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Abstract
We carry out a case study on the use of data
programming to create data to train classi-
fiers used for product moderation on a large
e-commerce platform. Data programming
is a recently-introduced technique that uses
human-defined rules to generate training data
sets without tedious item-by-item hand label-
ing. Our study investigates methods for allow-
ing product moderators to quickly modify the
rules given their knowledge of the domain and,
especially, of textual item descriptions. Our
results show promise that moderators can use
this approach to steer the training data, mak-
ing possible fast and close control of classifiers
that detect policy violations.

1 Introduction

Text classifiers play an important role in filtering
inappropriate products on e-commerce platforms.
Product moderators are dependent on classifiers
that have been trained on up-to-date labeled data
in order to keep pace with policy changes and new
instances of inappropriate products. For example,
Amazon had to take fast action to remove offensive
T-shirts during the 2020 US election (Bryant, 2020)
and overpriced items and fake cures during the
COVID-19 pandemic (BBC, 2020). In this paper,
we carry out a case study at a large e-commerce
platform. We investigate an approach that allows
moderators to rapidly steer the creation of labeled
training data, thereby enabling close control of
moderation classifiers.

Our approach makes use of a recently-introduced
technique called data programming (Ratner et al.,
2016), which generates classifier training data on
the basis of rules that have been specified by do-
main experts (platform moderators). Data program-
ming eliminates the need to individually hand-label
training data points. We propose a feedback loop
that selects subsets of data, called inspiration sets,
that are used by moderators as the basis for updat-
ing an initial or existing set of rules. We investigate

whether inspiration sets can be selected in an unsu-
pervised manner, i.e., without ground truth.

The contribution of our case study is insight into
how to support moderators in updating the rules
used by a data programming pipeline in a real-
world use scenario requiring fast control (i.e., im-
posing time constraints). Our study is carried out
in collaboration with professional moderators at
bol.com, a large European e-commerce company.
In contrast to our work, most papers on product
moderation, such as Arnold et al. (2016), do not ob-
viously take an inside perspective. Most previous
studies of data programming, such as Ehrenberg
et al. (2016), have looked at user control, but not at
fast control, i.e., the ability to update rules quickly
in order to steer the training data.

Because of the sensitive nature of the work of the
platform moderators, our case study is written with
a relatively high level of abstraction. We cannot
reveal the exact statistics of inappropriate items on
the platform. The rules formulated by the modera-
tors are largely based on keywords occurring in the
text of product descriptions, but it is not possible
to state them exactly. Nonetheless, we find that
we are able to report enough information to reveal
the potential of inspiration sets for fast control of
inappropriate products on e-commerce platforms.
This paper is based on a collaborative project with
bol.com. Further analysis and experimental results
are available in the resulting thesis (Winkler, 2020).

2 Related Work

Most work on product moderation (Martin et al.,
2018; Xu et al., 2019; Mackey and Kalyanam,
2017) focuses on products sold on social media.
In contrast, we study an e-commerce platform
from the inside. Like social media moderation, we
face the challenge of lexical variation of keywords,
cf. Chancellor et al. (2016).

Our study is related to work investigating appli-
cations of data programming to a specific problem.
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Such work includes examples from the medical do-
main (Callahan et al., 2019; Dutta and Saha, 2019;
Dutta et al., 2020; Fries et al., 2019; Saab et al.,
2019, 2020), multi-task learning (Ratner et al.,
2018, 2019a,b), information extraction (Ehren-
berg et al., 2016), and learning discourse struc-
ture (Badene et al., 2019). Like our work, such
work often adjusts the Snorkel framework (Ratner
et al., 2017) for the task at hand.

Previous work has proposed a variety of meth-
ods for giving users (who are in our case the prod-
uct moderators) control over classifiers by making
use of a pipeline that allows them to provide feed-
back about training data labels and classification
results. In WeSAL (Nashaat et al., 2018, 2020)
user feedback improves the labels that sets of rules
assign to data points. In contrast, our focus is on
feedback that allows moderators to improve the
rules directly. In this respect, our work is related
to DDLite (Ehrenberg et al., 2016), which was,
to our knowledge, the first to discuss how rules
in a data programming pipeline can be improved
using sampled data as feedback. Socratic Learn-
ing (Varma et al., 2017a,b) considered the issue of
users implicitly focusing on subsets of data when
they formulate rules, limiting the ability of the data
programming pipeline to generalize to data outside
of these subsets.

We are working under time-constrained condi-
tions. There are two constraints. First, our mod-
erators are given a limited amount of time to for-
mulate the initial rules. They formulate the rules
themselves based solely on their domain expertise
and experience, which allows them to work quickly.
In contrast, in work such as Ehrenberg et al. (2016)
and Ratner et al. (2018), users consult labeled data
to formulate the initial rules. Second, our modera-
tors have limited time to revise the initial rules. In
this step, they consult data in the form of inspiration
sets. Wu et al. (2018) investigate time constraints,
but focuses on supervised feedback, whereas we
also investigate unsupervised approaches.

We consider the work of Cohen-Wang et al.
(2019) to be the existing work closest to ours. This
work investigates intelligent ways of sampling data
points for rule improvement. Our inspiration sets
are based on these strategies. A key difference is
that Cohen-Wang et al. (2019) simulate their hu-
man experts and we work with real domain experts.

category train dev test
set set set

fur 7633 406 (69) 760 (113)
illegal wildlife 7426 312 (9) 627 (20)
magnetic balls 2316 340 (5) 688 (10)
weapon knives 1266 210 (17) 421 (28)
smoking-drug 1071 172 (10) 342 (21)
1-use plastic 7364 454 (124) 931 (250)

Table 1: Number of data points in our data sets. For
sets with ground truth, the number of points with the
positive label, i.e., “inappropriate”, is in parentheses.

3 Approach

In this section, we describe the data programming
pipeline and also our experiment with inspiration
sets, which investigates the potential for fast control
of training data for moderation classifiers.

3.1 Policy-based Monitoring Categories
The platform policy of the company we study has
five dimensions. It excludes products (1) that are
illegal (2) whose production or consumption causes
harm (3) that do not match customer expectations
(4) that technically fall outside of what the platform
can handle (5) that project hate or discrimination.
Each dimension contains concrete categories. For
example, under (2) there is a category (“single-use
plastic”), which contains single-use plastic cups,
straws, and cotton swabs that are excluded based
on European guidelines. Each of the categories is
monitored independently using a classifier, which
must detect not only the re-occurring items, but
also novel items that are in violation of the plat-
form policy. In this work, we select six typical cat-
egories to study: fur, illegal wildlife related, mag-
netic balls (small enough to be swallowed by chil-
dren), weapon-grade knives, smoking-drug-related,
and single-use plastic.

3.2 Data Programming
Figure 1 shows our data programming pipeline.
When moderating a product category, product mod-
erators first carry out a “scope” step that identifies
the products related to that category (cf. scoping
query). Then, they carry out a “scan” step that
identifies products that violate the policy. The goal
of our study is to investigate the usefulness of this
pipeline for quickly generating training data to train
a classifier that will support the product moderators
in carrying out the “scan” step, with a focus on
understanding the potential of inspiration sets.
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Figure 1: Top row: Our data programming pipeline. Bottom row (red box): Inspiration sets used for fast control.

Data programming (Ratner et al., 2016) is a
method that leverages multiple weak supervision
signals provided by people who are experts in
a domain. The signals take the form of rules,
expressed in the form of labeling functions (LFs).
Given a training data point, an LF either returns
a suggested label (0 for “appropriate” or 1 for
“inappropriate”) or abstains, meaning that it assigns
no label. In our study, LFs involve the content
of product metadata and keywords in the textual
descriptions of products, e.g., |IF brand
== ’brand123’ THEN inappropriate
ELSE abstain|. In practice most LFs return
only (0, abstain) or (1, abstain). The LFs are
applied to the data that was selected in the “scope”
step (cf. “Unlabeled data” in Figure 1) to generate
a label matrix in which each data point may have
multiple, contradictory labels.

In our study, moderators were asked to create
rules based on their knowledge of the product cate-
gories and their moderation experience. Note that
the same moderator was responsible for one cate-
gory throughout our experiment. They had a lim-
ited amount of time (60 min. per category). The
time limits in our study were determined in consul-
tation with bol.com’s product quality team to simu-
late real-world settings. This led to an initial set of
LFs for each category (number of LFs per category:
fur 14, illegal wildlife related 6, magnetic balls 5,
weapon-grade knives 5, smoking-drug-related 15,
single-use plastic 13).

The label matrix created by the rules is then
transformed into labeled data. Ratner et al. (2016)
demonstrate that provided a fixed number LFs, a

probabilistic labeling model is able to recover a
set of labels and corresponding probabilities that
can be used to train a classifier (cf. “Training data”
and “Classifier” in Figure 1). Snorkel (Ratner et al.,
2017) is the first end-to-end system that applies the
data programming paradigm. Our case study builds
on Snorkel. (More technical details of our setup
are in Appendix A.)

3.3 Inspiration Sets

We test three different ways of sampling data points
to create the inspiration sets consisting of products
(cf. Figure 1, bottom). These sets are shown to the
moderators to allow them to revise the rules.
Set 1: Abstain-based strategy Randomly drawn
from training data not yet covered by an LF.
Set 2: Disagreement-based strategy Randomly
drawn from training data on which LFs disagreed.
Set 3: Classifier-based strategy Development
data points with largest classifier error.
Set 1 and Set 2 are loosely based on strategies intro-
duced by Cohen-Wang et al. (2019). These strate-
gies are particularly interesting for a real-world
setting because they are unsupervised, meaning
that they are based on information included in the
label matrix and do not require ground truth or
classifier training. Set 3 is a supervised set. It pro-
vides product moderators with information about
errors that are made by classifiers. This strategy
is touched upon, but not implemented, by Cohen-
Wang et al. (2019). Recall that Cohen-Wang et al.
(2019) uses a simulated human expert, whereas in
our experiment, human domain experts inspect the
inspiration sets and revise the rules. We used a sim-



135

fur illegal magnetic knives smoking-drug single-use
wildlife balls related plastic

initial 0.80 0.02 0.08 0.03 0.31 0.57
Set 1 0.78 0.19 0.49 0.03 0.31 0.64
Set 2 0.78 0.00 0.65 0.03 0.36 0.57
Set 3 0.77 0.24 0.59 0.17 0.23 0.57

Table 2: Data quality results: Label model performance (F2 measure) on the test set.

ple logistic regression classifier for the supervision
of Set 3 (see Appendix A.3 for more details).

Each inspiration set contains the number of data
points available, up to a maximum of 100. The
moderators had a limited amount of time (30 min.
per set) to inspect the inspiration sets and add, re-
move, or change rules in their initial set of rules.
Note that in our setting, each inspiration set was
drawn once and not updated after the moderator
changed one rule.

4 Results and Discussion

We analyze how the inspiration sets impact the
quality of our data. Table 1 summarizes the data
that we use. The ground truth was created by our
domain experts. Table 2 presents our results in
terms of data quality. Results are reported using
the F2 measure due to the importance of recall in
our use case. Data points whose “inappropriate”
label is generated as having a probability > 0.5 are
considered positive. Note that scores in Table 2 do
not directly reflect the ultimate performance of the
classifier, which to a certain extent can leverage
data with low F2 scores.

Our results suggest two findings that have, to
our knowledge, not been previously documented.
First, professional content moderators do not nec-
essarily need labeled sample data to write rules
for a data programming pipeline, but instead come
quite far relying only on domain knowledge and
experience (cf. “initial” in Table 2). Second, when
revising their initial set of rules, moderators do not
necessarily need an inspiration set created using
supervision. Instead, a 30-min. session with an
unsupervised inspiration set (Set 1 or Set 2) can
improve data quality. The exception is fur where
F2 is already 0.8, and inspiration sets make the data
slightly worse. The category knives starts out with
extremely low quality data, and inspiration sets do
not help much, except for a small, but expensive
boost by Set 3, our supervised set. The moderator
had only basic experience with this category.

We also found that for most categories, a consid-
erable amount of training data (31-56%) received
only abstains (see Appendix B for more details).
This observation is consistent with previous work,
e.g., that of Cohen-Wang et al. (2019), which has
noted that LF sets rarely reach complete coverage.
In general, a small number of rules tend to cover a
large portion of the data.

The majority of rules had a low precision, and a
small number of rules had high recall. Possible rea-
sons are that product moderators tried not to miss
out on inappropriate products, or that they had set
of specific data points in mind during LF definition,
as suggested by Varma et al. (2017a). We also no-
ticed that moderators added and changed, but did
not delete rules. In fact, we only observed a single
case of a rule being deleted. More research is nec-
essary to understand if this reflects high confidence
in the initial choices, or a default thinking pattern,
as studied by Adams et al. (2021). Finally, we ob-
serve it is important not to assume that each newly
added rule yields improvement: rule interactions
are also important. A more detailed analysis of the
changes brought about by the inspiration sets for
two representative cases is included in Appendix C.

5 Conclusion and Outlook

Our case study has shown our data programming
pipeline can generate labeled data for moderation
classifiers in a fraction of the time needed for hand
labeling (90 min. vs. a week or more of effort).
We have seen that moderators can create effective
rules based on their domain knowledge and expe-
rience, plus a short exposure to an unsupervised
inspiration set. Labeling data by hand in order to
create supervised inspiration sets may not be worth
the effort. Our observations suggest that it is im-
portant that moderators not only write rules, but
also continue moderating so that they can gain ex-
pertise and also be able to update rules quickly in
response to changes in the domain, i.e., a new type
of offensive clothing items, as in Bryant (2020).
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We hope that our work will inspire research
on data programming in domains in which fast
response to inappropriate products or content is
needed. Future research could seek to understand
the ability of moderators to predict the interaction
of rules and why they seem hesitant to discard rules
once they have created them.
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A Technical details of our setup

A.1 Snorkel

The technical details of the setup we used are as
follows: we make use of the official implementa-
tion of the Snorkel system. This implementation
consolidates work from various publications (Rat-
ner et al., 2017, 2019a) even though the repository
name is “snorkel”. We used version 0.9.01. There,
the label model is optimized using Stochastic Gra-
dient Descent (SGD) on the matrix-completion for-
mulation as in (Ratner et al., 2019a) as opposed
to interleaving SGD and Gibbs sampling in (Rat-
ner et al., 2017). In general in data programming,
the label model needs two inputs: the dependency
structure of the LFs and the class balance of the

1https://github.com/snorkel-team/
snorkel/releases/tag/v0.9.0

dependent variable (i.e. p(Y )). By default, this im-
plementations assumes the LFs to be conditionally
independent and that the class balance is uniformly
distributed.

A.2 Gold labels

For each category of inappropriate items, the prod-
uct moderator that was specialized in that category
labeled the development, validation and test data.

A.3 Classifier

For each category of inappropriate items, we
trained a binary classifier. In line with the official
Snorkel introduction tutorial2, we utilized a simple
Logistic Regression classifier. We used categorical
cross-entropy loss and an Adam optimizer with a
learning rate of 0.01. Note that in this work, we
use the classifier for selecting the items in the in-
spiration Set 3. More details on the whole pipeline
can be found in (Winkler, 2020).

B Properties of the label matrix

In our experiments, inspiration sets inspired the
product moderators to adjust their initial set of rules.
We translated these rules into LFs in Python. Figure
2 illustrates the impact of the changes to the LFs
across all categories of inappropriate items. The
leftmost bar of each group represents the coverage
of the initial LF sets.

In general, we notice that inspiration sets have
an impact on the coverage of the LFs, but that
they fall far short from allowing us to achieve full
coverage. We also notice, however, that there is a
general trend towards inspiration sets increasing the
coverage, reflected by a decrease in the fraction of
the data set that is assigned 0 labels. This happened
in most categories with Set 1 and Set 3 and in half
of the categories with Set 2. The strongest coverage
increase happened using Set 1.

After the adjustments, for most categories, the
LFs within each set seemed to be more coordinated
with respect to the data points that they labeled.
This can be seen in the increase in the percentage
of each data set with multiple labels per sample.
However, note that overall, most data points that
received a label, received a label from only one LF.

2https://github.com/snorkel-team/
snorkel-tutorials/blob/
93fc77718b608c5709d4eb8b90b7de7683ba4c15/
spam/01_spam_tutorial.ipynb
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Figure 2: This figure shows the sizes of training data set fractions that received a certain number of labels per
sample. Results are shown for the all versions (initial or adjusted using an inspiration set: Set 1, Set 2 or Set 3) of
each monitor.

LF Index Change Polarity Coverage Overlaps Conflicts % gain in F2

0 A [1] 0.01 0.00 0.00 18.37
1 A [0] 0.04 0.02 0.00 1.96
2 A [0] 0.32 0.08 0.03 16.67
3 / [1] 0.08 0.04 0.03 -21.21
4 A [0] 0.08 0.03 0.01 0.00
5 A [0] 0.03 0.02 0.01 0.00
6 N [0] 0.11 0.04 0.01 1.96
7 N [1] 0.01 0.00 0.00 0.00

Table 3: This table contains the characteristics of the individual LFs for magnetic balls after they have been adjusted
with the inspiration Set 1.

C Individual rule characteristics

In the main paper, we mentioned several observa-
tions we made regarding the sets of rules that were
created by the professional moderators.

• A small number of rules tend to cover a large
portion of the data.

• Moderators added and changed, but did not
delete rules (except one rule upon one occa-
sion).

• We cannot not assume that each newly added
rule yields improvement.

We based these observations on characteristics that
we computed on the training and validation sets in
each category. The statistics of these training and
validation sets are provided in Table 5.

After translating the rules into LFs, we computed
the following characteristics:

• LF index: a running index of each rule (La-
beling Function) in the set.

• Change indicates whether the rules were ad-
justed (A), newly added (N) or not changed (/)
as a result of considering the inspiration set.

• Polarity: the polarity that the rule assigns to
the training set data points. If the value is [0],
then the rule either assigned “appropriate” or
abstained. If the value is [1], then the rule
either assigned “inappropriate” or abstained.
If the value is then the rule always abstained.

• Coverage: the fraction of the training set data
points to which the LF assigned a label (i.e.,
did not abstain).

• Overlaps: the fraction of the training set on
which the rule assigned a label and at least
one other rule did as well (i.e., the rule and at
least one other rule did not abstain).

• Conflicts: the fraction of the training set on
which the labels suggested by multiple rules
disagree.
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LF Index Change Polarity Coverage Overlaps Conflicts % gain in F2

0 / [1] 0.02 0.01 0.01 4.35
1 / [0] 0.06 0.04 0.01 0.00
2 / 0.00 0.00 0.00 0.00
3 / 0.00 0.00 0.00 0.00
4 / 0.00 0.00 0.00 0.00
5 A [0] 0.69 0.23 0.05 0.53
6 A [0] 0.14 0.13 0.00 -0.41
7 A [0] 0.01 0.01 0.00 0.00
8 / [0] 0.01 0.01 0.00 0.00
9 / [0] 0.01 0.00 0.00 0.00
10 / [1] 0.01 0.01 0.01 -0.36
11 / [0] 0.06 0.04 0.00 0.00
12 / [0] 0.00 0.00 0.00 0.00
13 A [1] 0.11 0.06 0.05 73.21
14 N [0] 0.00 0.00 0.00 0.00

Table 4: This table contains the characteristics of the individual LFs for single-use plastic after they have been
adjusted with the inspiration Set 1.

category training validation
set set

fur 7633 400 (55)
illegal wildlife related 7426 318 (10)
magnetic balls 2316 324 (7)
weapon-grade knives 1266 210 (18)
smoking-drug-related 1071 173 (12)
single-use plastic 7364 445 (118)

Table 5: Number of data points in our training and vali-
dation sets. These were the data sets on which we com-
puted the LF characteristics. For convenience, we re-
peat the sizes of the training data here. Note that the
validation sets are disjoint from the development and
test sets used in the main paper. For these validation
sets, the number of points with the positive label, i.e.,
“inappropriate”, is in parentheses.

• % gain in F2: the relative improvement in
the F2 score of the labeled data generated by
the label model contributed by the individual
rule.

Note that Polarity, Coverage, Rules, and Overlap
are all calculated on the training data set, and “%
gain in F2” is calculated on the validation set.

We chose two representative categories that show
the variation of the gain, and provide example anal-
yses for each. The category magnetic balls is in
Table 3 and single-use plastic is in Table 4. The
analysis uses the rules adjusted after consulting the
inspiration Set 1.


