the MPAA database
according to the reason code description. We name
the technique as data augmentation in this paper.
For example, a video title may be rated as R due to
strong language based on the reason code in MPAA
database. In particular, we first select all the titles
that is either G rating (suitable for all ages) or have
profane language in the reason code. Then, we
convert the rating from the MPAA standard to our
rating category following a pre-defined mapping
(i.e., G to None, PG to Mild, PG-13 to Moderate,
NR/R/NC-17 to Severe). Note that MPAA does
not have a rating corresponding to Strong (i.e., 16+
young adults) level. We clean the labels by compar-
ing the rating with IMDB user votes when available,
filter out mismatches. In total, we collected 5,010
additional labeled titles and combined them with
the training data collected in Section 3.1.

3.3 Generating Sentence Labels
To generate sentence level labels, we use a key-
word approach to scope relevant sentences in a
video given its title level labels. Specifically, we
use pre-defined keywords that express profanity to

determine whether a given sentence is relevant to
profanity. In total, there are 92 unique keywords.
Some keywords always have malicious meaning
while others depend on their contexts. For simplic-
ity, we name the first class as unambiguous key-
words and the second as ambiguous keywords. To
identify them, we define the precision of a certain
keyword wi as the positive rate (i.e., the proportion
of titles labeled as above all age) of training titles
that contain wi. We categorize a keyword to be un-
ambiguous as long as its precision exceeds a given
threshold ε (ε = 0.95 for our case considering the
chances that annotators may miss certain keywords
and mislabel contain titles as all age). We ask do-
main experts to confirm the categorization results.

We then use a build-in sentence tokenizer from
python package NLTK to break captions, which
mainly relies on punctuation. We label the sen-
tences that contain unambiguous keywords as pos-
itive (i.e., profane), and those do not as negative.
This is because unambiguous keywords are pro-
fane in regardless of their context. In addition, we
only cover the candidates from the pre-defined key-
words, as recommended by domain experts.

The generated labels can have noise due to the
unavoidable imperfection of the generation process.
Inspired by knowledge distillation (Hinton et al.,
2015), we train an intermediate classifier to gen-
erate the probability scores on sentences and save
the predicted probability as a soft target to alleviate
label noise. Such a new target contains the knowl-
edge transferred from the intermediate classifier,
and can be more robust than the original binary la-
bel. For example, it can help correct some labelling
noises caused by limited rule coverage. As an ex-
ample, the sentence this guy sucks is more likely
to have a high score even if the previous rules do
not cover it precisely than other similar expressions
such as he sucks and it sucks. In this way, labelling
it with a prediction score can be better than with
zero. In practice, the intermediate classifier we
use is a multi-head attention model, which will be
introduced in Section 4.

3.4 Reduce Labeling Noise

We find that the model trained above still performs
not very well on sentences with certain keywords,
which may be caused by labeling noise. To ad-
dress the issue, we apply the idea of active learning
and manually label sentences picked by model pre-
dictions. First, we pick all the sentences that are
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Severity Count Perc # Sents # Words
None 4061 55.9% 306 2634
Mild 971 13.4% 530 4812
Moderate 801 11.0% 720 5013
Strong 221 3.0% 720 5013
Severe 1216 16.7% 1071 8848

Table 1: Statistics of the training titles: number and per-
centage of titles at each rating, and the average number
of sentences and words per each caption.

Severity Count Perc # Sents # Words
None 1036 35.4% 371 3161
Mild 398 13.6% 624 5301
Moderate 897 30.7% 703 5680
Strong 482 16.5% 851 6792
Severe 113 3.9% 1022 8772

Table 2: Statistics of the evaluation titles.

predicted as positive in none titles and those con-
taining keywords from negatively predicted titles
(i.e. all sentences of that title are predicted as neg-
ative). Second, we calculate the frequency ni of
each keywords from this sentence pool, and pick
the top K ambiguous ones. Third, we randomly
pick N sentences for manual labeling (N=2k for
our case). In particular, we sampleN ·nj/

∑K
i=1 ni

for each keyword j in the top K words obtained
above. Finally, we label those N sentences, repli-
cate them by T times to increase the weights (T=5
in practice), and combine them with the old train-
ing set for retraining. The newly added data helps
correct the model at the boundary region.

3.5 Data Description

Table 1 and 2 present the overall statistics of train-
ing and evaluation data. Among these categories,
None category has the shortest captions on average
because many of the videos are kids cartoons or
mini shows, which are often very short. In addi-
tion, the training and evaluation caption lengths are
close to each other at each rating. However, there
is a shift between the rating distributions of train-
ing and evaluation set. For example, the MPAA
titles have more None labels than PV video dataset.
The underlying reason can be: 1) MPAA may have
less restrictive policy in labeling; and 2) PV video
dataset may contain movies with larger diversity,
and hence not dominated by None titles. The train-
ing set also has less Strong and more Severe titles
because MPAA titles do not have Strong according
to the rate mapping that we use.

4 Experiments

We integrated several models to our data pipeline
and conducted experiments at both title level and
sentence level. For the title level methods, we in-
clude xgboost and logistic regression, and deep
learning methods such as an augmented version
of the hierarchical attention network. We will in-
troduce more details of these methods below. For
the sentence level methods, we apply DistilBERT,
rule based method that is used to create labels, and
a sentence level multi-head attention model with
and without the knowledge distillation soft target
step. The purpose is to check whether the model
learns the context information well, and whether
the soft target helps. For each method, we have
also fitted the model with only the 2.6k titles from
prime video to study the effects of augmented data
from MPAA.

4.1 Title Level Models

TF-IDF with traditional ML First, we use term
frequency-inverse document frequency (TF-IDF,
Leskovec et al. (2014)) to extract features and build
models on them. We calculate the TF-IDF weights
for unigrams and bigrams that have total frequen-
cies greater than 5 and are contained by less than
90% of the titles (i.e., removing stop words). We try
two classifiers logistic regression with L2 penalty
and xgboost (Chen and Guestrin, 2016), with un-
igram features alone (TI1 and TI3 in Table 3 and
Table 4) or with both unigram and bigram features
together (TI2 and TI4 in Table 3 and Table 4). For
the logistic model, a multi-class cross-entropy loss
is used for multi-category rating prediction.
Hierarchical Attention Network In addition, to
capture the contextual information better, we pro-
pose an adjusted Hierarchical Attention Network
(HAN, Yang et al. (2016)) on title level data. To
enable HAN to take sentence level information, we
propose generating 2k synthetic titles accordingly.
Specifically, each title only contains the labelled
sentence at a random position si and has other sen-
tences as empty strings. Then, we fit the model with
the synthetic titles and the old training set together.
We include the 2k manually labelled sentences in
the training set.

4.2 Sentence Level Models

DistilBERT We apply DistilBERT (Sanh et al.,
2019) to the generated sentences, a distilled ver-
sion of BERT that is 40% lighter but 60% faster and
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can preserve over 95% of BERT’s performances
in downstreaming tasks. We fine tune the pretri-
aned DistillBERT on our sentence level data with
generated labels. We do not apply token stemming
because the model was pretrained on the raw cor-
pus in a self-supervised fashion, using the BERT
base model as a teacher.
Multi-Head Self-Attention Model We modify the
self-attention model (Lin et al., 2017) to predict
sentence-level profanity by introducing multi-head
attention and soft target. The architecture of the
model is presented in Figure 2. The model first
converts each word (wi) of a n-length sentence
into a vector with GloVE (Pennington et al., 2014)
trained on the training captions of the 150k PV
captions. Then the output is fed into a bidirectional
GRU (BiGRU) layer with ReLU as the activation
function. We find a BiGRU performs slightly better
than a bidirectional LSTM in practice. This layer
aims at capturing the long-term word dependency.
The output of the BiGRU units, denoted as hi, is
then passed into an m-head self-attention layer that
allows attending different keywords of a sentence
in a flexible way. The n-length weights of the j-th
attention head are calculated via

aj = softmax(tanh(αj ·HT + bj)),

for j = 1, ...,m, where H = [h1, ...,hn] and (αj ,
bj) are the coefficients. The elements of the vector
(i.e. a1j , ... , anj) represent how important each
word is to determine the label of the sentence for
the j-th attention head. The output of the attentions,
Sj for j = 1, ...,m, is calculated by taking the
weighted average as:

Sj =

n∑

i=1

aij · hi

The m outputs are concatenated with a fully con-
nected with fully connected layer with a sigmoid
activation function built on the top of it. The loss
function is the cross-entropy but with label using
the soft target, denoted as qi, as described in the
second to the last step in generating sentence labels.
In this way, the corresponding loss can be written
as L(p, q) =

∑
i qi log pi where pi is the output of

the fully connected layer.
The predictions at sentence level are used to gen-

erate the title level labels. We calculate the frequen-
cies of each keywords within the title by summing
the scores of positive sentences that contain them.
Then we accumulate the counts of keywords at each

Figure 2: Sentence Level Multi-head Attention Model.

severity level following the standard policy that op-
erators refer to. Such accumulated numbers are
used to map the titles to the level of profanity. For
example, over 10 times usage of non-aggressive
coarse language and less than 2 times usage of
disparaging slurs make the title labeled as strong.

4.3 Experiment Setup
For logistic regression, we choose the regulariza-
tion parameter from {0, 1, 5, 10}. For xgboost,
we tune the learning rate from {0.01, 0.05, 0.1},
max depth from {3, 6, 9}, number of estimators
from {100, 200, 300}. For the multi-head self-
attention model, we initialize the layer weights
with Xavier uniform initializer and the bias with
zeros. As to the hyper-parameter tuning, we use
random search by selecting learning rate from
{0.01, 0.001, 0.0001} with decay rate of 0.9, RNN
hidden size from {64, 128, 256}, attention output
size from {64, 128, 256}, attention head number
from {1, 3, 5}, and number of attention and dense
layers from {1, 2}.

4.4 Evaluation Metric
We are interested in evaluating performance in
terms of both binary classification (i.e. whether
a video contains any profane language) and multi-
class classification(i.e. levels of profane language
in a video). For both, we use precision and recall
as our primary metrics. In addition, it is important
to control the chance of predicting a contain title as
None because it is more risky to present an adult
level video to kids than vice versa. In this way,
we define a secondary metric in binary case as the
recall at precision at 80%, 90%, and 97% for None
titles, i.e. maximize the coverage of None titles at
a given None precision level.

5 Results

In this section, we present our experiment results
for detecting the presence of profane language and
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the level of profane language for video titles.

5.1 Detecting Presence of Profane Language

Table 3 shows the model performance on detect-
ing the presence of profane language in video
title. Overall, models built based on the pro-
posed pipeline of generating sentence labels (GSL)
achieve better performance than those without it.
Also, data augmentation helps in both methods
with and without GSL (i.e., the best without DA
always gets lower accuracy by over 3%). Among
the method with GSL, multi-head attention model
built on internally trained GloVE achieves the best
accuracy and recall at precision of 97% and 80%.
The comparison between intermediate and the final
self-attention shows the marginal effect of the soft
target. As to DistilBERT fine-tuned on PV data, it
achieves the best recall at 90% precision but has
the accuracy lower than the self-attention model
trained on PV data by 3%. We also performed er-
ror analysis and found that DistilBERT prediction
seems to do better at making inferences on seman-
tic meaning, i.e., sentences that even do not contain
keywords may still be predicted as positive if the
expression is rude. However, DistilBERT does not
perform well on ambiguous keywords; for example,
it mis-classifies many negative sentences with suck
as positive.

Compared to models built without generating
sentence labels (w/o GSL), models built with GSL
achieve better accuracy and recall at different pre-
cision threshold. This suggests that generating sen-
tence labels can help improve model prediction on
detecting the presence of profane language in video
title. Within models built without GSL, the HAN
model with data augmentation performs the best at
recall at 97% precision, and the xgboost with both
uni-gram and bi-gram features is the best among
the traditional methods.

5.1.1 Error Analysis
The error analysis on the estimated word-level
weights of HAN shows that title models assign
high weights not only to the keywords related to
profane language but also to those connected to
other content descriptors like violence, such as kill,
police, liar and shoot. The underlying reason can
be that a severe title usually also contains elements
such as violence and sexuality, and hence the exis-
tence of those corresponding words can be highly
correlated. This can dilute the weights that are
supposed to be given to the language keywords.

Method Model Acc (%) R97 R90 R80
TI1 78.3 36.1 54.5 67.6
TI2 75.5 34.4 53.2 65.6

w/o GSL TI3 85.2 53.1 78.1 96.8
TI4 87.2 58.8 81.2 97.3
HAN 85.5 58.9 74.6 89.1
Best w/o DA 82.3 49.5 78.1 92.1
Rule Based 87.7 76.3 - -
Intermediate 88.2 76.6 82.6 95.4

w/ GSL DistilBERT 86.2 78.3 86.4 94.8
Best w/o DA 87.4 76.9 81.7 88.4
Self-Attn 90.6 80.1 84.1 97.9

Table 3: Overall Performance of detecting profane lan-
guage: accuracy (Acc) and recall (Rec) at different pre-
cision thresholds (97%, 90%, and 80%). Among these
methods, w/o GSL refers to the prediction method that
use all captions to predict whether profane language
presents in title-level without generating sentence level
labels; and w/o GSL refers to the method with gener-
ating sentence level labels. TI1-TI4 represent the four
baselines introduced in the experiment section. Best
w/o DA means the best model that only uses 2.6k titles
from targeted streaming services in training.

We also performed qualitative analysis to under-
stand why the self-attention model built with GSL
outperforms all the other models in both accuracy
and recalls at all given precision levels. There can
be two reasons. First, the soft target created by
the intermediate model is more robust than the rule
based target especially for the positives that go be-
yond the rule’s coverage. Second, the manually
labelled sentences picked from active learning re-
sults can help reinforce the weak signal for certain
keywords. In particular, we find the model per-
forms significantly better than others in the top five
frequent words (hel, jerk, suck, piss, ho) picked
by active learning. In addition, it is not surprising
that the intermediate model outperforms the rule
based slightly. The main difference comes from
sentences with ambiguous keywords. The model
can correct certain labelling issues by applying the
average scores calculated by its fitted weights on
these keywords and their neighbors. The best sen-
tence model without data augmentation performs a
bit worse than the rule based, which can be caused
by smaller coverage of certain keywords in training.

In addition, the attention layer localizes the key-
words well by assigning them with larger weights.
In Figure 3, we pick both positive and negative
sentences with certain ambiguous keywords when
one-head attention is used. We print their scores as
well as the attention weights (scaled to 10) on each
word. The model learns the context in the Bi-GRU
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Figure 3: Sentence classification examples: confidence
score and weight coefficients (scale to 10) at the atten-
tion layer at one head. According to the label, sentence
2, 4, 6 and 8 contain profane language.

Method Model Acc (%) Prec (%) Rec (%)
TI1 31.2 42.1 78.8
TI2 35.6 45 79.1

w/o TI3 54.7 75.5 92.5
TI4 53.4 73.2 89.8
HAN 55.8 73.7 92.9
Best w/o DA 38.2 64.4 81.8
Rule Based 76.3 89.8 78.4

w/ GSL DistilBERT 71.2 86.3 79.4
Best w/o DA 72.2 87.7 79.8
Self-Attn 80.1 93.6 80.2

Table 4: Overall performance of detecting levels of pro-
fane language: accuracy, precision and recall.

layer by passing the neighboring information to
the keyword location, and thus equip the same key-
word with different output vectors. For example,
our observation shows the output vector h (Fig-
ure 2) for word hell are quite different between The
devil from the hell and What the hell are you doing.
In this way, the fully connected layer learns such
difference made by context and predicts different
scores.

5.2 Detecting the Level of Profane Language

Table 4 shows the overall model performance on
detecting the level of profanity. The self-attention
model achieves the best accuracy and precision,
and it beats the rule based by 3% in accuracy,
mainly due to a higher precision at Mild and Mod-
erate level (the rule misses a certain amount of
those titles due to the lack of coverage). Also, we
find DistilBERT performs a bit worse than the rule
based approach due to its suboptimal performance
on ambiguous keywords. As to the methods with-
out GSL, HAN achieves the best performance and
recall even higher than the self-attention model
built with GSL. This shows that it can be beneficial
to build hierarchical models to predict title-level
profane language from its long video captions when
the proposed pipeline is not available. The reason
why the HAN has a better None recall at the top
severe level is that it tends to be more conservative

Label \Pred None Mild Moderate Strong Severe
None 829 116 78 9 4
Mild 14 197 179 8 0
Moderate 3 16 844 32 2
Strong 2 0 40 433 7
Severe 1 0 1 37 74

Table 5: Confusion matrix of multi-category rating pre-
diction.

in predicting a higher rate.
We also find that none of the traditional models

built without GSL performs well. In particular, they
tend to overestimate the proportion of the severe
level and underestimate that of the Moderate and
Strong levels, possibly misled by the distribution
shift between training and evaluation. In addition,
the title level methods trained without data aug-
mentation give significantly worse performance,
indicating sample size is crucial when predicting
the level of profane language in video title.

5.2.1 Error Analysis
The confusion matrix of our model is reported in
Table 5. The main errors come from overrating
some None and Mild titles, as the bold numbers
show. Error analysis finds that some errors at Mild
vs Moderate are caused by the shift of keyword
frequency distribution from training to evaluation.
For example, the words crap and blow are more
often in evaluation set when used as negative words.
In addition, the difference between Mild and Mod-
erate can be quite subtle even to human operators.
A deeper analysis shows a certain amount of errors
on None titles may be caused by possible annota-
tion mistakes, especially on the boundary of Mild
and Moderate. A better way to evaluate the model
performance can be using the distance between
prediction and label to measure the loss (e.g., mis-
classifying Moderate as None should be worse than
as Mild).

6 Conclusion

In this paper, we presented a data collection
pipeline to generate the high quality sentence-level
label for profane language detection in a streaming
service. This pipeline included specific knowledge
distillation and active learning ideas to refine such
labels. We applied data augmentation, collected
training data from both the targeted streaming ser-
vice and public open source, and applied a work-
flow to fill the gap caused by the rating policy in-
consistency. We built a multi-head self-attention
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model for sentence level detection and aggregated
the detections to title level for rating prediction.
The experiment showed the proposed model outper-
formed all the baselines including the hierarchical
attention network and DistilBERT, and also beat
the rules that created the labels. In addition, the out-
put attention weights showed success in locating
the right keywords. Future research directions in-
clude the exploration on how the proposed pipeline
will help detect more general profanity defined in
multimodality, such as visual and audio.
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Abstract
We carry out a case study on the use of data
programming to create data to train classi-
fiers used for product moderation on a large
e-commerce platform. Data programming
is a recently-introduced technique that uses
human-defined rules to generate training data
sets without tedious item-by-item hand label-
ing. Our study investigates methods for allow-
ing product moderators to quickly modify the
rules given their knowledge of the domain and,
especially, of textual item descriptions. Our
results show promise that moderators can use
this approach to steer the training data, mak-
ing possible fast and close control of classifiers
that detect policy violations.

1 Introduction

Text classifiers play an important role in filtering
inappropriate products on e-commerce platforms.
Product moderators are dependent on classifiers
that have been trained on up-to-date labeled data
in order to keep pace with policy changes and new
instances of inappropriate products. For example,
Amazon had to take fast action to remove offensive
T-shirts during the 2020 US election (Bryant, 2020)
and overpriced items and fake cures during the
COVID-19 pandemic (BBC, 2020). In this paper,
we carry out a case study at a large e-commerce
platform. We investigate an approach that allows
moderators to rapidly steer the creation of labeled
training data, thereby enabling close control of
moderation classifiers.

Our approach makes use of a recently-introduced
technique called data programming (Ratner et al.,
2016), which generates classifier training data on
the basis of rules that have been specified by do-
main experts (platform moderators). Data program-
ming eliminates the need to individually hand-label
training data points. We propose a feedback loop
that selects subsets of data, called inspiration sets,
that are used by moderators as the basis for updat-
ing an initial or existing set of rules. We investigate

whether inspiration sets can be selected in an unsu-
pervised manner, i.e., without ground truth.

The contribution of our case study is insight into
how to support moderators in updating the rules
used by a data programming pipeline in a real-
world use scenario requiring fast control (i.e., im-
posing time constraints). Our study is carried out
in collaboration with professional moderators at
bol.com, a large European e-commerce company.
In contrast to our work, most papers on product
moderation, such as Arnold et al. (2016), do not ob-
viously take an inside perspective. Most previous
studies of data programming, such as Ehrenberg
et al. (2016), have looked at user control, but not at
fast control, i.e., the ability to update rules quickly
in order to steer the training data.

Because of the sensitive nature of the work of the
platform moderators, our case study is written with
a relatively high level of abstraction. We cannot
reveal the exact statistics of inappropriate items on
the platform. The rules formulated by the modera-
tors are largely based on keywords occurring in the
text of product descriptions, but it is not possible
to state them exactly. Nonetheless, we find that
we are able to report enough information to reveal
the potential of inspiration sets for fast control of
inappropriate products on e-commerce platforms.
This paper is based on a collaborative project with
bol.com. Further analysis and experimental results
are available in the resulting thesis (Winkler, 2020).

2 Related Work

Most work on product moderation (Martin et al.,
2018; Xu et al., 2019; Mackey and Kalyanam,
2017) focuses on products sold on social media.
In contrast, we study an e-commerce platform
from the inside. Like social media moderation, we
face the challenge of lexical variation of keywords,
cf. Chancellor et al. (2016).

Our study is related to work investigating appli-
cations of data programming to a specific problem.
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Such work includes examples from the medical do-
main (Callahan et al., 2019; Dutta and Saha, 2019;
Dutta et al., 2020; Fries et al., 2019; Saab et al.,
2019, 2020), multi-task learning (Ratner et al.,
2018, 2019a,b), information extraction (Ehren-
berg et al., 2016), and learning discourse struc-
ture (Badene et al., 2019). Like our work, such
work often adjusts the Snorkel framework (Ratner
et al., 2017) for the task at hand.

Previous work has proposed a variety of meth-
ods for giving users (who are in our case the prod-
uct moderators) control over classifiers by making
use of a pipeline that allows them to provide feed-
back about training data labels and classification
results. In WeSAL (Nashaat et al., 2018, 2020)
user feedback improves the labels that sets of rules
assign to data points. In contrast, our focus is on
feedback that allows moderators to improve the
rules directly. In this respect, our work is related
to DDLite (Ehrenberg et al., 2016), which was,
to our knowledge, the first to discuss how rules
in a data programming pipeline can be improved
using sampled data as feedback. Socratic Learn-
ing (Varma et al., 2017a,b) considered the issue of
users implicitly focusing on subsets of data when
they formulate rules, limiting the ability of the data
programming pipeline to generalize to data outside
of these subsets.

We are working under time-constrained condi-
tions. There are two constraints. First, our mod-
erators are given a limited amount of time to for-
mulate the initial rules. They formulate the rules
themselves based solely on their domain expertise
and experience, which allows them to work quickly.
In contrast, in work such as Ehrenberg et al. (2016)
and Ratner et al. (2018), users consult labeled data
to formulate the initial rules. Second, our modera-
tors have limited time to revise the initial rules. In
this step, they consult data in the form of inspiration
sets. Wu et al. (2018) investigate time constraints,
but focuses on supervised feedback, whereas we
also investigate unsupervised approaches.

We consider the work of Cohen-Wang et al.
(2019) to be the existing work closest to ours. This
work investigates intelligent ways of sampling data
points for rule improvement. Our inspiration sets
are based on these strategies. A key difference is
that Cohen-Wang et al. (2019) simulate their hu-
man experts and we work with real domain experts.

category train dev test
set set set

fur 7633 406 (69) 760 (113)
illegal wildlife 7426 312 (9) 627 (20)
magnetic balls 2316 340 (5) 688 (10)
weapon knives 1266 210 (17) 421 (28)
smoking-drug 1071 172 (10) 342 (21)
1-use plastic 7364 454 (124) 931 (250)

Table 1: Number of data points in our data sets. For
sets with ground truth, the number of points with the
positive label, i.e., “inappropriate”, is in parentheses.

3 Approach

In this section, we describe the data programming
pipeline and also our experiment with inspiration
sets, which investigates the potential for fast control
of training data for moderation classifiers.

3.1 Policy-based Monitoring Categories
The platform policy of the company we study has
five dimensions. It excludes products (1) that are
illegal (2) whose production or consumption causes
harm (3) that do not match customer expectations
(4) that technically fall outside of what the platform
can handle (5) that project hate or discrimination.
Each dimension contains concrete categories. For
example, under (2) there is a category (“single-use
plastic”), which contains single-use plastic cups,
straws, and cotton swabs that are excluded based
on European guidelines. Each of the categories is
monitored independently using a classifier, which
must detect not only the re-occurring items, but
also novel items that are in violation of the plat-
form policy. In this work, we select six typical cat-
egories to study: fur, illegal wildlife related, mag-
netic balls (small enough to be swallowed by chil-
dren), weapon-grade knives, smoking-drug-related,
and single-use plastic.

3.2 Data Programming
Figure 1 shows our data programming pipeline.
When moderating a product category, product mod-
erators first carry out a “scope” step that identifies
the products related to that category (cf. scoping
query). Then, they carry out a “scan” step that
identifies products that violate the policy. The goal
of our study is to investigate the usefulness of this
pipeline for quickly generating training data to train
a classifier that will support the product moderators
in carrying out the “scan” step, with a focus on
understanding the potential of inspiration sets.
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Figure 1: Top row: Our data programming pipeline. Bottom row (red box): Inspiration sets used for fast control.

Data programming (Ratner et al., 2016) is a
method that leverages multiple weak supervision
signals provided by people who are experts in
a domain. The signals take the form of rules,
expressed in the form of labeling functions (LFs).
Given a training data point, an LF either returns
a suggested label (0 for “appropriate” or 1 for
“inappropriate”) or abstains, meaning that it assigns
no label. In our study, LFs involve the content
of product metadata and keywords in the textual
descriptions of products, e.g., |IF brand
== ’brand123’ THEN inappropriate
ELSE abstain|. In practice most LFs return
only (0, abstain) or (1, abstain). The LFs are
applied to the data that was selected in the “scope”
step (cf. “Unlabeled data” in Figure 1) to generate
a label matrix in which each data point may have
multiple, contradictory labels.

In our study, moderators were asked to create
rules based on their knowledge of the product cate-
gories and their moderation experience. Note that
the same moderator was responsible for one cate-
gory throughout our experiment. They had a lim-
ited amount of time (60 min. per category). The
time limits in our study were determined in consul-
tation with bol.com’s product quality team to simu-
late real-world settings. This led to an initial set of
LFs for each category (number of LFs per category:
fur 14, illegal wildlife related 6, magnetic balls 5,
weapon-grade knives 5, smoking-drug-related 15,
single-use plastic 13).

The label matrix created by the rules is then
transformed into labeled data. Ratner et al. (2016)
demonstrate that provided a fixed number LFs, a

probabilistic labeling model is able to recover a
set of labels and corresponding probabilities that
can be used to train a classifier (cf. “Training data”
and “Classifier” in Figure 1). Snorkel (Ratner et al.,
2017) is the first end-to-end system that applies the
data programming paradigm. Our case study builds
on Snorkel. (More technical details of our setup
are in Appendix A.)

3.3 Inspiration Sets

We test three different ways of sampling data points
to create the inspiration sets consisting of products
(cf. Figure 1, bottom). These sets are shown to the
moderators to allow them to revise the rules.
Set 1: Abstain-based strategy Randomly drawn
from training data not yet covered by an LF.
Set 2: Disagreement-based strategy Randomly
drawn from training data on which LFs disagreed.
Set 3: Classifier-based strategy Development
data points with largest classifier error.
Set 1 and Set 2 are loosely based on strategies intro-
duced by Cohen-Wang et al. (2019). These strate-
gies are particularly interesting for a real-world
setting because they are unsupervised, meaning
that they are based on information included in the
label matrix and do not require ground truth or
classifier training. Set 3 is a supervised set. It pro-
vides product moderators with information about
errors that are made by classifiers. This strategy
is touched upon, but not implemented, by Cohen-
Wang et al. (2019). Recall that Cohen-Wang et al.
(2019) uses a simulated human expert, whereas in
our experiment, human domain experts inspect the
inspiration sets and revise the rules. We used a sim-
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fur illegal magnetic knives smoking-drug single-use
wildlife balls related plastic

initial 0.80 0.02 0.08 0.03 0.31 0.57
Set 1 0.78 0.19 0.49 0.03 0.31 0.64
Set 2 0.78 0.00 0.65 0.03 0.36 0.57
Set 3 0.77 0.24 0.59 0.17 0.23 0.57

Table 2: Data quality results: Label model performance (F2 measure) on the test set.

ple logistic regression classifier for the supervision
of Set 3 (see Appendix A.3 for more details).

Each inspiration set contains the number of data
points available, up to a maximum of 100. The
moderators had a limited amount of time (30 min.
per set) to inspect the inspiration sets and add, re-
move, or change rules in their initial set of rules.
Note that in our setting, each inspiration set was
drawn once and not updated after the moderator
changed one rule.

4 Results and Discussion

We analyze how the inspiration sets impact the
quality of our data. Table 1 summarizes the data
that we use. The ground truth was created by our
domain experts. Table 2 presents our results in
terms of data quality. Results are reported using
the F2 measure due to the importance of recall in
our use case. Data points whose “inappropriate”
label is generated as having a probability > 0.5 are
considered positive. Note that scores in Table 2 do
not directly reflect the ultimate performance of the
classifier, which to a certain extent can leverage
data with low F2 scores.

Our results suggest two findings that have, to
our knowledge, not been previously documented.
First, professional content moderators do not nec-
essarily need labeled sample data to write rules
for a data programming pipeline, but instead come
quite far relying only on domain knowledge and
experience (cf. “initial” in Table 2). Second, when
revising their initial set of rules, moderators do not
necessarily need an inspiration set created using
supervision. Instead, a 30-min. session with an
unsupervised inspiration set (Set 1 or Set 2) can
improve data quality. The exception is fur where
F2 is already 0.8, and inspiration sets make the data
slightly worse. The category knives starts out with
extremely low quality data, and inspiration sets do
not help much, except for a small, but expensive
boost by Set 3, our supervised set. The moderator
had only basic experience with this category.

We also found that for most categories, a consid-
erable amount of training data (31-56%) received
only abstains (see Appendix B for more details).
This observation is consistent with previous work,
e.g., that of Cohen-Wang et al. (2019), which has
noted that LF sets rarely reach complete coverage.
In general, a small number of rules tend to cover a
large portion of the data.

The majority of rules had a low precision, and a
small number of rules had high recall. Possible rea-
sons are that product moderators tried not to miss
out on inappropriate products, or that they had set
of specific data points in mind during LF definition,
as suggested by Varma et al. (2017a). We also no-
ticed that moderators added and changed, but did
not delete rules. In fact, we only observed a single
case of a rule being deleted. More research is nec-
essary to understand if this reflects high confidence
in the initial choices, or a default thinking pattern,
as studied by Adams et al. (2021). Finally, we ob-
serve it is important not to assume that each newly
added rule yields improvement: rule interactions
are also important. A more detailed analysis of the
changes brought about by the inspiration sets for
two representative cases is included in Appendix C.

5 Conclusion and Outlook

Our case study has shown our data programming
pipeline can generate labeled data for moderation
classifiers in a fraction of the time needed for hand
labeling (90 min. vs. a week or more of effort).
We have seen that moderators can create effective
rules based on their domain knowledge and expe-
rience, plus a short exposure to an unsupervised
inspiration set. Labeling data by hand in order to
create supervised inspiration sets may not be worth
the effort. Our observations suggest that it is im-
portant that moderators not only write rules, but
also continue moderating so that they can gain ex-
pertise and also be able to update rules quickly in
response to changes in the domain, i.e., a new type
of offensive clothing items, as in Bryant (2020).
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We hope that our work will inspire research
on data programming in domains in which fast
response to inappropriate products or content is
needed. Future research could seek to understand
the ability of moderators to predict the interaction
of rules and why they seem hesitant to discard rules
once they have created them.
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A Technical details of our setup

A.1 Snorkel

The technical details of the setup we used are as
follows: we make use of the official implementa-
tion of the Snorkel system. This implementation
consolidates work from various publications (Rat-
ner et al., 2017, 2019a) even though the repository
name is “snorkel”. We used version 0.9.01. There,
the label model is optimized using Stochastic Gra-
dient Descent (SGD) on the matrix-completion for-
mulation as in (Ratner et al., 2019a) as opposed
to interleaving SGD and Gibbs sampling in (Rat-
ner et al., 2017). In general in data programming,
the label model needs two inputs: the dependency
structure of the LFs and the class balance of the

1https://github.com/snorkel-team/
snorkel/releases/tag/v0.9.0

dependent variable (i.e. p(Y )). By default, this im-
plementations assumes the LFs to be conditionally
independent and that the class balance is uniformly
distributed.

A.2 Gold labels

For each category of inappropriate items, the prod-
uct moderator that was specialized in that category
labeled the development, validation and test data.

A.3 Classifier

For each category of inappropriate items, we
trained a binary classifier. In line with the official
Snorkel introduction tutorial2, we utilized a simple
Logistic Regression classifier. We used categorical
cross-entropy loss and an Adam optimizer with a
learning rate of 0.01. Note that in this work, we
use the classifier for selecting the items in the in-
spiration Set 3. More details on the whole pipeline
can be found in (Winkler, 2020).

B Properties of the label matrix

In our experiments, inspiration sets inspired the
product moderators to adjust their initial set of rules.
We translated these rules into LFs in Python. Figure
2 illustrates the impact of the changes to the LFs
across all categories of inappropriate items. The
leftmost bar of each group represents the coverage
of the initial LF sets.

In general, we notice that inspiration sets have
an impact on the coverage of the LFs, but that
they fall far short from allowing us to achieve full
coverage. We also notice, however, that there is a
general trend towards inspiration sets increasing the
coverage, reflected by a decrease in the fraction of
the data set that is assigned 0 labels. This happened
in most categories with Set 1 and Set 3 and in half
of the categories with Set 2. The strongest coverage
increase happened using Set 1.

After the adjustments, for most categories, the
LFs within each set seemed to be more coordinated
with respect to the data points that they labeled.
This can be seen in the increase in the percentage
of each data set with multiple labels per sample.
However, note that overall, most data points that
received a label, received a label from only one LF.

2https://github.com/snorkel-team/
snorkel-tutorials/blob/
93fc77718b608c5709d4eb8b90b7de7683ba4c15/
spam/01_spam_tutorial.ipynb
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Figure 2: This figure shows the sizes of training data set fractions that received a certain number of labels per
sample. Results are shown for the all versions (initial or adjusted using an inspiration set: Set 1, Set 2 or Set 3) of
each monitor.

LF Index Change Polarity Coverage Overlaps Conflicts % gain in F2

0 A [1] 0.01 0.00 0.00 18.37
1 A [0] 0.04 0.02 0.00 1.96
2 A [0] 0.32 0.08 0.03 16.67
3 / [1] 0.08 0.04 0.03 -21.21
4 A [0] 0.08 0.03 0.01 0.00
5 A [0] 0.03 0.02 0.01 0.00
6 N [0] 0.11 0.04 0.01 1.96
7 N [1] 0.01 0.00 0.00 0.00

Table 3: This table contains the characteristics of the individual LFs for magnetic balls after they have been adjusted
with the inspiration Set 1.

C Individual rule characteristics

In the main paper, we mentioned several observa-
tions we made regarding the sets of rules that were
created by the professional moderators.

• A small number of rules tend to cover a large
portion of the data.

• Moderators added and changed, but did not
delete rules (except one rule upon one occa-
sion).

• We cannot not assume that each newly added
rule yields improvement.

We based these observations on characteristics that
we computed on the training and validation sets in
each category. The statistics of these training and
validation sets are provided in Table 5.

After translating the rules into LFs, we computed
the following characteristics:

• LF index: a running index of each rule (La-
beling Function) in the set.

• Change indicates whether the rules were ad-
justed (A), newly added (N) or not changed (/)
as a result of considering the inspiration set.

• Polarity: the polarity that the rule assigns to
the training set data points. If the value is [0],
then the rule either assigned “appropriate” or
abstained. If the value is [1], then the rule
either assigned “inappropriate” or abstained.
If the value is then the rule always abstained.

• Coverage: the fraction of the training set data
points to which the LF assigned a label (i.e.,
did not abstain).

• Overlaps: the fraction of the training set on
which the rule assigned a label and at least
one other rule did as well (i.e., the rule and at
least one other rule did not abstain).

• Conflicts: the fraction of the training set on
which the labels suggested by multiple rules
disagree.

138



LF Index Change Polarity Coverage Overlaps Conflicts % gain in F2

0 / [1] 0.02 0.01 0.01 4.35
1 / [0] 0.06 0.04 0.01 0.00
2 / 0.00 0.00 0.00 0.00
3 / 0.00 0.00 0.00 0.00
4 / 0.00 0.00 0.00 0.00
5 A [0] 0.69 0.23 0.05 0.53
6 A [0] 0.14 0.13 0.00 -0.41
7 A [0] 0.01 0.01 0.00 0.00
8 / [0] 0.01 0.01 0.00 0.00
9 / [0] 0.01 0.00 0.00 0.00
10 / [1] 0.01 0.01 0.01 -0.36
11 / [0] 0.06 0.04 0.00 0.00
12 / [0] 0.00 0.00 0.00 0.00
13 A [1] 0.11 0.06 0.05 73.21
14 N [0] 0.00 0.00 0.00 0.00

Table 4: This table contains the characteristics of the individual LFs for single-use plastic after they have been
adjusted with the inspiration Set 1.

category training validation
set set

fur 7633 400 (55)
illegal wildlife related 7426 318 (10)
magnetic balls 2316 324 (7)
weapon-grade knives 1266 210 (18)
smoking-drug-related 1071 173 (12)
single-use plastic 7364 445 (118)

Table 5: Number of data points in our training and vali-
dation sets. These were the data sets on which we com-
puted the LF characteristics. For convenience, we re-
peat the sizes of the training data here. Note that the
validation sets are disjoint from the development and
test sets used in the main paper. For these validation
sets, the number of points with the positive label, i.e.,
“inappropriate”, is in parentheses.

• % gain in F2: the relative improvement in
the F2 score of the labeled data generated by
the label model contributed by the individual
rule.

Note that Polarity, Coverage, Rules, and Overlap
are all calculated on the training data set, and “%
gain in F2” is calculated on the validation set.

We chose two representative categories that show
the variation of the gain, and provide example anal-
yses for each. The category magnetic balls is in
Table 3 and single-use plastic is in Table 4. The
analysis uses the rules adjusted after consulting the
inspiration Set 1.
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Abstract
Aspect extraction is not a well-explored topic
in Hindi, with only one corpus having been
developed for the task. In this paper, we dis-
cuss the merits of the existing corpus in terms
of quality, size, sparsity, and performance in
aspect extraction tasks using established mod-
els. To provide a better baseline corpus for
aspect extraction, we translate the SemEval
2014 aspect-based sentiment analysis dataset
and annotate the aspects in that data. We
provide rigorous guidelines and a replicable
methodology for this task. We quantitatively
evaluate the translations and annotations us-
ing inter-annotator agreement scores. We also
evaluate our dataset using state-of-the-art neu-
ral aspect extraction models in both monolin-
gual and multilingual settings and show that
the models perform far better on our corpus
than on the existing Hindi dataset. With this,
we establish our corpus as the gold-standard
aspect extraction dataset in Hindi.

1 Introduction

Recent literature has seen an increase in the amount
of work being done in fine-graining downstream
NLP tasks. One common method of fine-grained
analysis is the use of aspect information. An as-
pect term is an entity of interest which identifies a
unique aspect of a predefined topic or domain (Pon-
tiki et al., 2014). For example, in the restaurant
domain, service and seasoning are aspects. While
aspect extraction (AE) has been often seen as a sub-
task of fine grained aspect-based sentiment analysis
(ABSA), recent advances in literature have estab-
lished it as an independent task which can be used
in other downstream tasks as well, such as sum-
marization (Frermann and Klementiev, 2019) and
topic-specific information retrieval such as opinion
mining (Asghar et al., 2019).

Aspect extraction (as a subtask of aspect-based
sentiment analysis) datasets and models have been

developed for multiple languages. ABSA has been
a shared task in SemEval 2014 (Pontiki et al., 2014),
2015 (Nakov et al., 2015), 2016 (Pontiki et al.,
2016), and as a part of the overall task of sentiment
analysis on Twitter in SemEval 2017 (Rosenthal
et al., 2017). These tasks have garnered a lot of at-
tention in various languages including Arabic, Chi-
nese, Dutch, French, Russian, Spanish and Turkish.
Each monolingual dataset consisted of one or two
domains with each language having anywhere be-
tween 4,000 to 9,000 sentences overall (including
the train and test split). For Indian languages, there
has been some work in developing a dataset for
aspect extraction in Hindi (Akhtar et al., 2016) and
Telugu (Regatte et al., 2020).

Limited work has been done on improving the
state of AE and ABSA in Hindi beyond the devel-
opment of a singular dataset, namely Akhtar et al.
(2016). Existing evaluations show that existing se-
quence tagging models (both general and specific
to AE) have performed very poorly on this dataset
when their performance is compared to English
AE as well as in similar sequence tagging tasks in
Hindi such as named entity recognition (NER) and
event detection.

In this paper, we thoroughly analyze the existing
dataset for AE in Hindi and explain the reason for
the poor model performance. We then propose the
creation of a parallel corpus, by manually translat-
ing the SemEval-2014 ABSA corpus (Pontiki et al.,
2014). We provide detailed guidelines and chal-
lenges faced during the creation of this resource.
We show that our dataset performs much better than
the existing dataset for Hindi using baseline as well
as state-of-the-art neural models for AE. Finally,
we leverage the SemEval-2014 corpus to perform
zero-shot and fine-tuned aspect extraction in Hindi
using multilingual BERT with baseline and SoTA
neural models in the dataset we have created.

Therefore, the main contributions of this paper
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are:

• providing an in-depth qualitative and quantita-
tive analysis of the existing Hindi AE dataset,

• creating a new resource for aspect extraction
in Hindi by translating the SemEval 2014 cor-
pus into Hindi1,

• providing detailed guidelines and challenges
associated with the creation of this corpus, as
well as explaining the quality of the transla-
tions and annotations, and

• evaluating the new dataset using state-of-the-
art neural sequence labeling models for aspect
extraction in Hindi in monolingual and multi-
lingual settings using transfer learning.

We establish that our corpus is a more robust
and representative corpus for aspect extraction in
Hindi, and its parallel nature can be exploited for
a large number of downstream tasks including re-
view translation, cross-lingual opinion mining, and
aspect-based sentiment analysis.

2 Dataset Development

As discussed in Section 1, Akhtar et al. (2016)
is the only corpus for aspect term extraction and
aspect-based sentiment analysis in Hindi. In this
section, we discuss the inadequacy of this corpus
by analyzing the data qualitatively, statistically and
through experiments using established aspect ex-
traction models. We also detail the process of cre-
ating a parallel aspect extraction datset from the
English gold standard dataset (Pontiki et al., 2014).
This resource can be treated as an individual Hindi
aspect extraction dataset or can be considered a
parallel resource for the aspect extraction task.

The annotation format used for the existing
dataset and the dataset being created is the Begin-
Inside-Outside or BIO sequence labeling format
(Ramshaw and Marcus, 1999). This format anno-
tates each word with a corresponding label where a
word labeled B denotes the first word of an aspect,
I denotes any word within the aspect span and O
denotes the words outside the aspect span.

2.1 Analyzing Existing Datasets
In this section, we aim to prove based on a quali-
tative and statistical analysis of the Hindi ABSA

1https://drive.google.com/file/d/
1wrCHi3VbQjosvhmpfS577TXZL-O6UbUo/view?
usp=sharing

dataset for AE, and compare it to the SemEval-
2014 English ABSA dataset. Some of the metrics
for comparison include the number of sentences,
number of aspects, ratios of Bs, Is, and Os and the
number of marked sentences (sentences with one
or more aspects). We explain how these compar-
isons explain the quality of the dataset for this task
as well. We also show a quantitative performance
analysis of these datasets on baseline model as well
as the state-of-the-art models in sequence tagging
and aspect term extraction in Section 3.1.

The Akhtar et al. (2016) dataset consists of
5, 147 sentences, and a total of 4, 509 aspect terms.
The combined SemEval-2016 dataset shows a sim-
ilar trend, with 6, 092 sentences and 6, 072 aspect
terms. However, on a closer analysis of the dataset,
detailed in Table 1, we see three prominent distin-
guishing factors:

1. While the percentage of marked sentences
(sentences with one or more aspects) is higher
in the Hindi dataset than in the English one,
there is a noticeable difference between the
average number of aspects per sentence (both
for marked sentences and overall).

2. The percentage of Is in the Hindi dataset
(3.26%, 3, 135 out of 96, 140 words) are
higher than the English dataset (2.96%, 2, 564
in 86, 552 words), while the number of Bs in
the Hindi dataset are lower. This implies that
in multi-word aspects are far more common
in Hindi than they are in English. Further, the
percentage of Os is higher in the Hindi dataset
as well, so there are not as many words which
are aspect terms either.

3. The data in Hindi corpus is from 12 different
domains, with some domains having less than
50 sentences. So, not only is there a large
variety in topics and aspects per topic, there is
also a high disparity in the number of samples
per topic. In contrast, the English dataset is
derived from only two different domains, with
over 2000 sentences per domain.

This disparity in the number of aspects per topic
as well as the noticeable difference in the number
of multi-word aspect terms implies that corpus de-
veloped by Akhtar et al. (2016) is sparse with very
few examples of the syntactic features, aspects and
their categories.
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Figure 1: Some examples of inconsistent samples in
the Hindi dataset. The words in bold face are the same
in both examples, transliterated into Devnagari on the
left and left Romanized on the right in different training
samples.

Further qualitative analysis of the data reveals
discrepancies in the data creation methodology, par-
ticularly surrounding technical terms which do not
have commonly used translations. Terms such as
‘computer’, ‘megapixel’, ‘quad core’ and ‘proces-
sor’ have been transliterated in some examples and
have been left Romanized in others. Given the
low number of examples per category, this incon-
sistency contributes to the data sparsity. Figure 1
shows a few examples of such inconsistencies.

Finally, we see examples of incorrect annota-
tion which also contributes to the dataset quality
in terms of performance in machine learning mod-
els. These incorrect annotations include incorrect
spacing between words in the original review text,
incomplete aspect annotation where the last char-
acter of the last word of the aspect was not a part
of the aspect span, and subword level aspects due
to stemming, lemmatization and dehyphenation.

There are two available task performance mea-
sures for the term of aspect extraction in the Hindi
dataset:

• Akhtar et al. (2016) analyzed aspect term ex-
traction using the BIO annotation using con-
ditional random fields (CRFs) for sequence
labelling. They report an average F1 score
of just 41.07%. The CRFs used were heavily
feature engineered to use features such as se-
mantic orientation, local context tagging and
bigram specific features.

• Akhtar et al. (2020) performed joint model-
ing and end-to-end aspect extraction on both

the Hindi as well as the Pontiki et al. (2014)
English dataset. They reported a maximum
F1 score of 83.36% for the English dataset
using an end-to-end architecture, while the
maximum F1 score for Hindi using the same
architecture was 52.03%. Other experiments
also show this vast disparity.

These discrepancies show that even heavily
feature-engineered statistical models as well as
neural models do not perform well on the exist-
ing Hindi dataset and the neural models seem to
perform a lot better on the SemEval 2014 dataset.
An aspect term extraction task comparison for vari-
ous models can be found in table 3 for a number of
models described in section 3.1.

Table 3 shows that the discrepancies noted by
Akhtar et al. (2020) continue to hold across multi-
ple neural models. The difference between the F1
scores between the two datasets is nearly 40% for
all three models, with the maximum F1 score in the
Hindi dataset being a mere 38.21% for the DeCNN
model. We conclude through this thorough analysis
that the Akhtar et al. (2016) dataset is inadequate as
a benchmark dataset for aspect extraction in Hindi.

2.2 Constructing the Parallel Corpus
We construct a parallel corpus by translating the Se-
mEval 2014 English aspect based sentiment analy-
sis dataset of restaurant and laptop reviews (Pontiki
et al., 2014). The dataset constructed by this trans-
lation can be used as an independent Hindi dataset,
or can be used such that it leverages the English
dataset for aspect extraction. By using the guide-
lines provided below, we are able to preserve the
diversity of syntactic constructions from the orig-
inal dataset, making the quantitative comparisons
more representative.

The final dataset constructed by this methodol-
ogy consists of 5989 sentences with 5864 aspects.
Not all the sentences could be translated based
on our guidelines which aim at maintaining natu-
ralness and fluency. The guidelines pertaining to
the translation and aspect extraction have been dis-
cussed below, followed by the methodology of an-
notation. The comparative statistics of this dataset
can be found in 1, when compared to Akhtar et al.
(2016) and Pontiki et al. (2014).

Annotation Guidelines The guidelines for cre-
ating this parallel corpus were twofold, translating
the dataset into Hindi and identifying the aspect
terms in the translations.
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The translation methodology adopted for this
task had to account for fluency, accuracy and style.
Not only did the translated reviews had to be as
semantically similar to the original review as possi-
ble, but they also had to be faithful to the style of
restaurant and technology reviews in Hindi. In or-
der to achieve a natural translation true to this style,
we propose the following translation guidelines.

1. For proper nouns and other names in English,
such as locations, company names and other
named entities, annotators were asked to di-
rectly use Roman script. For example: Brook-
lyn, 2nd Street, Sony. We found that proper
nouns in both domains indicated a property
of the main topic and rarely that of an aspect,
so using Roman script could aid in attribute
extraction without being a problem in aspect
extraction or other downstream tasks.

2. For common nouns without Hindi translations,
or with very obscure translations which are
not commonly used, annotators were asked to
transliterate these nouns into Hindi. This was
done in order to maintain consistency in the
use of technical terms which could act as as-
pects in the Hindi sentence, while maintaining
the domain-specific naturalness and fluency
of the translated sentence. Word such as key-
board, bluetooth, monitor, sake and soy sauce
were transliterated into Hindi.

3. Aspect descriptions often contain idiomatic
constructions or other compositional phrases.
Translators were asked to simplify these
phrases to their meaning rather than translate
word for word. Therefore, for phrases such
as ‘on the nose’ was translated to yathaarth
(meaning ‘obvious’) rather than naak ke upar
(literally meaning ‘on or over the nose’)

4. For common nouns with gender and number
inflections, annotators were asked to transliter-
ate the root word (as mentioned in rule (2)) but
use the Hindi inflection markers. As English
pronouns and nouns are not gender marked,
the default male inflection is used whenever
applicable.

5. For all other words, aspects and aspect de-
scriptions, translate into Hindi using the most
commonly used words given the appropriate
context. In the case where the context is so

scarce that there is no way to translate the sen-
tence in a way that preserves meaning, do not
translate the sentence.

After the translation, a different group of anno-
tators were asked to identify aspect terms. Aspect
term identification guidelines were the same as
those used in the SemEval-2014 ABSA task2 (Pon-
tiki et al., 2014). The annotators were asked to
annotate all single or multiword terms which were
a particular aspect of the target entity (i.e. ‘Restau-
rant’ or ‘Laptop’).

Annotation Methodology Each sentence in the
Pontiki et al. (2014) dataset was translated by four
translators, two undergraduate and two graduate
students. All translators are bilingual speakers of
Hindi and English and are between the ages of
18 and 22. The translated sentences were then
provided to two other annotators for the aspect
extraction task. These annotators were in the same
age group and of the same composition in terms of
expertise in Hindi and English.

Translation was performed in two phases:
aspect-aware and aspect-blind translations. In
aspect-aware translation, the translator were pro-
vided the aspect terms while translating the sen-
tence and were to retain as many aspects in the
translated sentence as possible while maintaining
the rules of translation mentioned above. In the
aspect-blind translation, the translators were pro-
vided just the sentence to translate with no addi-
tional instructions. This two-phase translation was
done to determine the fluency and naturalness of
the translations with respect to one another with
and without the constraint of maintaining aspects.
The dataset contains the most fluent version of the
annotations and those which maintain the most as-
pects from the source sentences in the SemEval
dataset.

These translated sentences were provided to the
final annotators, who were asked to identify the
aspects in these sentences based on the guidelines
provided above. This was compared to a direct
translation of the extracted aspects in the source
sentence (which were provided in the dataset).

Challenges in Annotation Some of the main
challenges in translating the data are detailed be-
low.

2http://alt.qcri.org/semeval2014/
task4/data/uploads/semeval14_absa_
annotationguidelines.pdf
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Metrics Akhtar et al. (2016) Pontiki et al. (2014) Our Dataset
Total # Sentences 5417 6092 5989
Total # Aspects 4509 6072 5864
Total # Tokens 96140 86552 104618

% Sentences marked with Aspects 61.5% 57.7% 57.9%
Avg. # of aspects per sentence 0.81 0.99 0.98
Avg. # of aspects per marked 1.32 1.72 1.69

% of Bs 4.69% 7.01% 5.60%
% of Is 3.26% 2.96% 2.80%
% of Os 92.15% 90.22% 91.60%

No. of Domains 12 2 2

Table 1: Some basic comparative statistics between the aspect extraction and aspect based sentiment analysis
datasets. We see that while the Hindi dataset has lower number of samples, fewer aspects, lower ratio of aspects
per sentence and lower number of sentences with aspects. Interestingly, however, these words have been added to
a much larger number of domains in Hindi and there are higher number of words with the I and O tags.

1. The most common problem in translation
was semantically compositional constructions
such as idiomatic phrases. Phrases such as
“boy oh boy”, “don’t look down your nose” etc.
were descriptive of a given aspect in the cor-
pus, but could not be easily translated due to
a lack of natural corollaries for these phrases
in Hindi.

2. Constructions with puns and aspects embed-
ded in the compositional constructions were
the biggest challenge to the translation. For ex-
ample: ‘But that wasn’t the icing on the cake:
a tiramisu that resembled nothing I have ever
had’ had the aspect ‘icing on the cake’ which
is both literal and metaphorical in this sen-
tence. In the final version of the data, these
sentences have not been included due to very
high disparity between the translations and the
difficulty in extracting aspects.

3. Elided references were a concern for transla-
tors. For example, a sentence such as ‘A cheap
eat for NYC, but not for dosa.’ uses the term
‘eat’ to refer to a ‘place to eat’ which is also
an aspect in this sentence. A direct translation
forces this elision to be explicit, which also
changes the aspect term.

4. Hindi syntax has relatively free word order,
which affords fragmentation of noun and verb
phrases by adjectives and adverbs respec-
tively. The aspect-aware and aspect-blind
translations often differed in such cases, as
the aspect-aware translation is not fragmented,
but is also generally unnatural according to the

annotators. For example, the phrase “every-
thing bagel with lox spread” has the annotated
aspect bagel with lox spread, but gets trans-
lated to lauks spred ke saath evarithing begal
(where the word “everything” fragments the
aspect term).

5. Certain aspect terms translate only based on
context, which is not always provided in the
data. An example of this is ... mine was well
done and dry without a subject in reference,
where the term well done can have different
translations in different contexts (such as a
well-done steak versus an actual compliment).

Due to these challenges in dataset annotation
and the lack of context to make an informed trans-
lation which was natural and fluent, some sentences
and aspects could not be translated into Hindi.
Therefore the Hindi dataset has a few fewer sen-
tences that the English dataset. The final translated
dataset consists of 5,989 sentences with 5,864 as-
pect terms.

2.3 Dataset Analysis
In this section, we show some basic statistical anal-
yses of the dataset including the annotator per-
formance in translation and aspect term extrac-
tion. For translation performance, we compare
the ROUGE-L scores across the translators, while
for the annotation task, we use the Fleiss’ Kappa
metric.

We evaluate these translation based on the
ROUGE-L metrics as the average review length is
no more than 15 words, and most words have only
one (or very few) variations in translation. Given
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Comparison ROUGE-L Fleiss’ Kappa
Aspect-aware 0.8994 0.8961
Aspect-blind 0.8722 0.9244

Overall 0.8960 0.9130

Table 2: The average ROUGE-L and Fleiss’ Kappa
score in the translation and annotation tasks respec-
tively.

the stringent translation/transliteration guidelines,
lack of extensive vocabulary in the descriptions and
less number of words per sentence, the ROUGE-L
metric is a decent approximation of the translation
quality provided by the annotators. The ROUGE-L
metric also accounts for the relative free-word or-
der nature and constituent rearrangement (Lin and
Och, 2004).

ROUGE-L is the comparison of the longest com-
mon subsequence between two translated phrases.
Given the translations X of length m and Y of
length n, the ROUGE-L score is given by:

Rlcs =
LCS(X,Y )

m
(1)

Plcs =
LCS(X,Y )

n
(2)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(3)

where β =
Plcs

Rlcs
when

∂Flcs

∂Rlcs
=

∂Flcs

∂Plcs
. This

value is an F-measure. In Table 2 we show the
comparison between the ROUGE-L scores of the
aspect-aware and aspect-blind translations, by tak-
ing a weighted average over the entire dataset based
on the number of words in the source and target
sentence. We also show the score of the translation
with the highest ROUGE-L score with the rest of
the translations which has been used in the dataset.

Aspect extraction is treated as a sequence label-
ing task and is evaluated using the Fleiss Kappa
metric (Fleiss and Cohen, 1973). Fleiss’ Kappa is
a multiclass inter-annotator agreement score which
is computed as follows:

κ =
P̄ − P̄e

1− P̄e
(4)

where P − Pe is the actual degree of agreement
achieved and 1 − Pe is the degree of agreement
above chance. Given N tokens to be annotated and
n annotators, with k categories to annotate the data.
We first calculate the proportion of annotations in

the jth domain as:

pj =
1

Nn

N∑

i=1

nij , 1 =

k∑

j=1

pj (5)

We then calculate Pi, the degree of agreement
with the ith annotator as:

Pi =
1

n(n− 1)

k∑

j=1

nij(nij − 1) (6)

=
1

n(n− 1)






k∑

j=1

n2ij


− n


 (7)

Finally we calculate P̄ and P̄e as:

P̄ =
1

N

N∑

i=1

Pi (8)

P̄e =

k∑

j=1

p2j (9)

The Fleiss’ Kappa scores of the aspect-aware,
aspect-blind and overall translations are provided in
table 2. The high Fleiss’ Kappa scores indicate the
confidence in the aspect identification guidelines.

Note that the ROUGE-L score of the aspect-
aware translation is higher than the overall as
well as the aspect-blind translations, as transla-
tors often resorted to word-for-word translations
in order to preserve each and every aspect of the
sentence with its associated semantic information.
Note that ROUGE-L is the weighted average of
the F-measure taken over all the sentences in the
dataset, weighted based on the number of words
in the source and target sentences. For the over-
all ROUGE score, the weighted average was taken
over the dataset, weighted based on the number
of words in the sentence which gave the highest
comparative score for each translation.

Another important insight into the corpus is
the difference in aspect coverage between the
aspect-aware and the aspect-blind translations. As
mentioned in 2.2, aspect-blind translations often
dropped aspects due to constraints in syntactic rep-
resentation or incoherent translation due to sen-
tence semantics, such as due to complex idiomatic
phrases. The difference in aspect coverage was
seen in about 6% of the corpus, specifically, 358
sentences overall.
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3 Evaluating the Dataset

In this section, we detail the evaluation of our trans-
lated aspect extraction dataset. We evaluate our
dataset using multiple monolingual and multilin-
gual models. The monolingual models are trained
and tested on the individual language datasets while
the multilingual models involve the use of trans-
fer learning from the SemEval-2014 dataset to the
dataset we have created.

3.1 Monolingual Aspect Extraction

We evaluate our dataset against the existing Hindi
dataset and the SemEval 2014 dataset using the
following baselines:

• CRF: We use a conditional random field with
basic features3 such as word form and POS
tag.

• BiLSTM: We use a vanilla BiLSTM as a base-
line model for aspect extraction as it is an es-
tablished baseline in seq2seq tasks (Liu et al.,
2015).

• BiLSTM-CRF: We use a BiLSTM to encode
the input sentence and a conditional random
field for the sequence labeling. This is a
commonly used baseline for sequence tagging
tasks (Huang et al., 2015).

We also use the following neural models for our
analysis:

• BiLSTM-CNN-CRF: The state-of-the-art in
neural named entity recognition. The archi-
tecture uses both character and word level
features in a CNN and BiLSTM respectively,
and using a CRF for sequence labeling tasks
(Reimers and Gurevych, 2017). We use a
slightly modified version where word embed-
dings are generated by concatenating char-
acter embeddings, as done by Prabhu et al.
(2019) for event detection in Hindi.

• DeCNN: The commonly adopted model for
aspect extraction specifically, this model uses
a combination of general and domain based
embeddings in multiple convolutional layers
and a fully connected layer with softmax for
label prediction (Xu et al., 2018).

3https://sklearn-crfsuite.readthedocs.
io/en/latest/tutorial.html

• Seq2Seq4ATE: This model is a sequence-to-
sequence model for aspect terms extraction.
The model uses a BiGRU encoder and a po-
sition aware attention variant of gated unit
networks as a decoder with softmax for label
prediction (Ma et al., 2019).

For consistency, in all the above mentioned mod-
els, we use the FastText embeddings for word as
well as character embeddings for both English and
Hindi (Bojanowski et al., 2017; Mikolov et al.,
2018; Grave et al., 2018). For the English dataset,
we use the Pontiki et al. (2014) train-test split (3045
training to 800 test sentences and 2000 training to
676 test sentences in the ‘Laptop’ and ‘Restaurant’
domains respectively). For the Hindi dataset, we
use a train-test split of 4062 train to 1355 test sen-
tences based on Akhtar et al. (2020). For the LSTM
based models, we use 128 unit LSTM layers, with
a hidden size of 1024, and a dropout of 0.4 over 50
epochs. For the CNN based model, we use a 128
filter network with a kernel size of 5 and hidden
embeddings of size 100 and dropout of 0.4 over 50
epochs.

We find that the Seq2Seq4ATE model is the best
performing model for this task across the datasets.
We see that the model performance on our dataset
is close to that on the English dataset. While the
human aspect extraction baseline shows that there
is a lot more work to be done in this task, our
dataset provides an adequate baseline for this task,
similar to those in the SemEval Aspect Extraction
subtask (Pontiki et al., 2014).

3.2 Leveraging Parallel Data

As mentioned in section 2, the corpus we have
developed aims to be a parallel corpus, which al-
lows us to use language invariant, transfer learning
based models for aspect extraction in Hindi. We
use the BERT mutilingual sentence embeddings
(Devlin et al., 2018) as the sentence representa-
tions for the English and Hindi on the (a) BiLSTM,
(b) BiLSTM-CNN-CRF and (c) the Seq2Seq4ATE
models, mentioned in Section 3.1. The BERT mul-
tilingual embeddings have been used for a variety
of tasks in Hindi including machine comprehension
(Gupta and Khade, 2020) and named entity recog-
nition (Pires et al., 2019), among other sequence
labeling tasks. Pires et al. (2019) showcases the
model efficacy in using monolingual corpora for
zero-shot code-mixed tasks as well, which would
be useful for our corpus.
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Model Akhtar et al. (2016) Pontiki et al. (2014) Our Dataset

Baselines

CRF 22.08 54.97 47.07
BiLSTM 20.71 61.01 54.77
BILSTM-CRF 34.71 62.61 50.26

Neural SoTA Models

BiLSTM-CNN-CRF 36.56 73.03 67.08
DeCNN 38.21 77.67 68.35
Seq2Seq4ATE 35.04 78.86 68.61

Table 3: F1 scores of established models on the monolingual aspect extraction task.

Training Model F1-score

Baseline
BiLSTM 41.06
BiLSTM-CNN-CRF 54.92
Seq2Seq4ATE 43.51

Zero-shot
BiLSTM 40.72
BiLSTM-CNN-CRF 56.16
Seq2Seq4ATE 42.08

Fine-tuned
BiLSTM 57.37
BiLSTM-CNN-CRF 62.12
Seq2Seq4ATE 66.28

Table 4: F1-score of the models by leveraging English
aspect extraction data using M-BERT. The baseline
score is based on using Hindi for training as well as
testing.

We design three experiments for evaluating our
dataset using M-BERT, which are detailed below.

1. M-BERT baseline where we train and test
on the Hindi sentences and aspects from our
dataset directly, using the M-BERT embed-
dings. This has been done to establish a base-
line for our experiments that follow for lever-
aging the English data.

2. Zero shot aspect extraction for Hindi where
we train using the English dataset and eval-
uate the model performances on the Hindi
data, in order to estimate how much aspect
information can be extracted about aspect rep-
resentation in this data which can be applied
on the Hindi dataset directly.

3. Fine tuned aspect extraction for Hindi where
we train the models on the Hindi and a small
part of the English dataset and test on the

translated Hindi test set. In this experiment,
we augment the training data and therefore
showcase the use of the English representa-
tion of aspect terms in the dataset. This is
done with the motivation to boost the token
representation of English tokens, as the Hindi
data contains English tokens in the form of
proper nouns. These tokens are aspects in a
part of the corpus and therefore introducing
this experiment improves the representation
and extraction of these aspect tokens.

Table 4 provides the F1-scores of the various
models described above. We use the pretrained
BERT Mulitilingual cased model. The best per-
forming model is the fine-tuned Seq2Seq4ATE
model with an F1 of 66.28. We also see that the
zero-shot performance of the BiLSTM-CNN-CRF
is better than the baseline, and that fine-tuning us-
ing English data definitely helps the model.

4 Conclusion

In this paper, we detailed the state of aspect extrac-
tion in Hindi by thoroughly analyzing and evaluat-
ing the currently available baseline dataset for this
task. By understanding the flaws in that dataset,
we explain its inadequacy in terms of lack of uni-
formity, high domain sparsity and incorrect aspect
annotations. We further compare its performance
with existing models to show that it performs very
poorly as compared to the existing English dataset.

We then explain the mechanism of creating a Se-
mEval style corpus for aspect extraction in Hindi,
by translating the English SemEval 2014 aspect
based sentiment analysis corpus. We provide a de-
tailed list of guidelines in order to make this task as
replicable as possible. We also focus on maintain-
ing the naturalness and fluency of the translations
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using transliteration wherever necessary. Our trans-
lation and annotation methodology is evaluated on
the ROUGE-L and Fleiss’ Kappa metrics respec-
tively.

We use this dataset to show performance on
basline statistical and neural sequence labeling
models, as well as the current state-of-the-art mod-
els in neural aspect extraction such as DeCNN and
Seq2Seq4ATE. We show that while the published
Hindi dataset does not perform nearly as well, we
provide comparable results to those models. Since
we have a parallel corpus, we also leverage the En-
glish data for improving aspect extraction in Hindi
using multilingual BERT.

Future work in this direction includes developing
an aspect based sentiment analysis corpus which
can be trained and tested in a multilingual manner
and fine-tuning multilingual BERT for few-shot
and zero-shot sequence labeling tasks.
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Abstract

The accuracy of an online shopping system
via voice commands is particularly important
and may have a great impact on customer
trust. This paper focuses on the problem
of detecting if an utterance contains actual
and purchasable products, thus referring to a
shopping-related intent in a typical Spoken
Language Understanding architecture consist-
ing of an intent classifier and a slot detec-
tor. Searching through billions of products to
check if a detected slot is a purchasable item
is prohibitively expensive. To overcome this
problem, we present a framework that (1) uses
a retrieval module that returns the most rele-
vant products with respect to the detected slot,
and (2) combines it with a twin network that
decides if the detected slot is indeed a pur-
chasable item or not. Through various exper-
iments, we show that this architecture outper-
forms a typical slot detector approach, with
a gain of +81% in accuracy and +41% in F1
score.

1 Introduction

Spoken Language Understanding (SLU) consti-
tutes the backbone of voice-controlled devices such
as Amazon Alexa or Google Assistant. SLU is
typically divided into two sub-tasks, intent classi-
fication (IC) and slot filling (SF). IC determines
the user’s intent and slot filling (SF) extracts the se-
mantic constituents. For instance, if a user says
buy batteries, IC should classify the intent as
BuyItem and SF should label the utterance as
buy|Other batteries|ItemName. The slot in
this example is ItemName and the slot value is bat-
teries. This constitutes a way to map the utterance
on a semantic space. Throughout this paper the
term carrier phrase denotes all tokens that are not
part of the slot, e.g. buy in the previous example.

In typical SLU architectures, the final confidence
score is obtained through multiplication of the two

scores from the IC and the SF model. For each
utterance, the model produces n-best hypotheses
ranked by the final confidence score. One hypothe-
sis consists of an intent and slot labels.

Problem statement - The complexity for both
IC and SF tasks is continuously increasing due
to the growth of voice-controlled device func-
tionalities. Investigations have revealed that the
model tends to put more weight on the carrier
phrase than the slot value. This bias implies that
particular slot labels are assigned based on the
carrier phrase rather than the slot value. Since
with a rising amount of functionalities carrier
phrases can be identical across functionalities
and the correct class then solely depends on the
slot value. Label confusions are particularly ob-
served for Shopping intents, e. g. BuyItem.
For example, how much is {toilet paper}
/ was kostet {Klopapier} is a request that
falls into the realm of Shopping functionalities
because the user could actually purchase this
item through the device. In contrast, if the
user asks how much is {Ronaldo} worth
/ was kostet {Ronaldo} the request needs
to be processed by QA functionalities. Note
that in German the two sentences have an iden-
tical pattern How much is {slot value} /
wie viel kostet {slot value} while the carrier
phrase slightly differs in English.

Shopping functionalities in a voice-controlled de-
vice have a particular importance due to their high
potential impact on customer trust and experience.
If a user has the feeling they could accidentally buy
something, this may reduce trust in the system and
drive customers away. On the contrary, not recog-
nizing Shopping intents is equally harmful as users
will not shop with the device anymore.

Contribution and approach - In this paper, we
focus on solving the problem of label confusions,
where detected slots are mistaken as ItemName,
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hence are routed to Shopping (false accept) and
the other way around, when an item name is not
identified as ItemName, hence are not correctly
handled as Shopping (false reject). In order to cor-
rectly determine if an item is purchasable or non-
purchasable, one needs to match the ItemName
candidates to products sold on the respective plat-
form. If the item is similar (enough) to products in
the product catalog, it is purchasable.
A straightforward way of solving this problem is to
search through the whole Shopping catalog to iden-
tify if the detected slot is found within the catalog
or not through simple string or substring matching.
However, this approach has two main drawbacks:
First, it is extremely expensive to search through
the full catalog for all slot candidates and is there-
fore prohibitive in real applications. Second, the
approach is not precise and does not utilize mean-
ing at all. Take the non-purchasable ItemName can-
didate lamborghini as an example. A Lamborghini
cannot be purchased on e-commerce platforms and
is therefore non-purchasable in this context. String
or substring matching however returns matches
like lego lamborghini, toy lamborghini from the
product catalog and as such would indicate that a
lamborghini could be bought through the device.
Instead, we need an approach that is able to detect
the difference between a lego lamborghini and a
lamborghini.
To improve the accuracy of the detected slots with
respect to the ItemName entities, we propose to
combine a retrieval module with a Twin Product
Classifier. Instead of searching through all billions
of possible products, this approach uses a twin net-
work (Bromley et al., 1994; Reimers and Gurevych,
2019a) to compare the candidate slot only with the
semantically most similar products returned by the
retrieval module from the product catalog. By look-
ing at negative (non-purchasable) and positive (pur-
chasable) examples of ItemName candidates and
their matched (retrieved) items from the product
catalog, the twin network learns to pull together
pairs that result in a correct match (positive) and
push apart pairs that are not a match (negative).
The Twin Product Classifier can be used as a signal
to adjust the final confidence scores for the n-best
hypotheses from IC-SF.
This framework overcomes the problem of high
numbers of false accept and false reject for Shop-
ping functionalities in voice-controlled devices,
while taking into account the efficiency and speed

requirement for a real world application.

2 Related Work

Pre-trained transformer (Devlin et al., 2018; Liu
et al., 2019) models have proven successful in many
language applications including Spoken Language
Understanding (SLU) (Radfar et al., 2020; Chen
et al., 2019; Do and Gaspers, 2019). Transform-
ers are typically used to create an embedding of
input tokens that is then fed to a downstream task.
However, as explained in more detail by Reimers
and Gurevych (2019a), transformer models such as
BERT are unsuitable for semantic similarity search
as well as for unsupervised tasks like clustering.
Reimers and Gurevych (2019a) therefore proposed
Sentence-BERT (SBERT). SBERT is a modifica-
tion of the pretrained BERT network based on a
twin network to derive semantically meaningful
sentence embeddings that can be compared via co-
sine similarly.
In e-commerce, product retrieval plays a key role
and is a well-researched topic (Lu et al.; Ahuja
et al., 2020). E-commerce systems typically per-
form two steps: a retrieval and a ranking step. In
the retrieval step relevant products are retrieved
from the product catalog. In the second step, the
retrieved products are ranked by relevance with re-
spect to the query. Semantic search (Huang et al.,
2020; Nigam et al., 2019; Johnson et al., 2017;
Huang et al., 2013) is state-of-the-art for product
retrieval and replaced previously prevalent keyword
matching (Schütze et al., 2008).
In this paper we propose a product retrieval stage
in the context of SLU to retrieve potential matches
for tokens labelled as ItemName by the SF model
(ItemName candidate) from a product catalog. We
then replace the ranking stage with a similarity-
based classification to identify if the ItemName
candidate is indeed a purchasable item or not. The
goal of this approach is to reduce false accepts and
false rejects for voice commerce functionalities as
explained in Section 1.

3 Twin Product Classifier

In order to solve the problem of deciding if an Item-
Name candidate is purchasable or non-purchasable,
we leverage information from the product catalog
and employ a twin network to differentiate between
these two categories. Figure 1 illustrates the gen-
eral architecture of the proposed approach, which
consists of two main components: (1) the catalog
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Figure 1: The general architecture of the Twin Product Classifier

retrieval module and (2) the Twin Product Classifier.
In the retrieval module, the detected ItemName can-
didate will be matched with similar items indexed
from the product catalog in order to find the best
matching items with respect to the candidate. After
that, we employ a twin network architecture (Brom-
ley et al., 1994) and pass the original utterance on
the left side and the set of matching items on the
right side. Instead of learning to classify the in-
puts, twin networks aim at learning to differentiate
between two inputs, i.e., to learn the similarity be-
tween them and to identify pairs that don’t match.
The similarity between these two parts (the original
utterance vs. the matching items) will be computed.
After that, the twin network is trained using a con-
trastive loss to learn to differentiate between pairs
of utterances and matching catalog items to finally
decide if the given item name is purchasable, i.e.,
could be matched with items from the product cat-
alog.

Let u be an input utterance and cu be the Item-
Name candidate that this utterance contains. Our
task is to decide if u should be classified as a Shop-
ping intent or not based on checking if cu is a pur-
chasable product. Note that the candidate cu is
provided by the n-best hypotheses from the IC-
SF architecture described in the previous section.
From the product catalog, we retrieve a set of prod-
ucts p = {p1, p2, .., pk} that are semantically most

similar to cu, with p ∈ P where P denotes the
product catalog. u and p are passed through the
twin network, which yields two embeddings Eu
and Ep respectively. We define a pair of utterance
u and matched products p to be positive if the Item-
Name candidate cu contained in u can be poten-
tially found in the product catalog P and negative
if cu is a non-purchasable item.
Once p is retrieved from the catalog, we compute
the distance between Eu and Ep using the Euclidean
distance and the contrastive loss L:

(1)L(u, p) = y ∗ d(Eu, Ep)2 + (1− y)
∗max(τ − d(Eu, Ep), 0)2

where y denotes the output, which is 0 for negative
samples and 1 for positive samples. The distance d
is computed as:

d(Eu, Ep) =

√√√√
N∑

i=1

(Eui − Epi)2 (2)

N is the embedding size and τ the margin parame-
ter which determines the minimum distance a pair
should have in order to be classified as negative.
The final loss is the sum of both positive and neg-
ative loss. Contrastive loss has been shown to be
very effective for training twin networks (Raden-
ovic et al., 2017; Reimers and Gurevych, 2019b),
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which pulls together similar pairs and push dissimi-
lar pairs apart. The gradient of the constrastive loss
is computed as:

∇L(u, p) =
{
d(Eu, Ep) y = 1

min(d(Eu, Ep)− τ, 0) y = 0

(3)

In practice, to accelerate the training process
and improve the performance, we employ online
contrastive loss, which selects only hard positive
and hard negative samples in each mini-batch. In
particular, the distance between each pair is com-
puted and the loss is only added for pairs with the
smallest or biggest distances.

With the aim of finding the best set of matching
products p for an ItemName candidate cu, we ar-
gue that the top products returned by fast semantic
search provide essential information to the twin net-
work to learn the similarity between cu and p for
purchasable items and generalize on unseen items.
Keyword exact match search is usually faster using
a reverse indexing system, but is limited since it
cannot find items that are differently spelled, writ-
ten or semantically close.
We use FAISS (Johnson et al., 2017), a library
that has shown to be fast and efficient in similar-
ity search for billion-scale data sets. FAISS takes
embedded catalog vectors as inputs and starts the
indexing process, which involves clustering the
data into different clusters represented by their cen-
troids - which are used as inverted file or index.
When a query vector comes in, the most suitable
cluster found based on its similarity with the cen-
troids is returned together with the top K nearest
items. FAISS is implemented for running both in
CPU and GPU, supporting single and multi-GPUs
together with batch processing. The encoding and
indexing of P is done once completely offline and
could be stored in memory for instant RAM search
of incoming ItemName candidates cu.

Integration of the Twin Product Classifier
into the SLU system
Finally, the integration of the Twin Product Classi-
fier in the whole SLU architecture is displayed in
Figure 2. It illustrates the previous SLU architec-
ture (IC-SF) on the left and the added Twin Product
Classifier on the right. The IC-SF component illus-
trated on the left side is an independent part that
one can integrate together with the twin product
classifier proposed here. The flow would be as fol-
lows: the utterance is first encoded using character,

positional and catalog embeddings. The catalog
embedding is a fixed-size real vector for each to-
ken that indicates if the token or a substring of the
token is present in one of the catalogs. Note that
the product catalog used for generating the cata-
log embedding is a superset of the product catalog
used in the Twin Product Classifier (see next Sec-
tion 4.2). This first-stage embedding is then fed
through a tinyBERT encoder block. The resulting
encoding is then passed to the respective decoders,
the SF and the IC decoder. Since the model as is
has difficulties to distinguish between purchasable
and non-purchasable items, we pass the utterances
with ItemName candidates in the n-best hypothesis
through the Twin Product Classifier. Dependent on
the classifier feedback, the Shopping IC-SF score
can be adjusted accordingly.

4 Data

4.1 Product catalog

We replace the full product catalog with the top
product search queries to reduce the size and
improve the matching between cu and p ∈ P. The
product catalog entries contain too many details
that a user would usually not include in their
request, e.g Samsung Galaxy Book Pro 15.6” —
i5 11th Gen, 8GB Memory, 512GB SSD — Mystic
Blue — (NP950XDB-KB2US) 2021 versus just
Samsung Galaxy Book Pro. Moreover, the actual
product catalog has a size and granularity that is
not needed to detect if an item is purchasable or
not. The top one million search queries already
cover a wide variety of products and product
categories that are representative of the full product
catalog. Note that the this catalog is a subset of the
catalog used for the catalog embedding in IC-SF.
For simplicity, we will refer to the one million
product search queries as product catalog.

4.2 Training and test data

We use a dataset with positive and negative exam-
ples to train the classifier. One example contains
(utterance, ItemName candidate, product matches,
class label). The ItemName candidate is produced
by the IC-SF architecture. The catalog matches are
retrieved via semantic search from the product cat-
alog using the ItemName candidate as a query. The
data was collected and annotated over the time span
of one year. All data is in German and anonymized
such that users are not identifiable.
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Figure 2: Integrating the Twin Product Classifier into the SLU system

To create positive and negative examples, we use
all utterances for which any slot in the n-best hy-
potheses from IC-SF is an ItemName slot. The
hypothesized slot is recorded as ItemName candi-
date. If the ground-truth annotation of the utterance
is Shopping, the utterance serves as positive exam-
ple. If the ground-truth annotation is not Shopping,
we use it as a negative example. Table 1 shows
that we have slightly more negative than positive
examples in our dataset.
Table 2 displays the sequence length distribution
for utterance, ItemName candidate and product
matches when split by white space. While the utter-
ances tend to be rather short sentences (on average
only 5.8 tokens), the slot value can take up a sub-
stantial portion of the request itself, on average 2.2
tokens out of 5.8. For each ItemName candidate an
average of about 19 product matches is retrieved
from the product catalog using semantic search.

Dataset Share unique
ItemName cand.

Share
positive

train 35 % 41 %
test 51 % 41 %

Table 1: Dataset statistics.

5 Results

5.1 Experimental setup
BERT model for Twin network - For the BERT
embedding block shown in Figure 1, we use a pre-
trained German BERT model, gbert-base (Chan
et al., 2020; Devlin et al., 2018), fine-tuned on

Utterance Item name
candidate

Product
matches

mean 5.8 2.2 19.0
std 2.5 1.6 8.8
min 1.0 1.0 10.0
25 % 4.0 1.0 11.0
50 % 5.0 2.0 18.0
75 % 7.0 3.0 24.0
max 53.0 30.0 85.0

Table 2: Sequence length distribution when split by
white space for training set. Displays min, max, mean,
std and standard quantiles of number of tokens in se-
quence.

annotated data sampled from live traffic. For fine-
tuning we use a dataset of 1.5 million live traffic
utterances. Shopping utterances as well as Shop-
ping false rejects are upsampled moderately in this
dataset. The BERT model is fine-tuned in a multi-
task fashion to predict two binary targets: (1) is
the utterance a Shopping utterance or not, (2) is
the utterance a Shopping false reject or not. Later
we discard the classification layer and only use the
fine-tuned BERT for the purposes of this paper.
Retrieval module - We see that semantic search
works well for numbers (e.g., hundred liter matches
100 liter) and different variants of a product (i.
phone x. matches i phone x, i phone xs, öl matches
öle). The results are quite as expected: the matches
for shoppable items are usually more relevant,
whereas the matches for negative examples are not
immediate matches (e.g., porsche is matched with
porges, porsche shoes, porsche lego, porsche knife,
porsche book, porsche watch).
Twin network setup - For the implementation of
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the classifier, we use the sentence transformer pack-
age1 to setup the experiments. In each experiment,
we set the number of epochs to four, the batch size
for the contrastive loss is 64 and the margin τ is 0.5.
We experiment with two more loss functions, mul-
tiple negatives ranking loss and multi-task learning
loss. The multiple negatives ranking loss is defined
as follows: Let {ui, pi} be all positive pairs in our
training data. Multiple negative ranking loss will
generate all {ui, pj} for ∀i 6= j and compute the
negative log-likelihood (Reimers and Gurevych,
2019b). The multi-task learning loss combines
both contrastive loss and multiple negatives rank-
ing loss by alternating between both in each batch.
For experiments with the multiple negatives rank-
ing loss and the multi-task learning loss we use a
batch size of 128 together with a max sequence
length of 50.

5.2 Experimental results

We design the experiments to (1) quantify the effect
of the number the retrieved products, (2) compare
the effect of adding the Twin Product Classifier to
the original IC-SF classifier outputs. Finally, we
conduct a couple of experiments using different
loss functions such as multiple negatives ranking
and multi-task learning and compare them to the
contrastive loss, as well as cosine, Manhattan and
Euclidean distance measurement in the twin net-
work.

First of all, we compare our proposed system
to the baseline, which takes the utterance as input
and the hypothesis ranked first to classify if the
utterance has a Shopping intent. In this baseline,
the catalog is used to produce a catalog embedding
to encode the utterance, but no product classifier is
used. The results of this experiment are reported in
Table 3.

We see a significant improvement in both accu-
racy (+81.6%) and F1 score (+42.2%) when adding
the product classifier compared to the baseline us-
ing only intent and slot classifier with catalog em-
beddings as input. We observe a slight decrease in
recall of -11.6% compared to an increase of +97.7%
in precision. This is due to the fact that the dataset
created for training and testing as described in Sec-
tion 4 contains many more false accept samples
than false reject samples. This is the case since
the dataset was created by pulling and annotating
utterances where any of the hypothesis in the n-best

1https://github.com/UKPLab/sentence-transformers/

from IC-SF was Shopping and contained an Item-
Name slot, hence entails that IC-SF Shopping false
accepts are much better represented in the dataset
than IC-SF Shopping false rejects. This is hard to
circumvent since annotating random samples from
the overall live traffic only yields few IC-SF Shop-
ping false rejects. Therefore, creating a dataset
with many false reject samples is challenging due
to the annotation limits.

Metrics Twin Product Classifier
Accuracy +81.58%
F1 +42.27%
Precision +97.67%
Recall -11.55%

Table 3: Relative difference between the baseline and
Twin Product Classifier. Note that the IC-SF architec-
ture is evaluated here on a binary task similar to the
Twin Product Classifier. The IC-SF classification is
evaluated as correct if the first hypothesis is a Shopping
intent.

Figure 3: Performance on validation set in terms of Ac-
curacy & F1 at each epoch using cosine, Manhattan and
Euclidean distance.

We quantify the effect of the number of retrieved
products in the retrieval module by comparing the
results of the classifier when using only the first
matched item vs. using the top five matched items.
As expected, retrieving more relevant products in-
stead of using only the first matched product gives
a much better result with a gain of +14.95% in ac-
curacy and +10.88% in precision. Interestingly, we
also see a small increase in recall when using only
one matched product. This can be explained by the
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fact that when using only one matched item, it is
likely to classify more items as purchasable (posi-
tive) and get a few more false accepts since the first
matching item might not reflect the full character-
istics of the ItemName candidate. An example we
often observe is when a user searches for a Lam-
borghini (which is not purchasable on e-commerce
platforms), the returned matches are Lamborghini
toys, legos, etc. Retrieving more matching items
helps to better characterize and hence to give better
accuracy for purchasable items.

Metrics Cosine Manhattan Euclidean
similarity distance distance

Accuracy +14.95% +14.92% +14.95%
F1 +10.69% +10.84% +10.88%
Precision +23.30% +24.95% +23.88%
Recall -3.65% -4.88% -3.85%

Table 4: Relative difference between the system us-
ing the first matching product and the top five matching
products

In the next experiment, we further extend the left
side of the twin network with the whole utterance,
instead of using only the ItemName candidate. We
see a big gain in both accuracy (+8.5%) and F1
(+9.72%) (Table 5). In this case, the whole utter-
ance is proven to contain important information
for deciding if the intent is related to Shopping
or not. Hence extending the comparison between
itemName candidates and matched products with
the whole utterance information is beneficial.

Metrics Cosine Manhattan Euclidean
similarity distance distance

Accuracy +8.53% +8.49% +8.54%
F1 +9.79% +9.64% +9.72%
Precision +18.72% +18.11% +18.26%
Recall +1.17% +1.56% +1.44%

Table 5: Relative difference between the system using
only the ItemName candidate vs. using the whole utter-
ance in training the classifier

Next, we quantify the effect of different similar-
ity and distance measures for computing the con-
trastive loss (Table 6). Taking the cosine similarity
as the baseline, we compute the relative changes
when using the Manhattan distance and Euclidean
distance. From the experimental results, we do not
see much difference overall with respect to using
different distance measures. Euclidean distance
gives a slightly better result though.

Finally, we evaluate the impact of using different
loss functions for our approach. We compare on-
line contrastive loss with multiple negatives rank-

Metrics Manhattan Euclidean
distance distance

Accuracy -0.03% +0.01%
F1 -0.11% +0.00%
Precision +0.50% -0.14%
Recall -0.70% +0.10%

Table 6: Relative difference when using different dis-
tance metrics (with cosine similarity as the baseline)

ing loss and the multi-task loss. The results are
reported in Table 7. We see that using the multiple
negatives ranking loss function as well as the multi-
task loss function gives much lower performance
than the contrastive loss. The multiple negatives
ranking loss function is usually more useful in the
information retrieval use case, when one has more
positive pairs. Overall, the contrastive loss function
has shown to yield the best performance for this
use case.

Metrics Negative Multi-task
ranking loss

Accuracy -30.02% -12.64%
F1 -32.33% -13.21%
Precision -50.74% -22.56%
Recall +6.23% -1.69%

Table 7: Relative difference when using alternative
loss functions compared to online contrastive loss

We also report the performance (Accuracy and
F1) at each epoch measured on a validation set that
has same size and class distribution as the test set
for the three different distance metrics, where we
see steady improvement at each epoch (Figure 3).

6 Conclusion

We have presented an architecture with a retrieval
module and a twin product classification module
to verify if a detected ItemName slot from the SF
model contains a purchasable item or not. The ex-
perimental results have shown the effectiveness of
the framework to increase accuracy by +81% for
purchasable item detection. For the retrieval mod-
ule, we have experimented with different numbers
of matching products returned by semantic search.
We showed that using the top five most relevant
product names yields the best results. Moreover,
adding the whole utterance in the twin network and
using an online contrastive loss function resulted in
the best performance. This approach can be lever-
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aged in a voice-based shopping system to decrease
the number of false rejects and false accepts and
thereby improve customer experience.
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Abstract

E-commerce stores collect customer feedback
to let sellers learn about customer concerns
and enhance customer order experience. Be-
cause customer feedback often contains redun-
dant information, a concise summary of the
feedback can be generated to help sellers bet-
ter understand the issues causing customer dis-
satisfaction. Previous state-of-the-art abstrac-
tive text summarization models make two ma-
jor types of factual errors when producing sum-
maries from customer feedback, which are
wrong entity detection (WED) and incorrect
product-defect description (IPD). In this work,
we introduce a set of methods to enhance the
factual consistency of abstractive summariza-
tion on customer feedback. We augment the
training data with artificially corrupted sum-
maries, and use them as counterparts of the tar-
get summaries. We add a contrastive loss term
into the training objective so that the model
learns to avoid certain factual errors. Evalua-
tion results show that a large portion of WED
and IPD errors are alleviated for BART and T5.
Furthermore, our approaches do not depend on
the structure of the summarization model and
thus are generalizable to any abstractive sum-
marization systems.

1 Introduction

In order to improve customer order experience,
most e-commerce stores allow customers to submit
reviews or feedback via their post-order commu-
nication channels. Such customer feedback, usu-
ally in the form of short paragraphs of free texts,
contains information reflecting the issues that cus-
tomers experienced in their purchases. This infor-
mation can be shared with sellers to bring their
awareness on the problems in their products. How-
ever, customer feedback often include other con-
tents that are irrelevant to the product issues. Such
redundant information requires extra efforts for

Source: (...) I ordered this mouse for my new laptop.
However, when I received it, I could see many scratches
on the product. It looks like it has been used before. (. . . )
Reference Summary: The mouse delivered has many
scratches. It looks like it has been used.
Model Summary: The laptop came with many scratches,
looks like it has been used.
Source: (. . . ) I checked the serial number and found it
doesn’t match the one on the website. This phone is not
defective. I question the source of this product (. . . )
Reference Summary: The phone serial number doesn’t
match the one on the website but the phone is not defective.
Model Summary: This phone is defective and the serial
number doesn’t match the one on the website.

Table 1: Examples of the two major factual errors:
WED (upper) and IPD (lower).

sellers to fully understand the customers major con-
cerns, and sometimes even causes confusion.

To reduce the redundancy, a concise summary
of customer feedback can be provided where the
information is concentrated on the product issues
while other irrelevant contents are filtered out. Such
summary allows sellers to quickly capture and com-
prehend the problems, and thus they can address
buyer dissatisfaction more efficiently.

The problem of generating summaries from cus-
tomer feedback is modeled as a text summarization
task (Nallapati et al., 2016; Allahyari et al., 2017;
Gao et al., 2020) in the natural language processing
(NLP) domain. Abstractive summarization models
with transformer-based architecture have achieved
success in a variety of summarization tasks (Lewis
et al., 2020; Raffel et al., 2020; Zhang et al., 2020;
Bao et al., 2020). Hence, we harnessed the recent
state-of-the-art (SOTA) abstractive summarization
models, BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020), and fine tuned the models for our
specific summarization task. We aim to utilize sum-
marization models to produce the summary that can
correctly describe the product issues presented in
customer feedback. However, from human evalu-
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ation results, we observed that the summary gen-
erated by these abstractive summarization models
sometimes contains the information that is incon-
sistent with facts in the input text. Such factual in-
consistencies have also been observed in previous
studies (Cao et al., 2018; Kryscinski et al., 2019,
2020). More specifically, we analyzed 75 inconsis-
tent summaries obtained from human evaluations
on more than 600 model-generated summaries. We
found that around 70% factual inconsistent sum-
maries 1 follow two error patterns: wrong entity
detection (WED) and incorrect product-defect de-
scription (IPD). The error of WED often occurs in
the cases where the feedback text involves multiple
entities but the models fail to detect the primary
entity. For IPD, the generated summary contains
the product-defect description that contradicts with
the original description in the customer feedback.
Table 1 shows the examples 2 of the two types of
factual errors.

In this work, we propose a set of methods in
order to improve the factual consistency of abstrac-
tive summarization on customer feedback. We first
introduce specific factual errors into each target
summary to generate their negative counterpart.
We then use such pair of consistent and inconsis-
tent summaries with a contrastive loss term added
in the training objective to enhance the model’s
robustness against the two major factual errors.

Our contributions are two folds. First, The pro-
posed approaches with corrupted summary gen-
eration and contrastive loss augmentation do not
pose requirements on the achitecture of the sum-
marization model. Thus, they can be applied to
any abstraction-based summarization model to im-
prove the model faithfulness. Second, we test the
proposed approaches on SOTA summarization al-
gorithms such as BART and T5. Our approaches
show large benefits in reducing the common factual
errors in customer-feedback summarization.

2 Related Work

There have been increasing research attentions on
improving the factual consistency of abstractive
summarization models. Lots of priors work fo-
cused on different ways of adding external signals
or constraints to enhance the summary generation.
Cao et al. (2018) built a dual-attention framework

1The rest of the unfaithful summaries are due to miscella-
neous factual errors that are hard to cluster.

2Due to confidentiality, all customer feedback examples in
this paper are composed by the authors.

so that the summary generation is conditioned on
both the source document and extracted key infor-
mation. Li et al. (2018) incorporated the entailment
knowledge by utilizing entailment-aware encoder
and decoder. With using the textual entailment,
Falke et al. (2019) re-ranked the candidates sum-
maries to select the summary that’s better aligned
with the source document. Dou et al. (2020) studied
different external signals, including key sentences,
keywords and relations, and used them in addition
to the input text to guide the summary generation.
Mao et al. (2020) constrained certain tokens to re-
quire them to be present in the summary. Similarly,
Yuan et al. (2020) add constraints on the model
to include certain attribute words in the product
summarization. Zhu et al. (2021) integrated infor-
mation extraction and graph attention network into
transformer-based seq2seq framework.

To identify and correct the unfaithful summaries,
Wang et al. (2020) proposed to use a question an-
swering framework to check the faithfulness of the
summary while Dong et al. (2020) built a factual
correction model that leverages knowledge learned
from question answering models. Kryscinski et al.
(2020) trained a BERT-based model to classify
whether the summary is factual consistent. Cao
et al. (2020) and Zhu et al. (2021) developed fac-
tual corrector based on BART (Lewis et al., 2020)
and UniLM (Dong et al., 2019), as a post-processor
to rectify factual errors from the upstream summa-
rization model. They corrupted the reference sum-
maries with artificial errors and used them as the
negative samples for training the correctors. In our
work, we also generate corrupted summaries as the
negative counterparts of the target summaries. The
difference is that, instead of building a separate
corrector model, we directly engineer the training
objective of the summarization model. By lever-
aging contrastive learning (Schroff et al., 2015;
Khosla et al., 2020), we define contrasive losses
to guide the output summary away from certain
factual errors.

3 Proposed Approaches

Our error analysis of customer-feedback summa-
rizaton showed that most of the factual errors be-
long to two error types: WED and IPD. Hence, in
our proposed approaches, we first apply rule-based
transformations and introduce synthetic factual er-
rors of the two error patterns into the target sum-
maries. We then modify the training objective by
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Source: (...) I’ve bought cheese from this store for many
times, and they were very good. So I think other products
must be good too. Then I ordered several bottles of milk.
But they are clearly expired (. . . )
Reference Summary: Milk delivered is expired.
Corrupted Summary: Cheese delivered is expired.
Source: (. . . ) The eggs I purchased have bad smells. They
don’t look like fresh eggs. (. . . )
Reference Summary: Eggs have bad smells, and don’t
look like fresh eggs.
Corrupted Summary: Eggs have good smells, and don’t
look like fresh eggs.

Table 2: Examples of corrupted summaries. We re-
place the primary entity in the first example and switch
the description in the second example.

adding the contrastive loss so as to guide the model
to avoid those mistakes.

3.1 Synthetic Factual Errors

We augment the training data by applying two types
of corruption methods on the target summary. The
corruptions are designed to mimic the factual er-
rors we observed. In the first method, we replace
the named entities in the target summary with the
other random entities of the same type in the source
document. If no such replacement entity can be
found in the source document, we randomly pick
one from the top 50 appeared entities in our dataset.
We used Spacy toolkit (Honnibal et al., 2020) for
the named entity extraction. In the second method,
we use predefined rules to transform the product-
defect description in the target summary. We detect
the adjectives describing the product defect and
switch their sentiment. There are two ways that we
change the description. One is by adding negation
word not before the adjective. For example, we
alter ”product is broken” to ”product is not bro-
ken”. If word not is already presented, we will
remove it instead. The other way is by switching a
descriptive word to the one with opposite meaning,
such as changing ”opened” to ”sealed”. Table 2
shows some examples of the corrupted summaries.

3.2 Training Objective

For each training sample, we now have a triplet
(d, s+, s−) consisting of the source document d,
target summary s+, and corrupted summary s−.
The summarization model takes d as the input and
generates the output o. Our training objective is to
drive the model output o to resemble s+ while at
the same time avoiding the factual errors presented
in s−. Inspired by contrastive learning (Schroff
et al., 2015; Khosla et al., 2020), we compare dif-

ferent contrastive loss functions for model training.

Direct Contrast Compared to the ordinary loss
function for summarization, we add an extra term
that takes into account the informration from cor-
rupted summary:

LDC = L(s+, o)− α ∗ L(s−, o)

where L(s+, o) is the cross entropy loss between
s+ and o, L(s−, o) is the cross entropy loss be-
tween s− and o, and α is a tunable hyperparameter
controlling the impact from the second term. The
loss function will purely focus on the difference
between s+ and s− if α = 1.0. Thus, we gener-
ally use small value for α to ensure the model will
produce fluent summary.

Constrained Negative Here, we add a margin
term M to constrain the value of L(s−, o):

LCN = L(s+, o) + α ∗max
(
M − L(s−, o), 0

)

For easy negatives with L(s−, o) > M , their ef-
fects won’t be taken into account during training as
the model can confidently distinguish them from
positive samples.

Constrained Contrast We augment the ordinary
loss function for summarization with a constrained
contrastive term:

LCC = L(s+, o)+
α ∗max

(
L(s+, o) +M − L(s−, o), 0

)

In this formula, the model is not only trained to-
wards predicting correct labels but also deviating
from certain factual errors extracted from the con-
trast between the negative and positive samples.

4 Experiments

4.1 Dataset
We collected 10,000 samples of negative customer
feedback from the post-order communication chan-
nels of e-commerce stores. We asked subject mat-
ter experts to generate summary for each customer
feedback text with emphasis on extracting the in-
formation related to product issues. The summary
is required to contain the (1) primary item names
and (2) descriptions about the product defects as-
sociated with the items, if they are presented in the
customer feedback. We use the human-produced
summary as the target summary in model training.
The train/test split ratio is 85:15.
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Model ROUGE-1 ROUGE-2 ROUGE-L
BART+corruption,LDC

+0.30 +0.36 +0.49
BART+corruption,LCN

+0.54 +0.01 +0.59
BART+corruption,LCC

+0.83 +1.12 +0.68
T5+corruption,LDC

+0.05 -0.19 +0.04
T5+corruption,LCN

+0.20 +0.08 +0.25
T5+corruption,LCC

+0.45 +0.71 +0.43

Table 3: Impact of our approaches on ROUGE scores. The reported numbers are relative changes of ROUGE
scores compared to the ordinary fine-tuned BART and T5 models, respectively4.

4.2 Model

We use two recently proposed abstractive summa-
rization models, BART (Lewis et al., 2020) and T5
(Raffel et al., 2020), for customer-feedback sum-
marization. We adopt the pretrained models from
the HuggingFace implementation 3 and fine tune
the models on our training dataset. Both models
share the same training parameters including learn-
ing rate as 5e-5, α = 0.05 in LDC , (α = 0.5,M =
2.0) in LCN , and (α = 0.5,M = 5.0) in LCC .

4.3 Evaluation metrics

We employ the ROUGE-1, ROUGE-2, and
ROUGE-L scores (Lin, 2004) to ensure that our
proposed methods do not degrade the fluency
and continuity of the generated summary. These
ROUGE scores measure the accuracy based on un-
igrams, bigrams, and longest subsequences.

We rely on the human evaluation to examine
the factual consistency of the model output. We
ask human annotators to classify the faithfulness
of generated summary into consistent and incon-
sistent based on whether there are inaccurate or
contradictory facts. We then compare the summary
consistency before and after implementing the pro-
posed methods.

5 Results

5.1 ROUGE Scores

We report the changes of ROUGE scores4 in Table
3. Results show that the models trained with our
correction methods generally have improvements
on the ROUGE scores compared to the original
BART and T5 models. Higher scores imply that
the summaries from the corrected models are better
aligned with the target summaries. In addition,

3https://huggingface.co/transformers/
4Absolute ROUGE scores are not shown due to confiden-

tiality.

Model Error Type % Corrected

BART
WED 63.6
IPD 50.0

T5
WED 46.7
IPD 42.1

Table 4: Percentage of corrected WED and IPD errors
for BART and T5. Comparisons are made between the
ordinary models and the models trained with LCC .

Model % Consis. to Inconsist.
BART 1.2
T5 2.1

Table 5: Percentage of cases where the summaries
from the ordinary models are factual consistent but be-
come inconsistent after our methods are applied.

using LCC as the loss function turns out to produce
the highest ROUGE scores for both BART and T5.
Thus, for human evaluation, we will focus on the
summaries produced by the models trained with
LCC .

5.2 Human Evaluation and Analysis

The human evaluation included 124 examples for
BART and 600 examples for T5, all of which were
randomly sampled from the test set. Table 4 shows
the effect of our approaches on correcting the two
major factual errors. As the results show, a large
portion of the WED and IPD errors are corrected.
Over 63% WED and 50% IPD mistakes from ordi-
nary BART are rectified. For T5, our methods are
able to correct around 46% WED and 42% IPD er-
rors. It implies our models perform more robustly
on the cases that can potentially lead to WED and
IPD.

One remaining question is whether our ap-
proaches would degrade the originally faithful sum-
maries. In Table 5, we report the percentage of
cases where the summaries from the ordinary mod-
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Source: (...) I bought this expensive TV that’s supposed to
have good screen and built-in wifi connection. But this one
runs with lots of lagging, not as advertised on the website.
(. . . )
Original: Screen runs with lots of lagging, not as adver-
tised.
After: TV runs with lots of lagging, not as advertised.
Source: (. . . ) The packaging is heavily damaged and
opened, though the product inside is not broken. The seller
should be careful on the packaging next time (. . . )
Original: The packaging is heavily damaged and opened.
Product is broken.
After: The packaging is heavily damaged and opened. The
product inside is not broken.

Table 6: Examples of error corrections using our meth-
ods.

els are consistent but become inconsistent after us-
ing our methods. We can see that most of the sum-
maries remain consistent from our models. Further-
more, our analysis shows that the overall amounts
of inconsistent summaries are reduced by 44.1%
for BART and 31.6% for T5, which indicates the
effectiveness of our methods.

Table 6 shows several input texts and summaries
from the models before and after using our methods.
In the first example, our model is able to pick up the
correct entity from multiple entities in the source
document, where the ordinary model fails. In the
second example, the summary from the ordinary
model contains contradicting description against
the source document but our model captures the
correct information.

6 Conclusion

In conclusion, we study the error patterns in the
customer-feedback summaries generated by BART
and T5. We propose to augment the training data
with artificially corrupted summaries and use con-
trastive learning methods to enhance the model
faithfulness. Human analysis shows that signifi-
cant portion of WED and IPD errors from BART
and T5 are reduced. Because our methods do not
involve modifying the model structure, they can
also be applied to other abstractive summarization
frameworks.
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Abstract

We improve customer experience and gain
their trust when their issues are resolved
rapidly with less friction. Existing work has
focused on reducing the overall case resolu-
tion time by binning a case into predefined
categories and routing it to the desired sup-
port engineer. However, the actions taken
by the engineer during case analysis and res-
olution are altogether ignored, even though
it forms the bulk of the case resolution time.
In this work, we propose two systems that
enable support engineers to resolve cases
faster. The first, a guidance extraction model,
that mines historical cases and provides tech-
nical guidance phrases to the support en-
gineers. These phrases can then be used
to educate the customer or to obtain criti-
cal information needed to resolve the case
and thus minimize the number of correspon-
dences between the engineer and customer.
The second, a summarization model that cre-
ates an abstractive summary of a case to pro-
vide better context to the support engineer.
Through quantitative evaluation we obtain
an F1 score of 0.64 on the guidance extrac-
tion model and a BertScore (F1) of 0.55 on
the summarization model.

1 Introduction

It is of paramount importance to AWS Support
organization to reduce the resolution time of cus-
tomer cases to ensure their business runs seam-
lessly without any downtime. We have a unique
challenge in that the customers’ issues can be
deeply technical and require technically skilled
agents to resolve it. There is a rapid increase in
the number of users of the services offered by our
cloud company and it is important to improve
tooling for Support Engineers (SEs) in order to
scale. A significant portion of customers’ cases
are business critical and time-sensitive.

Cases are created by customers for several rea-
sons such as guidance about a specific service
or troubleshooting when a production service is
down. A typical customer creates a case with a
title of the case (case title) and a detailed corre-
spondence on their issue as a part of the case
(communication text). The agents then have to
read this case, understand the customer’s prob-
lem and suggest ways for them to resolve the is-
sues. This requires the agents to spend a lot of
time to completely read the case and then guide
the customer to solve the problem. We have de-
veloped two systems that can use the inputs from
the customer in the form of case text (case title +
communication text) to speed up the agent’s time
to resolve a case. The first system is a summariza-
tion system that presents the customers problem
to the agent to give them a head start in tackling
the case. The second system provides them snip-
pets from similar historical cases to reduce the
time the agent takes to respond to the customer.

Prior work in the domain of customer support
has focused on improving the time to resolve a
case by improving routing and detecting the cus-
tomer problems into one of several predefined
categories (Gupta et al., 2013; Hui and Jha, 2000;
Muni et al., 2017; Molino et al., 2018). While these
methods reduce average total time to resolve is-
sues throughout the case journey, they do not
focus on reducing the active handle time by SEs,
i.e., the time a SE has to invest to understand and
respond to the customer. In our work, we address
this gap by introducing two novel solutions as
previously described.

SEs often look to similar previously resolved
cases when beginning to tackle a new case ac-
cording to a few internal studies. A previous simi-
lar case provides them troubleshooting resources,
hints on root causes, and guidance material that
they reuse on the new case. These resources from
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previous similar cases have been found to reduce
the handle time by SEs, but it takes time for agent
to browse through the results. Hence, we built
a knowledge mining system based on NLP that
allows SEs to efficiently look up historical cases
without having to read the whole case.

Typical technical cases contain many conver-
sations, and reading through them is a time-
consuming process. In order to solve this prob-
lem, a system was introduced - State of the Case
(SOC) - where SEs update a summary of the cur-
rent state of a case. These updates are made man-
ually by SEs while they hand the case back to the
customer or to another internal team. In addi-
tion to serving as a smooth transition between
SEs throughout the case lifecycle, the SOC of a
case was intended to serve as its expert summary
view, eliminating the vagueness and jargon that
may be present in customers’ case text. However,
the additional manual effort to fill SOC resulted
in a low adoption rate of 9.8% over time. We intro-
duce the solution in Section 3.2 automating SOC
generation based on customer communications.
Table 1 provides a simulated example of the data
we have. The SEs can use the SOC to get a head
start in solving the case.

Customer case text

Case Title: Server down because of full volume

Case description: We had our server go down this
evening because the @gig volume of our EC@ server
full. To avoid this in the future, I have two questions: -
How can we know the amount of free space left in the
Ec@ volume? - Is there a way we can setup alerts to
monitor free usage? Thank you for your help in this
matter. Have a good day, Instance ID(s): How can we
track the storage / volume usage of our EC@ instances

State of Case(SOC) Case Summary: how can we track
the free space remaining on the volume of an EC2 server
?@- how do we set up alerts at certain thresholds
to know to act?

Table 1: The customer can describe their problem in
several different ways. The state of the case summa-
rizes the customer issue into something that is action-
able.

We show that the summary version that a
SE would write in SOC can be automatically
generated using the state-of-the-art encoder
(Bert (Devlin et al., 2018))-decoder (GPT-2 (Rad-
ford et al., 2019)) models with cross attention.

We compare this model against recent baseline
models such as Bart (Lewis et al., 2019) and
on traditional encoder decoder models using
LSTMs. We present findings that support using
this model in production when compared to a
more memory efficient model such as LSTM. Any
conditional generation task requires a parallel
dataset on which the model is trained on. Our
dataset on the other hand has labeled data for the
encoder text as well. This allows us to introduce
a classification loss on the encoder to obtain
better encoder representations that can be fed to
the decoder. This also allows us to jointly train
an encoder and a decoder with a simultaneous
multi-task objective. We perform this novel
experiment to show the efficacy of training
the encoder with a cross entropy loss function
while the decoder is trained using Maximum
Likelihood Estimation (MLE).

Thus, the contribution of this work can be sum-
marized as follows:

1. We present a model that is capable of min-
ing technical guidance phrases from support
cases.

2. We present a summarization model that gen-
erates a concise summary of customer prob-
lems from the communication text. We also
compare several summarization models and
discuss the potential impact of production-
izing our model. In addition, we performed
multi-task learning on the encoder to de-
termine if it can improve decoder’s perfor-
mance.

3. We present the results from a human subject
study to show the usefulness of our solution.
Initial results suggest that the SEs considered
the summary generated by our model as a
good starting point to solve a case.

2 Related Work

As mentioned earlier, Molino et al. (2018) built
systems that could categorize case issues into pre-
defined categories. They also suggest predefined
templates to SE. Specific details of the case are
not taken into picture while suggesting these tem-
plates to make them more appropriate. Our sum-
mary model on the other hand ingests the context
of the case and generates a personalized problem
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Figure 1: (a) Component 1 reads the contents of the incoming case and sends a summary to the support agent
to get a head start. (b) Component 2 reads the contents of the historical cases and provides guidance excerpts
for the agents to respond back to the customer.

template that a SE can use to update the state of
case.

Prior work (Godse et al., 2018; Chess et al., 2007;
Brittenham et al., 2007; Pathak and Khandelwal,
2017) has looked at providing better Information
Technology Service Management (ITSM) to their
customers by building resources that help the
customers diagnose their own issue and find a
solution for it. However, customers usually try to
self-diagnose their issues before cutting a case.
Hence, our solution focuses on helping the SE
and improve their efficiency.

Other work (Gupta et al., 2013; Hui and Jha,
2000; Muni et al., 2017) has looked at the use of
the support case text along with other metadata
to classify the intent of the case and improve rout-
ing. We on the other hand analyze the case text to
provide assistance to SE in their day-to-day tasks.

3 System and Model Overview

Figure 1 shows the overall architecture of the pro-
posed system. There are two major components
that we propose in this work. The first one uses
a Bert and GPT-2 model to allow the SE to get a
head start in solving the case. The second com-
ponent runs on the case text of previously solved
cases to provide the SE with guidance phrases.
They can use the predicted guidance phrases to
understand how the case can be solved and to
also construct a response back to the customer.

In this section, we provide details of the models
that were built in these components and the steps
that we took to train them.

3.1 Guidance Extraction Model

Support cases that we receive from customers
are filled with jargon rich text that takes highly
skilled agents to read and understand. In order to
train the models that can understand this text, we
need large amounts of supervised data that is very
expensive to obtain as it requires expert annota-
tions. However, we can train large Language Mod-
els (LMs) with the vast amounts of self-supervised
case text that enables the models to understand
this jargon filled technical domain.

Following Lee et al. (2020); Beltagy et al. (2019)
we continue the pre-training of the model pre-
sented by Devlin et al. (2018) . We continue the
pre-training of the Bert model for another 60,000
steps on the support cases that we have received
in the period of 2019−20. We call this model Sup-
portBert. We show that this model outperforms
the Bert base model trained on English Wikipedia
and the Book corpus (Zhu et al., 2015) on our guid-
ance phrase prediction task. We follow the stan-
dard procedure of fine-tuning this model on a
labeled dataset of guidance excerpts. More about
this dataset is presented in Section 4. We try sev-
eral variants of the models while pre-training and
the details of the experiments are presented in
Section 5.

3.2 Summarization Model

We use a Seq2Seq (Sutskever et al., 2014) model
with the cross attention as our baseline model.
We use a Bert encoder and a GPT-2 decoder to
summarize the case content. For every word Wi

that belongs to the case description and the com-
munication text, we pass that word through the
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Figure 2: The complete setup of our summary model is shown above. We use the output of the GPT-2 decoder
as a summary of the case description fed into the Bert Encoder. For the multi-task experiment we use the class
label to add more gradients to the encoder.

Bert encoder to obtain the contextualized repre-
sentations of the case content. We use Maximum
Likelihood Estimation (MLE) to train the decoder
on the case summary (S1...ST ′). The case sum-
maries entered by SEs on historical cases are used
to train our model. Here Si represents every word
of the summary at a time step t ′. T ′ represents
the overall length of the summary. Our overall
architecture is shown in Figure 2.

We first pass the words(Wi ) into the Support-
Bert model to get a contextualized representation
of every word(henc ).

hT
enc = Ber t_encoder (W1,W2....WN ) (1)

We then use these hidden states as the keys to
the cross-attention units of the GPT-2 decoder.
At each stage of the GPT-2 decoder we will see a
probability distribution on the vocabulary(PV

t ).

PV
t =GPT _2(hT

enc ,S1...t ) (2)

We use the SOC described in Table 1 for train-
ing the decoder with MLE. We want to maximize
the log likelihood of the probability of the true
word, in other words we want to minimize the
negative log likelihood of the probability of the
true word.

losst =−log P (W tr ue
t ) (3)

Total decoder loss is averaged cross entropy
loss at each time step of the decoder.

lossdecoder =
1

Tdecoder

Tdecoder∑
t=1

losst (4)

During inference, we use the words generated
by the decoder till time t and the Bert embed-
dings to produce the word at time t +1.

St+1 = arg max
V

[softmax(GPT _2(hT
enc ,St ))] (5)

3.2.1 Multi-task training

In this variant of the summarization model, we
also predict the issue category of the case text
along with generating the summary. We have a
unique corpus that has a label for the encoder
text to train the encoder and SOC text to train the
decoder. This enables us to jointly train the en-
coder and the decoder with both these loss func-
tions. The encoder receives gradients from not
only the MLE objective of the decoder but also the
cross-entropy loss from issue categorization (241
pre-defined categories). Multi-task learning has
shown to improve the performance of the Bert
base model (Liu et al., 2019). However, each task
head during this training phase is trained inde-
pendently as parallel labels are not available. Also,
there is a lack of a public corpus that enables us
to jointly train the encoder on a classification task
and the decoder on a text generation task. Our
corpus allowed us to perform this experiment.

lossencoder =
241∑
i=0

P (X )l og (Q(X )) (6)

loss = lossencoder + lossdecoder (7)

4 Datasets

4.1 Guidance Extraction

For the purpose of guidance extraction we asked
annotators to label paragraphs from support
cases as Technical Guidance (T.G) and Educa-
tional Guidance (E.G). Using this paragraph la-
beled case dataset, we want to identify if a para-
graph is a guidance or not. As a first step we will
combine both these guidance into one bucket
and classify if a paragraph is a guidance para-
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# Examples # T.G # E.G

2050 109 88

Table 2: The number of different types of guidance
present in our guidance extraction dataset.

# Train # Test # Categories

104892 5000 241

Table 3: Number of training and testing samples used
for the summary model. Total categories column in-
dicates the number of categories that the encoder
text could be classified into. This was used for train-
ing the encoder in a multi-task setup.

graph or not. The statistics of this dataset is
shown in Table 2.

4.2 Summarization Dataset

We used an internally available parallel corpus for
training our summarization model. Our dataset
contains the case subject, first communication
and the Subject Matter Experts (SMEs) anno-
tated customer problem. We show the dataset
statistics in Table 3. We use the case title and the
first communication as the input to the model.
The model summarizes the customer problem.

5 Experiments:

5.1 Guidance Extraction Model

5.1.1 Experimental setup:

The majority baseline would produce an F1 score
of 0.13 if recall is set to 1 by predicting everything
as guidance phrase. This shows that the dataset is
highly skewed and it is not easy to get good perfor-
mance with random guessing. Since the number
of examples in the test set is not very high (20% of
all annotated data in Table 2), we decided to per-
form a 5-fold validation and average the model
performance. For each fold of data, we stop train-
ing after 3 epochs similar to (Devlin et al., 2018).
We then use the 20% test set for each fold to cal-
culate the accuracy of the model prediction with
the ground truth annotation. In order to control
for variance, we repeat the experiment 5 different
times and average the results. We compared the
following 4 variants of the model:

Off the shelf Bert (OSB): We used Bert-base
model that was trained on English Wikipedia and
the Book Corpus and then fine-tuned the model
against our own dataset. During fine-tuning, we

Model P R F1

OSB 0.665 0.6114 0.6116
PB 0.7178 0.6268 0.6456
PBK 0.6576 0.5386 0.5636
BUL 0.6742 0.6204 0.6306

Table 4: Performance of different guidance extrac-
tion models. These performance results have been
averaged with 5-fold validation and 5 different runs
to control for variance.

used a batch size of 16, max length of 512, learn-
ing rate of 5e-5 with weight decay (ε= 1e −8).

Bert – Pre-trained with support case data
(PB): Since the language in support cases is wildly
different from that of Wikipedia and the Bookcor-
pus, we continued the pre-training of the Bert
model on a corpus of support cases. We used a
total of 236,354 cases to continue pretraining the
Bert model. We then fine-tuned this Bert model
with the same experimental setup as OSB.

Bert Pre-trained with Keywords in inputs
(PBK): We observed that there were a lot of tech-
nical terms in our dataset that have a different
contextual meaning (e.g. VPC, route). Hence,
we hypothesized that we should add technical
keywords to our model’s vocabulary. To facili-
tate this, we trained a new WordPiece model (Wu
et al., 2016) on our corpus of support cases. There
were 1662 tokens in Bert’s vocabulary after adding
these words. The rest of the training pipeline was
similar to PB.

Bert model with under sampling Limit In-
crease Cases (BUL): When our customers want to
add more resources to their existing account they
create a Limit Increase Case with us. These cases
follow a very generic template (canned email)
that might not be very useful to the model. In
order to test this hypothesis, we under sampled
those cases and re-ran the pre-training and fine-
tuning experiment without adding additional key-
words.

5.1.2 Experiments Discussion

From Table 4, we see that the best performing
model on the guidance phrase dataset is the PB
model. This observation is consistent with sev-
eral other works (Beltagy et al., 2019; Lee et al.,
2020). We see that the model performance signif-
icantly drops when we add the custom keywords.
This is because the word embeddings for these
words are trained from scratch while the word
embeddings of the Bert base vocabulary have al-
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ready been tuned. We do see a 2% increase in F1
by under sampling limit increase cases but the
performance is still lower than the PB model.

5.2 Summary Model

5.2.1 Experimental Setup

We train the encoder-decoder model for 3 epochs
on the training data mentioned above. For the
encoder we use a Bert base model. The de-
coder is the GPT-2 model from OpenAI. The
keys to the self-attention units of the GPT-2 de-
coder are the final hidden states of the Bert en-
coder. We used a batch of 16, max length of 512,
Adam (Kingma and Ba, 2014) optimizer learning
rate of 5e −5 with weight decay of (ε= 1e −8). We
experiment with several variants of the encoder-
decoder model. They are discussed below:

LSTM Based encoder-decoder (LSTM): We im-
plement an LSTM based encoder-decoder model
with attention (Sutskever et al., 2014; Bahdanau
et al., 2014). There are 512 units in both the en-
coder and the decoder with 2 layers. We use an
Adam optimizer with learning rate of 0.3.

Bert encoder with GPT-2 decoder (BG): We
implement a Bert encoder with a GPT-2 de-
coder. The final hidden states of the Bert base
encoder act as the key to the self-attention
blocks (Vaswani et al., 2017) of the GPT-2 module.

Pre-trained Bert encoder with GPT-2 de-
coder (PBG): This model is similar to the BG
model. But we used the pre-trained Bert model
from Section 5.1.1.

Bert encoder with GPT-2 decoder + encoder
loss (BGE): This model is similar to the BG above.
But we also include a multi-task objective that
classifies the input text into one of the 241 cat-
egories. We want to evaluate if there is any ad-
vantage to either the text generation phase or the
classification phase by performing this multi-task
learning.

Pre-trained Bert encoder with GPT-2 de-
coder + encoder loss (PBGE): This model is a
combination of the PBG model and BGE model.
We pre-train the Bert model and use the multi-
task loss to get better representations of the input
text.

5.2.2 Experiments Discussion

Since Rouge is considered as the industry stan-
dard metric for summary tasks (Zhang et al., 2020;
Lewis et al., 2019), we compare different mod-
els based on ROUGE-L (Lin, 2004) metric. This

comparison is consistent with all the other text
generation metrics presented in Table 5. We ob-
serve that the best performing model is the BG
model. The performance is almost the same as
the PBG model. However, when we compare the
models using BertScore (P, R, F1) (Zhang et al.,
2019) we see that PBG model slightly outperforms
the BG model. BertScore has been found to have
more correlation with human judgment. Fur-
ther human evaluation is required to get the nu-
anced differences between the BG model and the
PBG model. Several works have investigated the
use of multi-task learning for classification (Liu
et al., 2019, 2017) and have found that training the
model with several losses increases model perfor-
mance. In our case we see that the multi-task
objective deteriorates the model text generation
metrics. We hypothesize that both the encoder
and the decoder try to modify the Bert represen-
tations to suit their task at hand leading to this
degradation in the performance. We also looked
at the outputs from the Bart (Lewis et al., 2019)
model, but observed that the Bart model did not
perform abstraction and merely copied the words
from the customer text in the decoder response.

We also investigate if we can achieve higher
performance on the encoder classification if we
train with the multi-task objective. From Figure 3
we see that all the models achieve a similar test
performance after 3 epochs of training. However,
it is interesting to see that the classifier achieves
better performance in the initial steps of training
with both the PBGE and the BGE models. The
comparison is made with respect to taking an
off the shelf Bert model and training with the en-
coder objective described in Section 3.2.1.

Figure 3: Comparisons of different encoder classifier
accuracies against the number of steps the model is
trained on.
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Model Bleu-1 Bleu-4 Cider ROUGE DIST-1 DIST-2 DIST-3 P R F1

PBGE 0.130 0.063 0.190 0.225 0.043 0.170 0.319 0.529 0.512 0.515
LSTM 0.066 0.032 0.062 0.113 0.015 0.119 0.228 0.479 0.415 0.439
BGE 0.131 0.066 0.206 0.294 0.045 0.211 0.415 0.556 0.527 0.535
BG 0.143 0.080 0.220 0.401 0.064 0.275 0.470 0.568 0.539 0.546
PBG 0.132 0.074 0.227 0.436 0.062 0.271 0.470 0.580 0.535 0.551

Table 5: Comparison of all the models. Based on the ROUGE score we see that the BG model performed as well
as the PBG model. The results obtained from BertScore(P, R, F1) closely resembles that of our human evaluation

The performance of a simple model like LSTM
is not close to the transformer based model.
Even though the LSTM models can give a sig-
nificant gain in inference time while deploying
the model in production, from the model perfor-
mance above we can see that we need to have
infrastructure in place to productionize the trans-
former based models for our use case. The trans-
former based models took a total time of 15 min-
utes to decode the test set of 5000 examples which
adds an average latency time of 180ms to summa-
rize each example.

Another important metric that one should look
at is the number of distinct phrases that the
Seq2Seq model is able to generate. Seq2Seq mod-
els are known to suffer from the dull response
problem (Gupta et al., 2019a). If the DIST-* met-
rics are high, that shows that the model is able to
generate more diverse outputs when presented
with different input scenarios (Li et al., 2015;
Gupta et al., 2019a). From the table we can see
that the DIST-3 metric which captures the num-
ber of unique trigrams is highest for the BG model.
The next closest model is the PBG model. We also
observe that adding encoder loss does not im-
prove the distinct scores.

5.2.3 Human Evaluation

Since the PBG model had the best BertScores and
was pre-trained on support cases we used the
summaries from this model for human evalua-
tion. While automatic evaluation metrics cap-
tures many aspects of the ground truth with the
generated text they have been criticized for the
lack of semantic understanding (Gupta et al.,
2019b; Sulem et al., 2018). In order to evaluate the
efficacy of the summaries generated by our mod-
els and to validate its usefulness, we conducted
a human subject study with the 2 subject mat-
ter experts. We randomly sampled 50 cases from
the test set and asked them to provide feedback
on the accuracy of the summary and if the sum-

mary generated would form a good starting point
to write the summary of the current case. We
observed that 23/50 were considered as a useful
summary from both the SEs. 10/50 were con-
sidered as not useful by both. The other 17 had
mixed ratings. If we consider a summary useful
if either of the individual annotated it as useful,
then 40/50 were useful summaries.

5.2.4 Qualitative Analysis:

We show some of the summaries generated by
our model in Table 6. As we can see from the
model generations, the model has learned to pre-
dict the technical language of our domain. In
row 1 and 2 of Table 6 we see that the model has
learned to predict the customers’ problem well
based on the communication text. This is be-
cause of the knowledge from the historical cases
where in other customers had similar problem.
We can also see from example 3 that the model
has learned to associate CPU spikes with Internet
Information Server. When we manually inspected
a few samples (e.g. row 4) from the human sub-
ject study and spoke to our participants, we found
that the model was penalized because it tried to
generate a very specific customer problem that
might not make sense semantically. We leave the
introduction of semantic knowledge into these
models as future work.

6 Application of the models to Support
Businesses

Extraction of guidance phrases from case text of
previous cases can provide quick tips to SEs and
make it easier for them while working on a case.
Every SE is required to write a reply to the cus-
tomer with the steps they can take to resolve the
issue. These guidance phrases will help them
reuse the text enabling them to spend less time
on the reply email.

The summary models we have built can be
used in a variety of SE tasks. We can use the au-
tomated summary to provide the context of the
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Customer Text Ground truth Generated Sum-
mary

Transfer t3 instance from one account to anotherHello,
There is a t@.large reserved instance in account @ and we
would like to transfer it to the other account that we have

Cx would like as-
sistance on trans-
ferring the t2.large
Reserved instance
from account @ to
account @

Cx wants to trans-
fer instance from
one account to an-
other

Server down because of full volumeHello,
Our Servers went down this evening because the volume
of our EC@ server was completely full.
I have a couple of questions to avoid this in the future: -
How do I know the amount of free space left in the Ec@
volume? - How do I setup alarms to monitor free usage?
Have a good day,

how can we track
the free space
remaining on the
volume of an EC2
server?@- how do
we set up alerts at
certain thresholds
to know to act?

Customer wants to
know how to mon-
itor the disk usage
of the EC2 instance

Performance issue cpu spikesWe have noticed CPU spikes
on an instance that is running an IIS site up to @We
stopped the site and cpu is still spiking up to @ when
running with few services installed. Issue occurs only
when our monitoring services are running @am to @pm.
I need help trying to understand what is causing this spike
with http. Instance ID(s): i-@f@e@a Timestamp (YYYY-
MM-DD HH:MM:SS UTC): @/@/@

We would need
help with moni-
toring http traffic
going in/out of
the box and more
details about cpu
load by process
name.

Customer ex-
perienced high
CPU spikes on an
instance that is
running on IIS and
wanted to know
the cause

Chat: S@ access denied I am getting an error with IAM
user or role experiencing the issue: arn:aws:iam::@:role/
with this role. Not sure what the problem is. Could you
help?

Cx was facing
""lambda access
error: lambda:
GetAccountSet-
tings"" error and
needed assistance
with the same

Customer was get-
ting access denied
error while trying
to access S3 bucket
via IAM user

Table 6: Examples of a few qualitative results produced by our model. Please note we have simulated the
queries in the table to preserve customer privacy.

case to the next SE who picks up the case. When
presenting similar cases to the SE, we can provide
the summaries to let them quickly identify if the
case is useful. The summaries that we generate
can also be used as a starting point when the SEs
are tasked with completing the SOC.

7 Conclusion

It is important for us to scale the support busi-
ness with our rapid user growth. We describe two
components of a system that aims to reduce the
time spent by SE in resolving a support case. The
aim of this work is to promote research at the in-
tersection of NLP and support business. Using
our models, we were able to achieve an F1 score
of 0.64 on the guidance extraction problem and

BertScore (F1) of 0.55 on the summarization prob-
lem. These promising results shows us that they
can be deployed in production, create impact and
help SEs in their day-to-day tasks. We hope this
contribution can lead to better tools that can im-
prove the tooling necessary for support agents to
provide a rich customer experience.
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Abstract
Reviews written by the users for a par-
ticular product or service play an influ-
encing role for the customers to make
an informative decision. Although online
e-commerce portals have immensely im-
pacted our lives, available contents pre-
dominantly are in English language- often
limiting its widespread usage. There is
an exponential growth in the number of
e-commerce users who are not proficient
in English. Hence, there is a necessity
to make these services available in non-
English languages, especially in a multi-
lingual country like India. This can be
achieved by an in-domain robust machine
translation (MT) system. However, the re-
views written by the users pose unique chal-
lenges to MT, such as misspelled words,
ungrammatical constructions, presence of
colloquial terms, lack of resources such
as in-domain parallel corpus etc. We ad-
dress the above challenges by presenting
an English–Hindi review domain parallel
corpus. We train an English–to–Hindi
neural machine translation (NMT) system
to translate the product reviews available
on e-commerce websites. By training the
Transformer based NMT model over the
generated data, we achieve a score of 33.26
BLEU points for English–to–Hindi transla-
tion. In order to make our NMT model ro-
bust enough to handle the noisy tokens in
the reviews, we integrate a character based
language model to generate word vectors
and map the noisy tokens with their cor-
rect forms. Experiments on four language
pairs, viz. English-Hindi, English-German,
English-French, and English-Czech show
the BLUE scores of 35.09, 28.91, 34.68 and
14.52 which are the improvements of 1.61,
1.05, 1.63 and 1.94, respectively, over the
baseline.

1 Introduction
In the era of exponentially rising internet
users, contents over social media, e-commerce
portals are increasing rapidly. In recent times,
there has been a phenomenal growth in the
number of e-commerce users, especially dur-
ing this COVID pandemic situation. However,

Type of noise Example
Emoji Face unlock works well. even

in dim light
Char Repetiton full package besttttt phone
Capital letter NICE PHONE IN LOW BUDGET.
Misspell Awsome prodct....loved it
Punctuation
Irregularity phone gives best photos!! awesome feeling
Article missing It is best earphone I got with phone
Starting noun
pronoun missing was a nice product i got
Code Mixed Good product. lekin price bahot high hai

Table 1: Various noise present in product review
sentences

the contents in such e-commerce portals are
mostly in English, limiting the scope of these
services to only a section of the society who
can read and/or write in English. India is a
multilingual country with 22 officially spoken
languages. The number of internet users in In-
dia has increased dramatically in the last few
years with the widespread usage of low-cost an-
droid phones. Users find it very difficult to un-
derstand the English contents written in these
service portals. Hence, there is a great demand
to translate these contents from English to In-
dian languages. As the manual translation is
both time-consuming and cost-sensitive, build-
ing an automated machine translation (MT)
system that could translate these enormous
amounts of reviews will be of great interest.
However, there are several challenges for this,
such as the non-availability of in-domain par-
allel training corpus, noisy nature of the text,
ungrammatical constructions, and the mixing
of more than one language (i.e. code-mixed
contents) (ref. Table 1). Product reviews are
user generated content where writing inconsis-
tencies are common as shown in Table 1. It
is possible to make mistakes in writing words
in a sentence due to various reasons, for ex-
ample, weak grasp on the language, fast writ-
ing, writing just to convey the message with-
out concerning more about the sentence for-
mation etc.

In our current work, we take up English–to–
Hindi translation as there are 57.09% Hindi
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1. Source the perfomence of the phone is bad.

Reference फोन कҴ परफॉमӜस खराब ह।ै
(phone of performance bad is.)

Output फोन का परզमू खराब ह।ै
(phone of perfume bad is.)

2. Source The content is a disgrce to the page.
Reference Der Inhalt ist eine Schande für die Seite.
Output Der Inhalt ist eine Abneigung gegen die Seite.
3. Source current procedure is more transpatent
Reference la procédure courante est plus transparente .
Output la procédure courante est plus transcriptive .

Table 2: Sample outputs for 1 En→Hi, 2. En→De
and 3. En→Fr translation in presence of noisy
input tokens.

speakers in India1. These two languages are
morphologically and syntactically distant to
each other, posing challenges to build a ro-
bust NMT system. We crawl the English re-
view sentences (electronic gadgets) from the e-
commerce websites. After pre-processing (ref.
Section 3.2) and filtering (ref. Section 3.3), we
translate the English sentences into Hindi lan-
guage using our in-house English-Hindi trans-
lation system2. The generated Hindi output
sentences are given to the professionals who
are experts in Hindi and English languages.
The language experts post-edit the Hindi out-
put as per the guidelines (ref. Section 3.5)
provided to them. In addition, we also crawl
monolingual Hindi sentences (ref. Section
3.6) from electronics gadgets’ description web-
sites. These sentences are back-translated3

(Sennrich et al., 2016a) using the Hindi-to-
English translation model trained over the
post-edited parallel corpus.

Neural machine translation (NMT) (Bah-
danau et al., 2015; Vaswani et al., 2017) is
the dominant translation technology nowa-
days, and adapting this to the noisy text is
very crucial due to the phenomenal growth in
social media. Since NMT models learn from a
fixed number of source and target vocabulary
during training, any noisy word during the in-
ference becomes an out-of-vocabulary (OOV)
token because it does not belong to the NMT
model’s training vocabulary. It is not possible
to train an NMT model with all the noisy ver-
sions of a correct token. In this case, models
treat noisy tokens as OOV tokens and either
miss their translation in the output sentence
or translate them incorrectly. Incorrect trans-
lation of noisy tokens affects the translation
quality of the whole output sequence. It af-
fects the translation output and degrades the
output quality. For example, English-to-Hindi

1https://en.wikipedia.org/wiki/List_of_languages
_by_number_of_native_speakers_in_India

2This system has BLEU of 55.67 for judicial domain
3Translating monolingual target data using

target→source NMT model.

(En–to–Hi) NMT model has one token perfor-
mance as a part of its source vocabulary dur-
ing training. As shown in example 1 in Table
2, a noisy version performence appears in the
input sentence which is incorrectly translated
as ‘परզमू’ perfume instead of ‘परफॉमӜस’ perfor-
mance. Similarly, in examples 2 and 3, we can
see that disgrce and transpatent are the noisy
tokens in the English to German (En–to–De)
and English to French (En–to–Fr) models, re-
spectively, and both of these noisy tokens are
incorrectly translated by their respective trans-
lation models.

To handle the noisy tokens as source input,
we integrate a similarity based token replace-
ment model before word segmentation at in-
ference time where the word vectors of noisy
input tokens are matched with the correct and
seen tokens in the source vocabulary, and re-
placed with the highest similar token. We use
a character based language model to generate
the word vectors and map the noisy and cor-
rect version of tokens in vector space. The
generation of the word vectors depends on the
characters present in that word.

The remainder of the paper is organized as
follows. In Section 2, we discuss the related
work. Section 5 presents the approaches of
training the character language model, word
vector generation model, and handling of noisy
source input tokens at inference time. Section
6 presents the details regarding the dataset
used and the experimental setup. Results and
analysis of our approach are discussed in Sec-
tion 7. Finally, Section 8 concludes the work
with future research directions.

2 Related Work
Machine translation with noisy text is, itself,
a very challenging task. Noisy tokens (mis-
spelled words) pose great challenges to de-
velop the Neural Machine Translation (NMT)
models (c.f. Table 2) (Michel and Neubig,
2018). In the literature, there are a few ex-
isting works that focus on handling the noisy
text by increasing the robustness of the trans-
lation model. An MTNT (machine transla-
tion of noisy text) test-bed was introduced in
(Michel and Neubig, 2018) that discussed the
challenges of noisy contents. It has been also
observed that even small noise in the input
sentence can degrade the translation quality
of the NMT model significantly (Belinkov and
Bisk, 2018; Karpukhin et al., 2019). To im-
prove the robustness of the translation model,
they introduced synthetic errors like character
swapping, replacement and drop in the corpus.
Synthetic noise using back-translated corpus
was also inserted in the original corpus to in-
troduce the NMT model with noise at train-
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Sr. English Sentence
(crawled)

Hindi Sentence
(corrected)

1. rounded corners make griping the phone very well . राउंडडे कोनर्र फोन को बहुत हҰ अच्छұ पकड़ देते हैं ।
(raunded kornar phon ko bahut hee achchhee pakad dete hain)

2. one of the best phone ever at this price . इस कҴमत में अब तक के सबसे अच्छे फोन में से एक ।
(is keemat mein ab tak ke sabase achchhe phon mein se ek .)

3. but this is Apple and Apple is like that only लेўकन यह ऐप्पल है और ऐप्पल ऐसा हҰ होता है
(lekin yah aippal hai aur aippal aisa hee hota hai)

4. At first I want to say Thank u flipkart. सबसे पहले मैं थैंक यू िफ्लपकाटर् कहना चाहता हू।ं
(sabase pahale main thaink yoo phlipakaart kahana chaahata hoon.)

5. Rear camera image quality is very good. ѝरयर कैमरा इमजे ԼाѠलटҰ बहुत अच्छұ ह।ै
(riyar kaimara imej kvaalitee bahut achchhee hai)

Table 3: Samples from the generated English-Hindi parallel corpus

ing time (Vaibhav et al., 2019; Anastasopoulos
et al., 2019).

Since it is difficult for the NMT model to
see all the noisy variants of a correct token
at training time, the model hence treats the
noisy tokens as the unseen tokens. Word seg-
mentation is a popular method that deals with
the unseen tokens. Byte-pair-encoding (BPE)
(Sennrich et al., 2016b) segments the words
based on the rare character combinations. In
BPE, a word is converted into the subword
units based on the fixed learned list of less fre-
quent character combinations. Subword regu-
larization (SR) (Kudo, 2018) was introduced
as a more diverse word segmentation method
which segments the words based on a unigram
language model. For these segmentation mod-
els, it is difficult to capture all the noisy ver-
sions at training time. So before segmentation,
we use a character based language model that
maps the noisy and correct versions of tokens
together in a vector space as shown in Figure
1. It helps to replace the noisy token with its
correct form before inference.

There has not been any significant attempt
to translate the product reviews, except the
one proposed in (Berard et al., 2019) that ad-
dressed the translation of English to French.
In contrast, we develop product review trans-
lation system for English-Hindi. English and
Hindi are morphologically and syntactically
distant languages, which pose more challenges
for machine translation. Further, Hindi is a
resource-poor language for which we do not
have sufficient resources and tools, even for the
generic domain.

3 Parallel Corpus Creation

3.1 Crawling reviews and challenges in
pre-processing

We crawl English product reviews from the e-
commerce portal, Flipkart. Product reviews
are user generated contents and contain vari-
ous noises (inconsistencies) as shown in Table
1.

3.2 Pre-processing
We remove the emojis from the English sen-
tence by providing their unicode range using
regular expressions. Any character having rep-
etition of more than 2 times is trimmed and
then checked for its compatible correct word
using spell-checker4, and a list provided by
Facebook5 (Edizel et al., 2019). Writing the
complete sentence in upper case is also very
common in user generated content (i.e. NICE
PHONE IN LOW BUDGET). Normalization
is done to convert all such instances into the
lower case. Since we focus on the product
reviews data, we make the first character of
brand’s name6 (Google, Moto, Nokia etc.) as
capital. After the pre-processing steps as men-
tioned above (emoji removal, character repeti-
tion, casing etc.), we found that approximately
62.3% sentences from the total crawled sen-
tences are corrected.

3.3 Filtering Standard vs.
Non-standard Sentences

We prepare the translation model to deal with
the noises as mentioned in Section 3.1. Some
sentences in reviews are written in Roman
script7. We consider these sentences as non-
standard sentences. Before generating the tar-
get counterpart of the source sentences, we fil-
ter out the non-standard sentences using an
autoencoder based NMT model. We use Sock-
eye toolkit (Hieber et al., 2018) to train our
model, and the hyperparameters used are men-
tioned in Section 6.2. Steps involved in the
filtering process are as follows:

• Apply 30,000 BPE merge operations us-
ing subword technique(Sennrich et al.,
2016b) over 21.2 million English monolin-
gual data (Bojar et al., 2014).

4https://pypi.org/project/pyspellchecker/
5https://github.com/facebookresearch/moe/

tree\/master/data
6https://en.wikipedia.org/wiki/List_of_mobile_

phone_brands_by_country
7We do not focus on the sentences written in the

Roman script (Hindi words written in Roman script
(English letters)).
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System Parallel samples BLEU TER
Base 13,000 33.26 46.49
Base+BT 48,000 37.79 41.35

Table 4: BLEU and TER scores for English–to–
Hindi NMT system over review domain corpus

• Train an English–to–English system.
Here, the source and target are identical.

• After training, infer the English sentence
from the crawled product reviews and gen-
erate an English hypothesis.

• Calculate the similarity between the input
sentence and the inferred hypothesis using
BLEU score.

• If BLEU < 40 then the sentence will be
filtered out. We consider 40 BLEU point
as a threshold because BLEU in the range
30-40 is considered as “understandable to
good translations”8.

The objective of training the autoencoder is
to generate an output sequence very similar
to the input sequence. Model would not be
able to regenerate a source input properly if it
is not trained on the similar kind of samples.

On an average from the total crawled re-
views, 15 to 20 % reviews were filtered out
as the non-standard sentences which were
dropped and not considered further. After this
filtering, there were still some sentences left,
having grammar and spelling inconsistencies.
These sentences have been considered as noisy
sentences. Noise handling techniques as dis-
cussed in Section 5 are used to train the model
to translate the noisy sentences.

3.4 Gold Corpus Creation by Human
Post-editing

After pre-processing and filtering, we obtain
16,138 standard English sentences. Instead
of translating sentences from scratch, we use
an in-house English-Hindi machine translation
system developed for the judicial domain. The
model is trained for English-Hindi transla-
tion using judicial data (English-Hindi), and
additional English-Hindi corpus (Kunchukut-
tan et al., 2018)9. The sentences gener-
ated from this automatic translation are post-
edited by human experts. The experts are
post-graduates in linguistics and have good
command in Hindi and English both. The ex-
perts read the English sentences and its Hindi
translation. They were instructed to make the
correction in the sentences, if required. Some

8https://cloud.google.com/translate/automl/
docs/evaluate

9It achieves a 55.67 BLEU (En-to-Hi) on our in-
house judicial domain test set

guidelines for making the corrections in the
data are mentioned in Section 3.5. The hu-
man corrected parallel corpus is divided into
training, development and test set consisting
of 13000, 599 and 2,539 parallel sentences, re-
spectively. Vocabulary size of English and
Hindi training data is 9,331 and 8,367 tokens
respectively. We also crawl Hindi sentences
and back-translate them into English. In Ta-
ble 4, ’Base+BT’ shows the size of those sam-
ples. Section 3.6 describes the generation pro-
cess of that synthetic (back-translated) data.

3.5 Guidelines for the Gold Corpus
Creation

Guidelines for making the corrections (ref.
Section 3.4) to generate the review domain par-
allel corpus are as follows:

• Source and target sentence should carry
the same semantic structure.

• Product name should be transliterated.

• User friendly vocabulary selection at
Hindi (target) side. Too many compli-
cated Hindi words which are not in much
use should be avoided. Transliteration of
an English word can also be used in the
Hindi side because in India, people gen-
erally use Hinglish (mix of Hindi and En-
glish words) vocabulary, e.g. ‘time’, ‘face
recognition’, ‘premium’ etc.

• If hyphen, slash, dot etc. symbols occur
in the source side then the same pattern
should be preserved at the translated side
too.

• Literal translation can be avoided some-
times. For example, adjectives and nouns
like terrible, great etc. which carry ex-
treme intensity should be translated into
understandable simple words as घўटया
(ghatiya), शानदार (shaanadaar) respec-
tively which preserve the sense and inten-
sity.

A few samples from the generated parallel
English-Hindi corpus are shown in Table 3.

3.6 Crawling Hindi Reviews and
Back-translating into English

We crawl 35,000 monolingual Hindi sentences
from the various websites101112 which pro-
vide Hindi descriptions of electronic gadgets.
Since these are commercial websites, we ran-
domly gave 3,000 sentences out of all the

10https://www.digit.in/hi/reviews/
11https://hindi.gadgets360.com/reviews
12https://www.91mobiles.com/hi/tech/
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Figure 1: Mapping the noisy and correct forms of
tokens close to each other in a vector space

crawled Hindi sentences as a sample to our
language experts to read, and they found
them to be in-domain, relevant, correct in
the sense of syntax and semantics, and hence
useful for our use-case. We build a Hindi–
to–English NMT model to back-translate the
crawled Hindi sentences. We use IIT Bombay
Hindi-English general domain parallel corpus
(Kunchukuttan et al., 2018) to train a Hindi–
to–English NMT model, and then fine-tune
it over the human corrected review domain
parallel corpus. The fine-tuned Hindi–to–
English NMT model is used to back-translate
the crawled 35,000 monolingual Hindi sen-
tences into English. This back-translated
(BT) English-Hindi synthetic parallel corpus
is augmented with the original 13,000 par-
allel sentences. Table 4 gives the statistics
about the dataset. A new system Base+BT
model from English–to–Hindi is trained using
the human corrected+back-translated corpus.
We will make the human corrected and back-
translated parallel corpus available on request
for the research purpose 13.

4 Training NMT over Human
Corrected Corpus

We train an English–to–Hindi baseline model
using the human corrected corpus as men-
tioned in Table 4. We use the Sockeye frame-
work (Hieber et al., 2018) for training the
Transformer neural network based NMT. We
splitted the words into subwords (Sennrich
et al., 2016b) using BPE technique. We per-
form 4,000 BPE merge operations. Our model
contains 6-6 encoder-decoder layers, 512 hid-
den size and word embedding size, learning
rate as 0.0002 and min batch size as 3800 to-
kens. We used early stopping over the valida-
tion set.

After training over the human corrected cor-
13https://www.iitp.ac.in/~ai-nlp-ml/

resources/data/review-corpus.zip

Figure 2: Token correction at inference time us-
ing character sequence based word embedding. to-
kenC and tokenN are the correct and noisy tokens
respectively paired together for training. 0 and 1
denotes the similar and non-similar token pairs re-
spectively.

pus, we perform testing over the review do-
main test set and achieves 33.26 BLEU points
and name it as ‘Base’- the baseline model. In
addition to it, we also add the back-translated
synthetic corpus into human corrected corpus,
and train the NMT model over it. We call it as
the ‘Base+BT’ model that yields 37.79 BLEU
points.

5 Handling Noisy Tokens
In this section, we describe the methodology
used in our work. Figure 2 presents the over-
all process of our proposed method. It consists
of various steps like character language model
(LM) training, word vector (embedding) gen-
eration, and finally noisy token replacement at
inference time. Section 5.1 and Section 5.2 de-
scribe the steps in details.

5.1 Training Character LM and Word
Vector Generation

A word consists of a sequence of characters.
Each character is represented as a one-hot vec-
tor and a sequence of such vectors is passed
through two different Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber,
1997) layers. It generates the embedding vec-
tor of that particular word. As a training
model, chars2vec14 is utilized for embedding
generation and character sequence learning.
To be more specific, we deal with a neural net-
work taking two sequences of one-hot vectors
representing two different words as an input,
creating their embeddings with one chars2vec
model, calculating the norm of the difference
between these embedding vectors and feeding
it into the last layer of the network with the
sigmoid activation function. The output of
the neural network is a number that ranges

14https://github.com/
IntuitionEngineeringTeam/chars2vec
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Figure 3: Training the character based language
model

from 0 to 1 because of the sigmoid as an out-
put function. The network is trained to cap-
ture the similarity between the noisy and its
non-noisy version. For similar word pairs, i.e.
for noisy and its equivalent version, we use 0
as a class label. On the other hand, we use
1 to denote the non-similar word pairs. For
example, panasonic and pansonic are similar
pairs while panasonic and panorama are non-
similar. As shown in Figure 3, we are trying to
reduce the distance of two embeddings Emb1
and Emb2 of two similar tokens so that they
can be mapped as close as possible in vector
space. This is why the label of similar pairs
is 0 and the training objective is to reduce the
distance between Emb1 and Emb2 close to 0.

As shown in the Figure 1, our objective is
to map the correct and noisy versions of a to-
ken as close as possible in vector space. To
train the character LM, we prepare the train-
ing data by creating noisy versions of tokens
in the source vocabulary set trainX. The la-
belled training data can be generated by tak-
ing a multitude of words and then performing
various changes (e.g. character drop and re-
placement) upon them to obtain the noisy ver-
sions of those words. These new noisy words,
so produced by injecting character errors in
one original word, would naturally be simi-
lar to this original word, and such pairs of
words would have the label 0. As an exam-
ple, two noisy versions performnce and perfor-
mence are generated using character drop and
character replacement, respectively, from the
original source vocabulary word performance.
So [(performance, performnce) : 0] and [(per-
formance, performence) : 0] are two similar
training pairs with label 0. It is to be noted
that on a source token we apply at most two
character operations to generate the similar
pairs. To generate non-similar pairs with label
1, with token from the source vocabulary, we
randomly pair the shuffled tokens, for exam-
ple: [(performance, product) : 1] and [(perfor-
mance, smartphone) : 1]. These training pairs
are used to train and save the character LM
model which learns the parameter in the pro-
cess of mapping the similar word embeddings
closer. Now this model is used to generate the
vector representation of the source vocabulary
tokens and tokens in the input sentence at in-

Figure 4: Flowchart of the noisy token replacement

ference time.

5.2 Noisy Token Replacement
As discussed in Section 5.1, a trained model
is saved which is used to generate the vec-
tor representation (embedding) of each word
in the training source vocabulary. The vector
representation is generated based on the char-
acters in those words. Let us have a vector
space S which contains the vector representa-
tion trainVi of training source vocabulary to-
ken trainXi. Here, trainVi is generated using
the trained chars2vec model based on the char-
acters appearing in the token trainXi.

Now at the time of inference, each test input
sentence inputi consists of len tokens and j =
1, ....., len. Here, we assume that if a noisy
token or say a noisy version of a word appears
in the test input sentence then it will not be a
part of the training source vocabulary trainX.
As shown in Figure 4, for each token inferXij
in the test input sentence inputi, we find if
inferXij belongs to the source train vocabu-
lary trainX then we keep that token as it is
in source input sentence. If inferXij does not
belong to the source train vocabulary trainX,
we find the most similar token from the vocab-
ulary list trainX using the cosine similarity.
Now inferXij will be replaced with the most
similar token from trainX. Finally, the cor-
rected (replaced) source sequence segmented
by the subword model will be fed to the NMT
model for the translation.

6 Dataset and Experimental Setup
In this section, we present the details of the
datasets used in our experiments and the var-
ious setups.

6.1 Dataset
We perform experiments with four differ-
ent translation directions which are English–
to–Hindi (En–to–Hi), English-German (En–
to–De), English–to–Czech (En–to–Cs) and
English–to–French (En–to–Fr). Among these
language pairs, English-Hindi is a low-resource
and less-explored, and distant language pair.
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Train Dev Test
En-Hi (Reviews) 13,000 599 2,539
En-Hi (WMT14) 1,561,840 520 2,507
En-De (WMT14) 1,264,825 1,057 2,000
En-Cs (IWSLT17) 105,924 483 1,080
En-Fr (IWSLT17) 230,912 883 1,466
En-Fr (MTNT18) 36,014 852 1,020

Table 5: Size of train, dev and test sets for different
language pairs

For English–to–Hindi translation, we use the
IIT Bombay English-Hindi parallel corpus15.
For English–to–Hindi, we also perform ex-
periments over the generated review domain
parallel corpus. For English–to–German, we
use Europarl corpus from WMT 201416 (Bo-
jar et al., 2014). We use the IWSLT17
dataset for English–to–Czech and English–to–
French17. We also use the MTNT18 dataset
for English–to–French translation. Table 5
presents the statistics of training, development
and test sets.

6.2 Experimental Setup
In order to build our machine translation sys-
tems, we use the Sockeye19(Hieber et al., 2018)
toolkit. Our training set-up is described be-
low. The tokens of training, evaluation and
validation sets are segmented into the subword
units using the BPE technique (Gage, 1994)
proposed by (Sennrich et al., 2016b). We per-
form 20,000 join operations. We use 6 layers
at encoder and decoder sides each, 8-head at-
tention, hidden layer of size 512, embedding
vector of size 512, learning rate of 0.0002, and
the minimum batch size of 3800 tokens.

6.3 Noise Injection in the Test Sets
For the experiment, we introduce noise in the
En-Hi, En-De, En-Fr and En-Cs test sets to
make them noisy and suitable for testing the
models’ performance in the noisy environment.
We introduce two kinds of noise in the source
test sequence: 1. character drop and 2. char-
acter replacement. In character drop, we ran-
domly drop any character from a source token
and in character replacement, we replace the
characters randomly with some other charac-
ters.

7 Result and Analysis
We evaluate the models using BLEU, and
these results are shown in Table 6. We

15http://www.cfilt.iitb.ac.in/iitb_parallel/
16http://www.statmt.org/wmt14/translation-

task.html
17https://wit3.fbk.eu/
18https://www.cs.cmu.edu/~pmichel1/mtnt/
19https://github.com/awslabs/sockeye

Proposed Synthetic Noise
(Vaibhav et al., 2019)

SR
(Kudo, 2018)

BPE
(Sennrich et al., 2016b)

En–to–Hi
(Reviews) 35.09 34.27 33.48 33.26
En–to–Hi
(newstest2014) 14.64 14.08 13.68 13.35
En–to–De
(newstest2014) 28.91 28.22 27.86 27.84
En–to–Cs
(IWSLT17) 14.52 13.65 12.58 12.04
En–to–Fr
(MTNT18) 23.01 22.87 21.46 20.83
En–to–Fr
(IWSLT17) 34.68 33.62 33.05 33.11

Table 6: Evaluation results of the proposed method
in terms of BLEU score for different translation
pairs. Here, SR: Subword regularization, BPE:
Byte pair encoding

also perform experiments using the word seg-
mentation approaches, viz. BPE (Sennrich
et al., 2016b) and subword regularization
(Kudo, 2018). For English–to–Hindi review
domain translation, proposed method yields
35.09 BLEU points which significantly outper-
forms synthetic noise, SR and BPE with a dif-
ference of 0.82, 1.61 and 1.83 BLEU points,
respectively. We also perform experiments for
En–to–Hi translation using benchmark new-
stest2014 as the test set. We achieve 0.96
and 1.29 BLEU improvements over subword
regularization (SR) (Kudo, 2018) and byte-
pair-encoding BPE (Sennrich et al., 2016b),
respectively. We also evaluate the perfor-
mance for En–to–De translation and achieve
1.05 and 1.07 BLEU improvements over SR
and BPE, respectively. For En–to–Cs, we
use the IWSLT17 testset, and the evaluation
yields 1.94 and 2.48 BLEU improvements over
SR and BPE, respectively. For En–to–Fr,
we evaluate over two datasets, IWSLT17 and
MTNT18. The MTNT is a noisy testset for
En-Fr translation. For the MTNT testset, our
model yields 1.55 and 2.18 BLEU improve-
ments over SR and BPE, respectively. For
IWSLT testset, En–to–Fr translation using our
approach achieves the 1.63 and 1.57 BLEU im-
provements over SR and BPE, respectively.

We also perform experiments by adding syn-
thetic noise in the training corpus (Vaibhav
et al., 2019) which is a noise handling tech-
nique. For En–to–Hi, En–to–De, En–to–Fr
and En–to–Cs, our proposed method achieves
0.96, 1.05, 1.63 and 1.94 BLEU improvement,
respectively, over the synthetic noise model
(Vaibhav et al., 2019). We perform statistical
significance tests20 (Koehn, 2004), and found
that the proposed model attains significant
performance gain with 95% confidence level
(with p=0.013 which is < 0.05). For En–to–
Fr over MTNT18 testset, we achieve only 0.14
BLEU improvement over the synthetic noise
model (Vaibhav et al., 2019) which is not a

20https://github.com/moses-smt/
mosesdecoder/blob/master/scripts\/analysis/
bootstrap-hypothesis-difference-significance.
pl
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En–to–Hi (newstest2014) 20% 25% 30% 40%
Subword Regularization (SR) 14.37 13.68 10.31 9.81
Proposed 14.84 14.54 12.86 11.27
En–to–De (newstest2014)
Subword Regularization (SR) 27.24 26.18 24.83 23.48
Proposed 28.53 27.34 26.08 25.22
En–to–Fr (IWSLT17) –
Subword Regularization (SR) 33.14 32.26 29.24 28.37
Proposed 34.45 33.29 31.07 30.35

Table 7: Performance evaluation in terms of BLEU
scores by increasing the % of noisy tokens

significant improvement.

7.1 Quantitative Analysis
We evaluate the performance of our approach
in the presence of varying amount of noisy to-
kens. We inject the noise (character drop and
character replacement) in 20%, 25%, 30% and
40% tokens in source input sentences for En-
Hi, En-De and En-Fr testsets. Table 7 shows
the change in the BLEU scores by increasing
the count of noisy tokens. As we increase the
number of noisy source tokens for three trans-
lation tasks, viz. En–to–Hi, En–to–De and En–
to–Fr, we observe a decrease in BLEU score in
both the models (proposed and SR). But our
proposed method preserves the robustness sig-
nificantly as compared to the SR model.

7.2 Human Evaluation
We perform the qualitative analysis of outputs
using human evaluation. We took 250 ran-
dom samples from English-Hindi review test
set. It is given to 3 language experts (post-
graduate in linguistics and have experiences
for the translation task) to rate the outputs on
the basis of adequacy and fluency and assign
the scores in the range of 0 to 4 (0: incorrect,
1: almost incorrect, 2: moderately correct, 3:
almost correct and 4: correct). Table 8 shows
the average ratings for the En-Hi translation.

We also calculate the inter-annotator-
agreement scores (IAA) using Fleiss’s Kappa.
The scores for “En–to–Hi (proposed)” trans-
lation are found to be 87.2 and 86.8 for ad-
equacy and fluency rating, respectively. The
“En–to–Hi(SR)” translation shows the scores
of 89.5 and 84.0 for adequacy and fluency, re-
spectively. We also present a few output sam-
ples and error analysis in the appendix A.

8 Conclusion
In this paper, we have developed a robust
NMT model for product review translation
that can handle noisy input text. Because of
the absence of an in-domain parallel corpus,
we introduce a parallel English-Hindi corpus
for product review domain. We crawl the user
reviews of electronic gadgets from e-commerce
sites written into English language. These are

Adequacy
Range: 0-4

Fluency
Range: 0-4

En–to–Hi (Proposed) 2.65 2.81
En–to–Hi (SR) 2.47 2.68
En–to–Hi (BPE) 2.37 2.61

Table 8: Human evaluation for English–to–Hindi
translation

pre-processed; passed through an in-house ju-
dicial domain NMT system; and a part of this
dataset is post-edited by the language experts.
It is also observed that product reviews which
are user generated content contain noisy to-
kens which are a challenge to handle in any
MT system. Due to the limitation of fixed vo-
cabulary size at training time, it is not possible
for the NMT models to see all the noisy vari-
ants of input tokens. We have integrated a to-
ken replacement approach during the inference
time. We trained a character based language
model which generates the vector representa-
tion of the tokens present in the source vocab-
ulary based on the characters present in that
word. The token replacement approach finds
the most similar token from the source vocab-
ulary for each noisy input token at inference
time to replace it with the correct token.

We perform experiments over a variety of
language pairs, such as En–to–Hi, En–to–De,
En–to–Fr and En–to–Cs. and using the pro-
posed approach, we achieve 35.09, 28.91, 34.68
and 14.52 BLEU points respectively. We also
observe the behaviour of the proposed method
by varying the % (20, 25, 30 and 40%) of
noisy tokens at the input side. The proposed
method significantly outperforms the baseline
in the presence of different quantities of noisy
tokens. Human evaluation shows that our
model achieves good fluency and adequacy lev-
els.
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A Comparing Output Samples and
Error Analysis

Table 9 shows some examples to illustrate the
performance of the proposed model. In ex-
ample A, we translate an English sentence
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A. En→Hi Source Names of other partiipatng lawmkers were to be released in coming days .

Reference सहभाѠगता करने वाले अन्य џवѠध - Ѡनमार्ताओं के नाम आने वाले ўदनों में जारҰ ўकए जाएगँे ।
(sahabhaagita karane vaale any vidhi - nirmaataon ke naam aane vaale dinon mein jaaree kie jaenge )

Output
(Subword Regularization)

आने वाले ўदनों में अन्य दलों के नाम जारҰ ўकए जाने थ।े
(aane vaale dinon mein any dalon ke naam jaaree kie jaane the)

Corrected
Source names of other participating lawmakers were to be released in coming days .
Output
(Proposed)

आगामी ўदनों में अन्य भाग लेने वाले џवѠधѠनमार्ता के नाम जारҰ ўकए जाने थ।े
(aagaamee dinon mein any bhaag lene vaale vidhinirmaata ke naam jaaree kie jaane the)

B. En→De Source the European Commission’s sixth report prsents very valuable conclusions .
Reference der Sechste Bericht der Europäischen Kommission bietet sehr wertvolle Schlußfolgerungen .
Output (Subword Regularization) der Sechste Bericht der Europäischen Kommission ist sehr wertvoll .
Corrected Source the European Commission &apos; s sixth report presents very valuable conclusions .
Output
(Proposed) der Sechste Bericht der Europäischen Kommission enthält sehr wertvolle Schlußfolgerungen .
C. En→Hi Source The new featurs of the phone lok nice.
Reference फोन के नए फҴचर अच्छे लगते हैं।

(phon ke nae pheechar achchhe lagate hain. )
Output
(Subword Regularization)

फोन के नए सौदे बहुत हҰ अच्छे थ।े
(phon ke nae saude bahut hee achchhe the)

Corrected
Source The new features of the phone lock nice.
Output
(Proposed)

फोन के नए फҴचर अच्छे से लॉक होते हैं।
(phon ke nae pheechar achchhe se lok hote hain.)

Table 9: Output samples for English→Hindi and English→German translation

into Hindi. The two tokens, partiipating and
lawmkers are noisy and appear as OOV candi-
dates for the trained NMT model. The SR
model is not able to recognize those tokens
and misses their translations in the output
sentence. Our proposed method of replacing
the tokens using character LM finds the two
most similar tokens participating and lawmak-
ers as the correct tokens and update the source
English sentence which results in the correct
Hindi sentence as the output. Similarly, in ex-
ample B, for English–to–German translation,
prsents appears as noisy as well as OOV to-
ken, which is eventually replaced by its correct
version presents in the proposed method.

Example C shows one limitation of the spell
correction method. There are two misspelled
tokens featurs and lok in the source sentence.
Using the proposed method, features and lock
tokens appear as the replaced correct tokens re-
spectively. features is the correct replacement
for featurs but lock is not the correct replace-
ment for lok. It should be look as the correct
token. But, lok, lock and look tokens contain
almost similar character combinations which
make them appear closer to each other in the
vector space. So our method may struggle
in case of very small length (character count)
noisy tokens.
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