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Abstract

This paper evaluates the performance of sev-
eral modern subword segmentation methods
in a low-resource neural machine translation
setting. We compare segmentations produced
by applying BPE at the token or sentence
level with morphologically-based segmenta-
tions from LMVR and MORSEL. We evalu-
ate translation tasks between English and each
of Nepali, Sinhala, and Kazakh, and predict
that using morphologically-based segmenta-
tion methods would lead to better performance
in this setting. However, comparing to BPE,
we find that no consistent and reliable differ-
ences emerge between the segmentation meth-
ods. While morphologically-based methods
outperform BPE in a few cases, what performs
best tends to vary across tasks, and the perfor-
mance of segmentation methods is often statis-
tically indistinguishable.

1 Introduction

Despite the advances of neural machine transla-
tion (NMT), building effective translation systems
for lower-resourced and morphologically rich lan-
guages remains a challenging process. The lack of
large training data sets tends to lead to problems
of vocabulary sparsity, a problem exacerbated by
the combinatorial explosion of permissible surface
forms commonly encountered when working with
morphologically rich languages.

Current NMT systems typically operate at the
level of subwords. Most commonly, these systems
achieve vocabulary reduction by decomposing to-
kens into character sequences constructed by maxi-
mizing an information-theoretic compression crite-
rion. The most widely used subword segmentation
method is byte pair encoding, originally invented
in the data compression literature by Gage (1994),
and introduced to the MT community by Sennrich
et al. (2016). Another approach to open vocabulary

NMT has been to compose characters or character
n-grams to form word representations (Ataman and
Federico, 2018a; Ling et al., 2015).

As BPE has become mainstream, the question
of whether segmenting words in a linguistically-
informed fashion provides a benefit remains open.
Intuitively, the translation task may be easier when
using subwords that contain maximal linguistic
signal, as opposed to heuristically derived units
based on data compression. The greatest benefit
may come in low-resource settings, where the train-
ing data is small and biases toward morphological
structure may lead to more reusable units.

We seek to address this question by exploring the
usefulness of linguistically-motivated subword seg-
mentation methods in NMT, as measured against
a BPE baseline. Specifically, we investigate the
effectiveness of morphology-based segmentation
algorithms of Ataman et al. (2017) and Lignos
(2010) as alternatives to BPE at the word or sen-
tence level and find that they do not lead to reliable
improvements under our experimental conditions.
We perform our evaluation using both BLEU (Pap-
ineni et al., 2002) and CHRF3 (Popović, 2015). In
our low-resource NMT setting, all these methods
provide comparable results.

The contribution of this work is that it provides
insights into the performance of these segmentation
methods using a thorough experimental paradigm
in a highly replicable environment. We evaluate
without the many possible confounds related to
back-translation and other processes used in state-
of-the-art NMT systems, focusing on the perfor-
mance of a straightforward Transformer-based sys-
tem. To analyze the performance differences be-
tween the various segmentation strategies, we uti-
lize a Bayesian linear model as well as nonparamet-
ric hypothesis tests.
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Translation task Split Sentences Tokens (EN) Tokens (non-EN)

NE↔ EN Train 563,947 4,483,440 4,200,818
SI↔ EN Train 646,781 4,837,496 4,180,520
KK↔ EN Train (120k) 124,770 379,546 319,484
KK↔ EN Train (220k) 222,424 1,717,414 1,365,605
NE↔ EN Dev 2,559 46,267 37,576
SI↔ EN Dev 2,898 53,471 48,659
KK↔ EN Dev 2,066 45,975 37,258
NE↔ EN Test 2,835 51,455 43,802
SI↔ EN Test 2,766 50,973 46,318
KK→ EN Test 1,000 20,376 15,943
EN→ KK Test 998 24,074 19,141

Table 1: Number of sentences in raw corpora. The 120k and 220k training conditions for KK correspond to training
KK↔EN models with/without an additional crawled corpus. The test sets for KK→EN and EN→KK are different
from each other and mirror the released WMT19 data.

2 Related work

Attempts to create unsupervised, morphologically-
aware segmentations have often been derived from
the Morfessor family of morphological segmenta-
tion tools (Virpioja et al., 2013). In addition to
extensions of Morfessor, such as Cognate Morfes-
sor (Grönroos et al., 2018), Ataman et al. (2017)
and Ataman and Federico (2018b) introduced the
LMVR model, derived from Morfessor FlatCat
(Grönroos et al., 2014), and applied it to NMT
tasks on Arabic, Czech, German, Italian, Turk-
ish and English, noting that LMVR outperforms
a BPE baseline in CHRF3 and BLEU. Contrary
to their results, however, Toral et al. (2019) find
that using LMVR yielded mixed results: on a
Kazakh-English translation task the authors ob-
served marginal BLEU improvements over BPE,
whereas for English-Kazakh, the authors reported
LMVR to perform marginally worse than BPE in
terms of CHRF3.

There have also been efforts to combine BPE
with linguistically motivated approaches. For in-
stance, Huck et al. (2017) propose to combine BPE
with various linguistic heuristics such as prefix,
suffix, and compound splitting. The authors work
with English-German and German-English tasks,
and observe performance improvements of approx-
imately 0.5 BLEU compared to a BPE-only base-
line. As another example, Weller-Di Marco and
Fraser (2020) combine BPE with a full morpho-
logical analysis on the source and target sides of
an English-German translation task, and report per-
formance improvements exceeding 1 BLEU point

over a BPE-only baseline.
Finally, even though Sennrich et al. (2016) origi-

nally only used the NMT training set to train their
segmentation model, others have recently found
benefit in adding monolingual data to the process.
In particular, Scherrer et al. (2020) used both Sen-
tencePiece and Morfessor as segmentation models
on an Upper Sorbian–German translation task and
found a monotonic increase in BLEU when the seg-
mentation model was trained with additional data,
while at the same time keeping the NMT training
data constant.

3 Experiments

To investigate the effect of subword segmentation
algorithms on NMT performance, we train trans-
lation models using the Transformer architecture
of Vaswani et al. (2017). We base our work on two
recent datasets: FLoRes (Guzmán et al., 2019), and
select languages from the WMT 2019 Shared Task
on News Translation (Barrault et al., 2019). Corpus
statistics for all corpora can be found in Table 1.

The FLoRes dataset consists of two language
pairs, English-Nepali and English-Sinhala. To
add another lower-resourced language, we use the
Kazakh-English translation data from WMT19. In
terms of morphological typology, both Nepali and
Sinhala are agglutinative languages (Prasain, 2011;
Priyanga et al., 2017), as is Kazakh (Kessikbayeva
and Cicekli, 2014).

We conduct two sets of experiments on Kazakh
to investigate how the amount of training data
influences our results: first, we train only on
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Segmentation Sentence

Original The nation slowly started being centralized and during
SentencePiece the n ation sl ow ly start ed being cent ral ized and d ur ing
Subword-NMT the n@@ ation s@@ low@@ ly star@@ ted being cen@@ tr@@ ali@@ z@@ ed and d@@ ur@@ ing
LMVR the nation s +low +ly st +ar +ted be +ing c +ent +ral +ized and d +ur +ing
MORSEL the nation s@@ low +ly start +ed being cen@@ tr@@ ali@@ z +ed and du@@ r +ing

Table 2: Examples of segmentation strategies and tokenization.

the WikiTitles and News Commentary corpora
(train120k), followed by another set of exper-
iments (train220k) where we include the web
crawl corpus prepared by Bagdat Myrzakhmetov
of Nazarbayev University. We also conducted ex-
periments with Gujarati data from WMT19, but
BLEU scores were too low to allow for meaning-
ful analysis. For our models, we generally follow
the architecture and hyperparameter choices of the
FLoRes Transformer baseline, except for setting
clip norm to 0.1 and enabling FP16 training.

Despite the widespread use of auxiliary tech-
niques such as back-translation we deliberately re-
frain from employing such techniques in this work.
This is done to best isolate the effect of varying the
subword segmentation algorithm, and to avoid the
complexity of disentangling it from the effect of
other factors. It should be noted, however, that such
techniques were highly prevalent among of systems
submitted to the KK↔EN WMT19 News Transla-
tion Shared Task: 64% used back-translation, 61%
used ensembling, and 57% employed extensive cor-
pus filtering (Barrault et al., 2019).

3.1 Subword segmentation algorithms

Below we describe our hyperparameter settings
for the various subword segmentation algorithms.
Sinhala and Nepali are tokenized using the Indic
NLP tokenizer (Kunchukuttan, 2020), whereas for
English and Kazakh we use the Moses tokenizer
(Koehn et al., 2007). Example segmentations from
actual data can be seen in Table 2.

The segmentation methods we evaluate learn
their subword vocabularies from frequency distri-
butions of tokenized text. The exception to this is
SentencePiece, whose subword units are learned
from sentences, including whitespace. In the case
of English and Kazakh, these sentences are unto-
kenized whereas for Nepali and Sinhala, prepro-
cessing with the Indic NLP tokenizer is applied
following the approach of Guzmán et al. (2019).

3.1.1 Subword-NMT and SentencePiece

As our baseline subword segmentation algorithm,
we use the BPE implementation from Subword-
NMT1. Throughout our experiments we use a joint
vocabulary of the source and target and set the
number of requested symbols to 5,000. For Senten-
cePiece, we use the default BPE implementation2

with a joint vocabulary size of 5,000 words. These
choices are motivated by the general observation by
Sennrich and Zhang (2019) that lowering BPE size
improves translation quality in ultra-low resource
conditions, and the specific value of 5,000 was pre-
viously used by Guzmán et al. (2019). The same
small vocabulary size has been used elsewhere in
the low-resource NMT literature, for instance by
Roest et al. (2020) while training NMT systems
for Inuktitut. We also conducted a hyperparameter
sweep for 2,500, 5,000, 7,500 and 10,000 merge
operations, but noticed no improvement over the
choice of 5,000 motivated by prior work.

3.1.2 LMVR

For LMVR (Ataman et al., 2017), we utilize
slightly modified versions of the sample scripts
from the author’s Github repository3. Our main
modification is tuning the corpusweight hyper-
parameter in the Morfessor Baseline (Virpioja et al.,
2013) model used to seed the LMVR model. Tun-
ing is performed by maximizing the F1 score for
segmenting the English side of the training data,
using the English word lists from the Morpho Chal-
lenge 2010 shared task (Kurimo et al., 2010) as
gold standard segmentations. After tuning the Mor-
fessor Baseline model, we train a separate LMVR
model for each language in a language pair using a
vocabulary size parameter of 2,500 per language.

1https://github.com/rsennrich/
subword-nmt

2https://github.com/google/
sentencepiece

3https://github.com/d-ataman/lmvr

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/d-ataman/lmvr
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3.1.3 MORSEL
MORSEL (Lignos, 2010) provides linguistically-
motivated unsupervised morphological analysis
that has been shown to work effectively on small
datasets (Chan and Lignos, 2010). While it
provides derivations of morphologically complex
forms via a combination of stems and affix rules,
we modified it to provide a segmentation and then
postprocessed its output to apply BPE to the stems
to yield a limited-size vocabulary.

For example, on the English side of the NE-EN
training data, MORSEL analyzes the word alge-
braic as resulting from the stem algebra being
combined with the suffix rule +ic. A BPE model
is trained on all of the stems in MORSEL’s anal-
ysis, and when that is applied to the stem, it is
segmented as al@@ ge@@ br@@ a. The stem
and suffix are combined using a special plus char-
acter to denote suffixation, so the final segmen-
tation is al@@ ge@@ br@@ a +ic. Tuning is
performed as with LMVR, using the English word
lists from the Morpho Challenge 2010 shared task
(Kurimo et al., 2010) as a reference. We adjust
the number of BPE units learned from the stems
to keep the total per-language vocabulary below
2,500.

4 Results and analysis

Our experimental results can be seen in Table 3. All
BLEU scores were computed using sacrebleu,
and all CHRF3 scores using nltk. Each row con-
sists of the mean and standard deviation computed
across 5 random seeds for each configuration. We
also plot the raw results in Figure 1. Table 4 gives
counts for the number of times each segmentation
approach was the top-performing one or statisti-
cally indistinguishable from it. Table 7 in the
appendix gives p-values for all comparisons per-
formed.

Overall, based on Tables 3 and 4, no segmenta-
tion method seems to emerge as the clear winner
across translation tasks, although BPE applied at
the token (Subword-NMT) or sentence (Sentence-
Piece) level performs well consistently. Subword-
NMT or SentencePiece perform best in 12 out of 16
cases (counting BLEU and CHRF3 for each trans-
lation task), while morphology-based methods rank
best in 4 out of 16 cases. In particular, we note that
morphology-based methods seem to achieve or tie
the best BLEU performance for translation tasks
involving SI, and best CHRF3 performance for

Segm. method BLEU CHRF3

EN-KK (train120k)

LMVR 1.00 ± 0.12 21.98 ± 0.41
MORSEL 0.94 ± 0.11 21.24 ± 0.89
SentencePiece 1.04 ± 0.09 21.48 ± 0.47
Subword-NMT 1.32 ± 0.08 22.12 ± 0.28

EN-KK (train220k)

LMVR 1.82 ± 0.13 22.74 ± 0.84
MORSEL 2.06 ± 0.11 22.88 ± 0.40
SentencePiece 2.18 ± 0.08 22.78 ± 0.43
Subword-NMT 1.94 ± 0.22 22.62 ± 0.88

KK-EN (train120k)

LMVR 1.70 ± 0.07 23.72 ± 0.44
MORSEL 2.62 ± 0.08 26.26 ± 0.36
SentencePiece 2.34 ± 0.21 24.64 ± 0.81
Subword-NMT 3.14 ± 0.18 25.92 ± 0.54

KK-EN (train220k)

LMVR 9.42 ± 0.26 33.88 ± 0.76
MORSEL 10.44 ± 0.48 34.58 ± 0.88
SentencePiece 10.02 ± 0.29 33.50 ± 0.54
Subword-NMT 10.68 ± 0.34 35.52 ± 0.41

EN-NE

LMVR 4.32 ± 0.04 31.00 ± 0.29
MORSEL 4.38 ± 0.16 31.28 ± 0.47
SentencePiece 4.58 ± 0.15 31.36 ± 0.35
Subword-NMT 4.42 ± 0.16 30.96 ± 0.34

NE-EN

LMVR 7.84 ± 0.11 34.10 ± 0.16
MORSEL 5.30 ± 0.30 28.18 ± 0.97
SentencePiece 8.42 ± 0.23 34.40 ± 0.73
Subword-NMT 8.46 ± 0.15 34.18 ± 0.13

EN-SI

LMVR 1.44 ± 0.32 28.22 ± 0.30
MORSEL 1.12 ± 0.13 27.44 ± 0.34
SentencePiece 1.08 ± 0.31 27.56 ± 0.43
Subword-NMT 0.88 ± 0.13 26.78 ± 0.51

SI-EN

LMVR 7.24 ± 0.22 32.16 ± 0.63
MORSEL 7.78 ± 0.16 34.32 ± 0.30
SentencePiece 7.52 ± 0.08 33.58 ± 0.43
Subword-NMT 7.76 ± 0.25 34.38 ± 0.38

Table 3: Mean and standard deviation of BLEU and
CHRF3 across translation tasks and segmentation meth-
ods. Underlined values represent the highest mean
scores. Bolded values are not significantly different
(p > 0.05) than the highest score as determined by
Dunn’s test.

KK-EN with smaller training data (train120k)
as well as EN-SI. However, when using LMVR, we
fail to find the significant gains in BLEU compared
to BPE reported by Ataman et al. (2017).

Comparing our results to Guzmán et al. (2019),
we note that the scores are similar, although not di-
rectly comparable as we report lowercased BLEU
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Figure 1: CHRF3 vs. BLEU with different translation tasks indicated by color and segmentation by marker shape.

Segmentation method BLEU CHRF3

Subword-NMT 6 6
SentencePiece 6 6
MORSEL 6 6
LMVR 1 5

Table 4: Number of times each segmentation method
was or tied with the best-performing method under
each metric, counted across all tasks.

scores.4 They report EN-NE/NE-EN baseline
BLEU scores of 4.3 and 7.6 using a single random
seed, which are in line with our results in Table 3.
For EN-SI/SI-EN, the authors report 1.2 and 7.2
BLEU, which likewise matches our findings. Even
though our scores are low overall, they are as low as
is to be expected using this approach, size of data,
and languages. In order to compare our results to
WMT19 participant systems, it is only meaningful
to compare our system to baseline systems due to
the widespread use of auxiliary training techniques,
such as back-translation. For instance, Casas et al.
(2019) report baseline NMT scores of 2.32 on KK-
EN and 1.42 on EN-KK, which are in line with
our MORSEL and SentencePiece results on KK-
EN, and Subword-NMT results on EN-KK in the
train120k condition.

4.1 Modeling BLEU and CHRF3
Based on Figure 1 and Tables 3 and 4, the BLEU
and CHRF3 scores vary with both the translation
task and segmentation method. Intuitively, the

4We lowercased all data in preprocessing because
MORSEL and Morfessor, which LMVR is derived from, are
designed to operate on lowercase inputs.

Pairwise comparison τ (BLEU) τ (CHRF3)

SentencePiece - Subword-NMT -0.05 ± 0.08 -0.07 ± 0.20
MORSEL - Subword-NMT -0.12 ± 0.07 0.02 ± 0.18
LMVR - Subword-NMT -0.26 ± 0.06 -0.19 ± 0.21

Table 5: Posterior means and standard deviations of
τm− τSubword−NMT (pairwise comparison with BPE)
under the BLEU and CHRF3 models. Values are
rounded to two decimal places.

scores seem to cluster around a certain range for
each translation task, and are perturbed slightly de-
pending on the choice of segmentation method. To
better disentangle the influence of these factors, we
fit a Bayesian linear model to the experimental data,
treating the final BLEU/CHRF3 score as a sum of a
“translation task effect” η, a “segmentation method
effect” τ , and a translation task-specific noise term
ε.5 The η and ε terms are estimated for each of the
eight translation tasks (e.g. SI-EN and EN-SI are
estimated separately), and τ is estimated for each of
the four segmentation methods using results from
all translation tasks.

To explicitly compare SentencePiece, LMVR
and MORSEL to the Subword-NMT baseline, we
also model the pairwise differences between each
method’s τ -term and that of Subword-NMT. The
posterior inferences for these quantities can be
seen in Table 5 and are plotted in the appendix.
For BLEU, the differences for LMVR are sev-
eral standard deviations below 0, suggesting that it
performs worse than the Subword-NMT baseline

5In the appendix, Section A gives details of our model, and
Table 6 gives the point estimates of the posterior mean and
standard deviation for η and τ .
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when accounting for all translation tasks. Similarly,
MORSEL is almost 2 standard deviations away
from 0, though its posterior interval does cover 0.
In both cases, the effect size is small, with a mean
of -0.12 and -0.26 points of BLEU for MORSEL
and LMVR, respectively. The reliability of this
difference also disappears for LMVR under the
CHRF3 model, where no segmentation method’s
posterior mean is several standard deviations away
from 0.

We hypothesize that this greater discrimination
among methods when using BLEU may origi-
nate from the differences between how BLEU and
CHRF3 operate. Since CHRF3 is a character-level
metric, it is less prone than BLEU to penalizing a
given translation due to subword outputs that are
almost correct. For instance, consider output of
do@@ gs → dogs with dog as the reference;
while CHRF3 awards credit for this as a partial
match, BLEU treats it as entirely incorrect. This
further underscores our observation that segmenta-
tion methods perform inconsistently across experi-
mental conditions.

5 Conclusion and future work

Contrary to our hypothesis about the usefulness
of morphology-aware segmentation, we see no
consistent advantage, and possibly a small dis-
advantage, to using LMVR or MORSEL in this
resource-constrained setting. By and large, our
experiments and modeling show that no segmen-
tation approach consistently achieves the best
BLEU/CHRF3 across all translation tasks. BPE
remains a good default segmentation strategy, but
it is possible that LMVR, MORSEL, or similar sys-
tems may show larger performance advantages for
languages with specific morphological structures.

Consequently, we believe further work is needed
to better understand when morphology-aware meth-
ods are most effective and to develop methods that
provide a consistent advantage over BPE. One such
avenue of future work would be to broaden our
analysis to more languages and include languages
that are higher-resourced but morphologically rich
and as well as ones that are lower-resourced but
morphologically poor. Ortega et al. (2021), which
we encountered during preparation of the final ver-
sion of this paper, began to address these questions
by comparing Morfessor with BPE and their own
BPE variant on Finnish, Quechua and Spanish.

An alternative approach which we intend to pur-

sue in future work is experimenting with supervised
morphological segmenters or analyzers that can
be efficiently developed even in lower-resourced
settings. Incorporating such “gold standard” seg-
mentations may make it clearer whether the unsu-
pervised morphological segmenters are capturing
linguistically-relevant structure.

Finally, there is the question of whether BPE
can approximate a general representation for a lan-
guage instead of converging on a corpus-specific
set of subwords. To test this, one can add mono-
lingual data and train the BPE segmentation on
that larger data set. Ideally the new, “enriched”
segmentations would depend less on the specific
vocabulary of the training corpus. As noted above,
Scherrer et al. (2020) observed this approach to
be helpful in terms of BLEU. However, it remains
unknown why the subwords derived from a larger
corpus perform better, and whether better identifi-
cation of morphological structure could be respon-
sible.

We hope that this work and these ideas will cat-
alyze further research, and that efficient methods
for translating to and from lower-resourced lan-
guages can be developed as a result.
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A Bayesian Linear Model Details

Mathematically, our model can be expressed as:

φlm = ηl + τm + εl (1)

where φlm ∈ {BLEU, CHRF3}, ηl and τm repre-
sent the “translation task effect” and “segmentation
method effect,” and εl is a translation task-specific
variance term.

To initialize our Bayesian linear model from
Equation 1, we set the following priors. For the
BLEU model, ηl ∼ N (4, 3) and τm ∼ N (0, 1).

Segmentation method effect τ (BLEU) τ (CHRF3)

LMVR -0.09 ± 0.47 0.41 ± 0.50
MORSEL 0.05 ± 0.47 0.63 ± 0.50
SentencePiece 0.12 ± 0.47 0.53 ± 0.50
Subword-NMT 0.17 ± 0.47 0.60 ± 0.50

Pairwise comparison τ (BLEU) τ (CHRF3)

SentencePiece - Subword-NMT -0.05 ± 0.08 -0.07 ± 0.20
LMVR - Subword-NMT -0.26 ± 0.06 -0.19 ± 0.21
MORSEL - Subword-NMT -0.12 ± 0.07 0.02 ± 0.18

Translation task effect η (BLEU) η (CHRF3)

EN-KK (train120k) 1.01 ± 0.47 21.16 ± 0.52
EN-KK (train220k) 1.94 ± 0.47 22.21 ± 0.51
EN-NE 4.36 ± 0.47 30.60 ± 0.50
EN-SI 1.07 ± 0.47 26.95 ± 0.52
KK-EN (train120k) 2.39 ± 0.48 24.58 ± 0.56
KK-EN (train220k) 10.07 ± 0.48 33.81 ± 0.54
NE-EN 7.41 ± 0.56 32.02 ± 0.82
SI-EN 7.51 ± 0.47 33.05 ± 0.54

Table 6: Posterior means and standard deviations for τ
and η under the BLEU and CHRF3 models.

For the CHRF3 model, ηl ∼ N (15, 7) and τm ∼
N (0, 1). The priors are the same regardless of
translation task or segmentation method. For our
noise terms, we use a εl ∼ HalfCauchy(5) prior in
all models. Our rationale for these priors is that ηl
should place most of its probability mass within
the observed range of BLEU/CHRF3, whereas τm
should, a priori, take on positive and negative val-
ues with equal probability, reflecting a lack of prior
information. All models are fit using PyMC3, and
MCMC posterior inference performed using the
No-U-Turn Sampler.

All posterior means for η are close to the average
BLEU/CHRF3 scores per translation task observed
in Table 3, and fall between 1.01 and 10.07 for the
BLEU model, and 21.16 and 33.81 for the CHRF3
model. In contrast, the posterior means for τ are
universally small: -0.09, 0.05, 0.12, and 0.17 for
LMVR, MORSEL, SentencePiece and Subword-
NMT, respectively, with a posterior standard de-
viation of 0.47. The τ -terms under the CHRF3
model exhibit a similar pattern: 0.41, 0.63, 0.53,
0.60, with a posterior standard deviation of 0.50.
Compared to the posterior standard deviation, as
well as translation task effects η, the τ -terms are
practically 0. This, in conjunction with our analy-
sis using Dunn’s test, suggests that there is not a
segmentation method that consistently works best
across translation tasks.

Figures 2 and 3 show posterior predictive dis-
tributions for the BLEU and CHRF3 models. Fig-
ure 4 shows the posterior distribution of pairwise
differences between each of the other segmentation
methods and Subword-NMT.
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Figure 2: Posterior predictive distribution of BLEU under the Bayesian linear model.

Figure 3: Posterior predictive distribution of CHRF3 under the Bayesian linear model.
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Figure 4: Posterior distribution of pairwise differences τm − τSubword-NMT in the BLEU model (left) and CHRF3
model (right). Note: m ∈ {SentencePiece, LMVR, MORSEL}
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Language pair Segmentation method p-value (BLEU) p-value (CHRF3)

EN-NE LMVR 0.014 0.071
EN-NE MORSEL 0.057 0.466
EN-NE SentencePiece 1.000 1.000
EN-NE Subword-NMT 0.137 0.046

NE-EN LMVR 0.036 0.405
NE-EN MORSEL 0.001 0.002
NE-EN SentencePiece 0.872 1.000
NE-EN Subword-NMT 1.000 0.767

EN-SI LMVR 1.000 1.000
EN-SI MORSEL 0.246 0.036
EN-SI SentencePiece 0.071 0.091
EN-SI Subword-NMT 0.003 0.000

SI-EN LMVR 0.002 0.001
SI-EN MORSEL 1.000 0.851
SI-EN SentencePiece 0.080 0.057
SI-EN Subword-NMT 0.850 1.000

KK-EN (train220k) LMVR 0.001 0.009
KK-EN (train220k) MORSEL 0.592 0.149
KK-EN (train220k) SentencePiece 0.069 0.002
KK-EN (train220k) Subword-NMT 1.000 1.000

EN-KK (train220k) LMVR 0.002 0.788
EN-KK (train220k) MORSEL 0.216 0.768
EN-KK (train220k) SentencePiece 1.000 1.000
EN-KK (train220k) Subword-NMT 0.037 0.893

KK-EN (train120k) LMVR 0.000 0.001
KK-EN (train120k) MORSEL 0.140 1.000
KK-EN (train120k) SentencePiece 0.011 0.026
KK-EN (train120k) Subword-NMT 1.000 0.611

EN-KK (train120k) LMVR 0.008 0.872
EN-KK (train120k) MORSEL 0.001 0.068
EN-KK (train120k) SentencePiece 0.032 0.096
EN-KK (train120k) Subword-NMT 1.000 1.000

Table 7: Dunn’s test p-values for BLEU and CHRF3. Boldface indicates statistical significance at the α = 0.05
level.


