
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 91–104
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

91

BERxiT: Early Exiting for BERT with
Better Fine-Tuning and Extension to Regression

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin
David R. Cheriton School of Computer Science, University of Waterloo

Vector Institute for Artificial Intelligence

{ji.xin,r33tang,yaoliang.yu,jimmylin}@uwaterloo.ca

Abstract

The slow speed of BERT has motivated much
research on accelerating its inference, and
the early exiting idea has been proposed to
make trade-offs between model quality and
efficiency. This paper aims to address two
weaknesses of previous work: (1) existing
fine-tuning strategies for early exiting models
fail to take full advantage of BERT; (2) meth-
ods to make exiting decisions are limited to
classification tasks. We propose a more ad-
vanced fine-tuning strategy and a learning-to-
exit module that extends early exiting to tasks
other than classification. Experiments demon-
strate improved early exiting for BERT, with
better trade-offs obtained by the proposed fine-
tuning strategy, successful application to re-
gression tasks, and the possibility to combine
it with other acceleration methods. Source
code can be found at https://github.com/
castorini/berxit.

1 Introduction

Large-scale pre-trained language models such as
BERT (Devlin et al., 2019) have brought the nat-
ural language processing (NLP) community large
performance gain but at the cost of heavy com-
putational burden. While pre-trained models are
available online and fine-tuning is typically done
without a strict time budget, inference poses a much
lower latency tolerance, and the slow inference
speed of these models can impede easy deployment.
It becomes even more difficult when inference has
to be done on edge devices due to limited network
capabilities or privacy concerns.

Early exiting (Schwartz et al., 2020; Xin et al.,
2020a; Liu et al., 2020) has been proposed to ac-
celerate the inference of BERT and models with
similar architecture, i.e., those comprising multi-
ple transformer layers (Vaswani et al., 2017) with
a classifier at the top. Instead of using only one

⋮ ⋮

Transformer 1 Classifier 1 Confidence / LTE Exit

Continue

Transformer 2 Classifier 2 Confidence / LTE Exit

Continue

Transformer 𝑛 Classifier 𝑛 Exit

Input

Figure 1: Multi-output structure of early exiting BERT.

classifier, additional classifiers are attached to each
transformer layer (see Figure 1), and the entire
model is fine-tuned together. At inference time, the
sample can perform early exiting through one of
the intermediate classifiers.

While existing early exiting papers provide
promising quality–efficiency trade-offs, improve-
ments are necessary for two important components:
fine-tuning strategies and exiting decision making.
In these papers, fine-tuning strategies are relatively
simple and fail to take full advantage of the pre-
trained model’s effectiveness; we propose a novel
fine-tuning strategy, Alternating, for this multi-
output model. Moreover, previous work makes
exiting decisions based on the confidence of output
probability distributions, and is hence only appli-
cable to classification tasks; we extend it to other
tasks by proposing the learning-to-exit idea. With
carefully designed fine-tuning strategies and meth-
ods for making exiting decisions, the model can
achieve better quality–efficiency trade-offs and can
be extended to regression tasks.

We refer to our proposed ideas collectively as
BERxiT (BERT+exit), and apply it to Muppets1

including BERT, RoBERTa (Liu et al., 2019), and
ALBERT (Lan et al., 2020); we also apply it on
top of another BERT acceleration method, Distil-
BERT (Sanh et al., 2019). We conduct experiments

1BERT and his friends.

https://github.com/castorini/berxit
https://github.com/castorini/berxit

92

on datasets including classification and regression
tasks, and show that our method can save up to 70%
of inference time with minimal quality degradation.

Our contributions include the following: (1) an
effective fine-tuning method Alternating; (2) the
learning-to-exit idea that extends early exiting to
tasks other than classification; (3) extensive ex-
periments that show the effectiveness of our ideas
and the successful combination of early exiting
with other BERT acceleration methods; (4) addi-
tional experiments that provide insight into the in-
ner mechanism of pre-trained models.

2 Related Work

BERT (Devlin et al., 2019) is a pre-trained multi-
layer transformer (Vaswani et al., 2017) model.
RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020) are variants of BERT with almost
identical model architectures but different training
methods and parameter sharing strategies. In our
paper, we refer to these transformer-based models
as Muppets, and apply our method on them.

In the general deep learning context, there are
a number of well-explored methods to accelerate
model inference. Pruning (Han et al., 2015; Fan
et al., 2020; Gordon et al., 2020) removes unim-
portant parts of the neural model, from individual
weights to layers and blocks. Quantization (Lin
et al., 2016; Shen et al., 2020) reduces the number
of bits needed to operate a neural model and to store
its weights. Distillation (Hinton et al., 2015; Jiao
et al., 2020) transfers knowledge from large teacher
models to small student models. These meth-
ods typically require pre-training Muppets from
scratch2 and produce only one small model with
a predetermined target size. Early exiting requires
only fine-tuning and also produces a series of small
models, from which the user can choose flexibly. It
extends the idea of Adaptive Computation (Graves,
2016) for recurrent neural networks, and is also
closely related to BranchyNet (Teerapittayanon
et al., 2016), Multi-Scaled DenseNet (Huang et al.,
2018), and Slimmable Network (Yu et al., 2019).

Early exiting for Muppets has been explored by
RTJ3 (Schwartz et al., 2020), DeeBERT (Xin et al.,
2020a,b), and FastBERT (Liu et al., 2020). Despite
their promising results, there is still room for im-

2In distillation, there is typically a general distillation that
uses the large-scale pre-training corpus and is time consum-
ing (Jiao et al., 2020).

3Short for Right Tool for the Job—the paper does not
provide a concise name for the method.

provement regarding the fine-tuning strategies of
RTJ and DeeBERT. FastBERT, on the other hand,
uses self-distillation (Zhang et al., 2019; Phuong
and Lampert, 2019) for fine-tuning, which works
well for small Muppets such as BERTBASE. How-
ever, our preliminary experiments4 show that self-
distillation is unstable on larger Muppets such as
BERTLARGE, suggesting that future work is neces-
sary for fully understanding and robustly applying
self-distillation on Muppets.

All these three methods make early exiting de-
cisions based on confidence (or its variants) of the
predicted probability distribution, and are there-
fore limited to classification tasks. Runtime Neural
Pruning (Lin et al., 2017), SkipNet (Wang et al.,
2018b), and BlockDrop (Wu et al., 2018) use rein-
forcement learning (RL) to decide whether to exe-
cute a network module. Universal Transformer (De-
hghani et al., 2019) and Depth-Adaptive Trans-
former (DAT, Elbayad et al., 2020) use learned
decisions for early exiting in sequence-to-sequence
tasks. Concurrently, PABEE (Zhou et al., 2020)
proposes patience-based early exiting which is ap-
plicable to regression, but it relies on inter-layer
prediction consistency and is therefore not very
efficient for exiting at early layers. Inspired by
them, we propose a method to extend early exiting
for Muppets to regression tasks, using only layer-
specific information as in classification. Moreover,
our method requires neither RL nor complicated
distribution fitting as in DAT, but uses a straightfor-
ward layer-wise certainty estimation, and achieves
performance comparable with confidence-based
early exiting on classification tasks.

3 Model Structure and Fine-Tuning

We start from a pre-trained Muppet model (the
backbone model), attach additional classifiers to
it, fine-tune the model, and use it for accelerated
inference by early exiting.

Backbone model The backbone model is an n-
layer pre-trained Muppet model. We denote the
ith layer hidden state corresponding to the [CLS]
token as hi:

hi = fi(x; θ1, · · · , θi), (1)

where x is the input sequence, θi is the parameters
of the ith transformer layer, and fi is the mapping
from input to the ith layer hidden state.

4See Appendix A.

93

Classifiers In the original BERT paper (Devlin
et al., 2019), the way to fine-tune is to attach a
classifier to the final transformer layer, and then
to jointly update both the backbone model and
the classifier. The classifier is a one-layer fully-
connected network. It takes as input the final layer
hidden state hn and outputs a prediction. Its output
is a probability distribution over all classes for clas-
sification tasks and a scalar for regression5 tasks.

To enable early exiting, we instead attach a clas-
sifier to every transformer layer, i.e., there are n
classifiers in total. Each classifier can make its own
prediction, and therefore the model can accelerate
inference by exiting earlier.

Fine-tuning strategies We discuss how to fine-
tune this multi-output network. The loss function
for the ith layer classifier is

Li(x, y) = H(y, gi(hi;wi)), (2)

where x and y are the input sequence and corre-
sponding label, gi the ith layer’s classifier, wi the
parameters of gi, and H the task-specific loss func-
tion, e.g., cross-entropy for classification tasks and
mean squared error (MSE) for regression tasks.

The most straightforward fine-tuning strategy is
perhaps minimizing the sum of all classifiers’ loss
functions and jointly updating all parameters in the
process. We refer to this strategy as Joint, and it is
also used in RTJ (Schwartz et al., 2020):

min
θ1,··· ,θn
w1,··· ,wn

n∑
i=1

Li. (3)

If we hope to preserve the best model quality for
the final layer, the desired fine-tuning strategy is
Two-stage, which is also used in DeeBERT (Xin
et al., 2020a). The first stage is identical to vanilla
BERT fine-tuning: updating the backbone model
and only the final classifier. In the second stage,
we freeze all parameters updated in the first stage,
and fine-tune the remaining classifiers. Objectives
in the two stages are as follows.

Stage 1: min
θ1,··· ,θn
wn

Ln (4)

Stage 2: min
w1,··· ,wn−1

n−1∑
i=1

Li (5)

5In this case, we still refer to this one-layer network as
classifier for naming consistency.

These two fine-tuning strategies are not ideal.
Intuitively, in this multi-output network, loss func-
tions of different classifiers interfere with each
other in a negative way. Transformer layers have
to provide hidden states for two competing pur-
poses: immediate inference at the adjacent classi-
fier and gradual feature extraction for future classi-
fiers. Therefore, achieving a balance between the
classifiers is critical. Two-stage produces final clas-
sifiers with optimal quality at the price of earlier
layers, since most parameters are solely optimized
for the final classifier. Joint treats all classifiers
equally, and therefore its final classifier is less ef-
fective than that of Two-stage. To combine the ad-
vantages, we propose a novel fine-tuning strategy,
Alternating. It alternates between two objectives
(taken from Equation 3 and 4) for odd-numbered
and even-numbered iterations.

Odd: min
θ1,··· ,θn
wn

Ln (6)

Even: min
θ1,··· ,θn
w1,··· ,wn

n∑
i=1

Li (7)

Combining objectives from Joint and Two-stage,
Alternating has the potential to find the most prefer-
able region in the parameter space: the intersection
between optimal regions for different layers.

4 Exiting Decision Making

After the entire model (including the backbone and
all classifiers) is fine-tuned, it can perform early
exiting for an inference sample. In this section we
discuss two methods to make exiting decisions.

4.1 Confidence Threshold

When the model is “certain” enough of its predic-
tion at an intermediate layer, the forward inference
can be terminated.

For classification tasks, a straightforward mea-
surement of the prediction certainty is the
maximum probability of the output prediction,
which is referred to as confidence in previous
work (Schwartz et al., 2020; Liu et al., 2020). Sim-
ilarly, Xin et al. (2020a) use entropy as the metric,
which is also closely related to confidence. Before
inference starts, a confidence threshold is chosen.
In forward propagation, the confidence of the out-
put at each layer is compared with the threshold; if
it is larger than the threshold at a certain layer, the
sample exits and future layers are skipped.

94

4.2 Learning to Exit

While using a confidence or entropy threshold is
straightforward and effective, it is exploiting the
fact that the classifier’s output is a probability dis-
tribution in classification tasks. This is generally
not the case for other tasks such as regression. To
address the gap, we propose learning-to-exit (LTE)
as a substitute when the distribution is unavailable.

The ith layer hidden state hi is a vector in the
embedding space. Intuitively, different regions of
the embedding space have different certainty levels.
For instance, in binary classification tasks, regions
closer to the decision boundary have a lower cer-
tainty level, and this is explicitly expressed as a
lower confidence of the output probability distribu-
tion. But even when certainty cannot be explicitly
measured, we can still train an auxiliary LTE mod-
ule to estimate such a metric.

Concretely, the LTE module is a simple one-
layer fully-connected network. It takes as input the
hidden state hi and outputs the certainty level ui
of the sample at the ith layer:

ui = σ(c>hi + b), (8)

where σ is the sigmoid function, c is the weight
vector, and b is the bias term.

The loss function for the LTE module is a simple
MSE between ui and the “ground truth” certainty
level at the ith layer ũi:

Ji = ||ui − ũi||22. (9)

For classification, the ground truth certainty level is
whether the classifier makes the correct prediction:

ũi = 1[arg max
j

g
(j)
i (hi;wi) = y], (10)

where gi is the output probability distribution at the
ith layer and g(j)i is its jth entry. For regression,
the ground truth certainty level is negatively related
to the prediction’s absolute error:

ũi = 1− tanh(|gi(hi;wi)− y|). (11)

To apply LTE, we initialize the LTE module to-
gether with classifiers and it is shared among all lay-
ers. We train the LTE module jointly with the rest
of the model by substituting Li in Equation 3–7
with Li + Ji. At inference time, if the predicted
certainty level is higher than the chosen threshold,
the inference sample performs early exiting.

Dataset Labels Train / Dev / Test

RTE 2 2.5k / 0.3k / 3.0k
MRPC 2 3.7k / 0.4k / 1.7k
SST-2 2 67k / 0.9k / 1.8k
QNLI 2 105k / 5.5k / 5.5k
QQP 2 364k / 40k / 391k
MNLI 3 393k / 9.8k / 9.8k

STS-B 1 8.6k / 1.5k / 1.4k
SICK 1 4.4k / 4.9k / –

Table 1: Statistics of datasets.

5 Experiments

5.1 Setup

We conduct experiments on six classification
datasets of the GLUE benchmark (Wang et al.,
2018a); since there is only one regression dataset,
STS-B (Cer et al., 2017), in GLUE, we addition-
ally use another regression dataset, SICK (Marelli
et al., 2014). Statistics of these datasets are listed
in Table 1. Our implementation is adapted from
the Huggingface Transformer Library (Wolf et al.,
2020). We conduct searches on experiment settings
such as the optimizer, learning rates, hidden state
sizes, and dropout probabilities, and discover that
it is best to keep original settings from the library.
Random seeds are also unchanged from the library
for fair comparisons.6

Most results in this paper use the dev split, since
the large number of evaluations we need are forbid-
den by the GLUE evaluation server. The only ex-
ception is Table 2, where we report model quality–
efficiency trade-offs on the test split.

5.2 Layer-wise Scores Comparison

We discuss three fine-tuning strategies in Section 3:
Joint (also used in RTJ), Two-stage (also used in
DeeBERT), and Alternating (proposed in this pa-
per). In tables and figures, they are labeled respec-
tively as JOINT, 2STG, and ALT. Figures 2 and 3
compare these three fine-tuning strategies by show-
ing their layer-wise score curves: each point in the
curve shows the output score at a certain exit layer,
i.e., all samples are required to exit at this layer for
evaluation. More specifically, we report relative
scores, and the 100% baseline is the original score
of the vanilla Muppet without early exiting, and

6Detailed experiment settings are in Appendix B.

95

0 5 10

70

80

90

100

RTE

2stg joint alt

0 5 10

90.0

92.5

95.0

97.5

100.0

MRPC

0 5 10
80

85

90

95

100

SST-2

0 5 10

70

80

90

100

QNLI

0 5 10

60

80

100

QQP

0 5 10

60

80

100

MNLI

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 2: Layer-wise scores of different fine-tuning
strategies for BERTBASE.

this is also the score of the final layer of Two-stage
because of parameter freezing in its second stage.

For BERTBASE, we show plots for all six clas-
sification datasets, ordered by their training set
sizes from smallest to largest. As we will see
in later analyses, low-resource datasets show the
most difference. Therefore, for RoBERTaBASE and
ALBERTBASE, we only show plots for RTE and
MRPC (with training set size smaller than 6% of
others) due to space limitations.7

We observe the following from the figures:

• Two-stage is unsatisfying. While it achieves
the best score at the final layer, it comes at a
large cost of other layers, especially for non-low-
resource datasets.

• Alternating is better than Joint in later layers, and
weaker in earlier layers. However, as we will see
in the next section, when we evaluate quality–
efficiency trade-offs of confidence-based early

7Results for other datasets are in Appendix C.

0 5 10

70

80

90

100

RTE

2stg joint alt

0 5 10

90

95

100

MRPC

0 5 10
90

100

110

120

130

RTE

0 5 10

95

100

MRPC

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 3: Layer-wise scores of different fine-
tuning strategies for RoBERTaBASE (top two) and
ALBERTBASE (bottom two).

exiting, the weakness of Alternating in earlier
layers is no longer substantial, while its advan-
tage is preserved.

• The difference between Joint and Alternating
is larger for low-resource datasets, where the
training set is insufficient to fine-tune all layers
well simultaneously.

• Interestingly, for ALBERTBASE, Alternating’s rel-
ative scores are higher than 100% in the final
layers. We speculate that this is because of the
parameter sharing nature of ALBERT and the
small sizes of the datasets: better supervision for
intermediate layers also helps the final layer.

5.3 Early Exiting Trade-offs Comparison

From the previous section, we see that Two-stage
is visibly less preferable than the other two. There-
fore in this section, we compare quality–efficiency
trade-offs of Joint and Alternating when confidence
threshold is used for making exiting decisions.

Specifically, we use average exit layer of all in-
ference samples as the metric of efficiency for the
following reasons: (1) it is linear w.r.t. the actual
amount of computation; (2) according to our ex-
periments, it is proportional to actual wall-clock
runtime, and is also stable across different runs.8

8Direct runtime measurement has the randomness caused

96

0 5 10

70

80

90

100

RTE

joint alt db+alt

0 5 10

90.0

92.5

95.0

97.5

100.0

MRPC

0 5 10

90.0

92.5

95.0

97.5

100.0

SST-2

0 5 10

70

80

90

100

QNLI

0 5 10

80

90

100

QQP

0 5 10

70

80

90

100

MNLI

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 4: Quality–efficiency trade-offs using confi-
dence for exiting decisions for BERTBASE.

We visualize the trade-offs in Figures 4 and 5,
and also show detailed numbers in Table 2 using
results from the test set. Dots in the figures and
ALT rows in the table are generated by varying the
confidence threshold, and the thresholds are chosen
to show trade-offs at different average exit layers.
In addition to the comparison between Joint and
Alternating, we add another strong baseline, Distil-
BERT (Sanh et al., 2019). We apply Alternating
fine-tuning and early exiting on top of DistilBERT
(labeled as DB+ALT), and the rightmost point of
the curve is DistilBERT itself without early exiting
(the green :). Observations from the table and
figures are as follows:

• On the test set, early exiting with Alternating
fine-tuning saves a large amount of inference
computation, with only minimal quality degrada-
tion, compared with vanilla Muppets.
• Compared with Joint, Alternating inherits its

by other processes on the same machine. Detailed discussions
can be found in Appendix D.

0 5 10

70

80

90

100

RTE

joint alt

0 5 10

90

95

100

MRPC

0 5 10
90

100

110

120

130

RTE

0 5 10

95

100

MRPC

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 5: Quality–efficiency trade-offs using confi-
dence for exiting decisions for RoBERTaBASE (top two)
and ALBERTBASE (bottom two).

benefits from the previous section: better trade-
offs at higher scores (larger average exit layer).
Additionally, its improvements are larger in
smaller datasets.
• Alternating’s weakness at more aggressive ex-

iting (smaller average exit layer) is minimized.
Take Figure 4 as an example, we report the area
of one curve above the other as a numerical
metric: JOINT over ALT and ALT over JOINT

is respectively (0.4, 13.5) for RTE, (0.9, 8.8)
for MRPC, and (0.2, 18.2) for SST-2. The ad-
vantage of Alternating indicates that later layers
intrinsically contribute more to early exiting per-
formance, partly because the final layer’s score
is the upper bound for all previous layers (ignor-
ing randomness in training). This shows that the
Joint fine-tuning strategy, which treats all layers
equally, is not ideal.
• In most cases, Alternating outperforms Distil-

BERT, which requires distillation in pre-training
and is therefore much more resource-demanding.
It also further improves model efficiency on top
of DistilBERT, indicating that early exiting is
cumulative with other acceleration methods.

5.4 Learning to Exit Performance
To examine the effectiveness of LTE, we apply it
on top of models fine-tuned with Alternating. We
show the results in Figure 6 on four datasets.

97

RTE MRPC SST-2 QNLI QQP MNLI-(m/mm) STS-B

Score Layer Score Layer Score Layer Score Layer Score Layer Score Layer Score Layer

BERTBASE

RAW 66.4 12 88.9 12 93.5 12 90.5 12 71.2 12 84.6/83.4 12 85.8 12

ALT

101% −44% 99% −30% 98% −65% 99% −42% 99% −56% 99%/99% −37% 95% −50%
99% −54% 97% −56% 96% −79% 98% −63% 97% −75% 97%/97% −57% 91% −67%
96% −64% 94% −74% 94% −87% 95% −71% 93% −84% 93%/92% −72% 85% −75%

DB 86% −50% 97% −50% 98% −50% 97% −50% 98% −50% 97%/97% −50% 94% −50%
DB+ALT 86% −55% 97% −60% 98% −75% 97% −72% 98% −76% 96%/97% −66% 93% −66%

BERTLARGE

RAW 70.1 24 89.3 24 94.9 24 92.7 24 72.1 24 86.7/85.9 24 86.5 24

ALT

95% −33% 99% −32% 100% −32% 97% −62% 98% −74% 99%/99% −36% 97% −39%
94% −46% 98% −46% 99% −61% 95% −73% 96% −82% 96%/97% −57% 90% −62%
88% −62% 94% −71% 96% −78% 91% −83% 91% −89% 90%/90% −75% 76% −80%

Table 2: Test set results comparing baselines (raw BERT/RoBERTa, from the original paper), DistilBERT, and
early exiting with Alternating fine-tuning. Metric for model quality: score for RAW baselines and relative scores
for others. Metric for model efficiency: used layers for RAW; relative saved layers for others (w.r.t. raw models).

0 5 10

70

80

90

100

QNLI

alt alt-lte

0 5 10

80

90

100

QQP

0 5 10

25

50

75

100

STS-B

0 5 10
0

25

50

75

100

SICK

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 6: Comparing layer-wise score of Alternating
with LTE-based early exiting on top of Alternating.
BERTBASE is the backbone.

We use the layer-wise score of Alternating as the
baseline: if we want to save x% inference runtime,
a straightforward way is to use the first (100−x)%
layers for every sample, regardless of its difficulty.
LTE is expected to dynamically allocate resources
based on a sample’s difficulty and therefore outper-
form this baseline. From the figures for QNLI and
QQP, we observe that the blue curves are substan-
tially above the orange curves, i.e., LTE provides
better accuracy–efficiency trade-offs than the layer-

Method Rel. Score Speedup Avg. Exit Layer

PABEE
99% 2.1 5.7
98% 2.4 5.0

ALT-LTE
99% 2.2 5.4
98% 2.6 4.6

Table 3: Comparing LTE with PABEE on STS-B.

wise baseline, achieving the same model quality
with less computation. For regression tasks STS-
B and SICK, the layer-wise baseline reaches its
maximum score at relatively early layers, leaving
little room for LTE to perform. Nevertheless, LTE
still outperforms the baseline, especially in earlier
layers (note that the y-axis is from 0 to 100%).

We also compare LTE with the concurrent
patience-based baseline PABEE (Zhou et al., 2020)
in Table 3, showing their speedups and average exit
layers at the same relative scores. PABEE does
not provide exact speedup numbers; therefore we
estimate the values from their figures. We can see
that Alternating fine-tuning plus LTE is marginally
better than PABEE on regression tasks.

We further compare LTE-predicted certainty for
each layer with layer-wise scores in Figure 7, where
we observe large differences of predicted certainty
both within and across layers. Also, predicted cer-
tainty is generally positively correlated with scores.
This further demonstrates that the LTE module suc-
cessfully captures certainty information based on
the model’s hidden state.

LTE extends confidence-based early exiting to

98

1 2 3 4 5 6 7 8 9 10 11 12
Exit Layer

0.6

0.8
C

er
ta

in
ty

BERTbase : SICK

0

50

100

R
el

at
iv

e
S

co
re

(%
)

1 2 3 4 5 6 7 8 9 10 11 12
Exit Layer

0.6

0.8

1.0

C
er

ta
in

ty

BERTbase : QNLI

80

100

R
el

at
iv

e
S

co
re

(%
)

Figure 7: Comparison of each layer’s score and learned
certainty. Yellow box-plots: distribution of certainty at
each layer; blue curve: relative score.

tasks other than classification. Furthermore, our
LTE module is more straightforward and intuitive
than DAT (Elbayad et al., 2020), yet achieves com-
parable results with classification tasks.

5.5 Prediction Confidence as a Probe

So far, we have only regarded prediction confidence
as something produced by the black-box model and
use it for making early exiting decisions. In this
section, we show an example of how confidence
is related to a human-interpretable feature, demon-
strating its potential to reveal the inner mechanisms
of Muppet models.

We choose two datasets, MRPC and QQP, where
the task is to predict whether two input sequences
are semantically equivalent. Intuitively, the BLEU
score (Papineni et al., 2002) between the two se-
quences, which measures n-gram matching, may
be related to the prediction. At each output layer,
we first divide all dev set samples into two subsets
by whether they are predicted as positive or nega-
tive; then, we calculate the BLEU-4 score for each
sample, and calculate the Pearson correlation be-
tween BLEU scores and confidence in each subset;
finally, we compare the correlation for both subsets
in each layer, along with the layer-wise relative
scores, in Figure 8.

We notice that the BLEU scores and predicted
confidence show the strongest correlation in layers
where the model quality starts to improve (layer
4–5 in MRPC9 and 2–3 in QQP). After these layers,
the correlation gradually weakens. It suggests that

9In MRPC, the first three layers only make positive predic-
tions due to the highly imbalanced training label distribution.

1 2 3 4 5 6 7 8 9 10 11 12
Exit Layer

-0.5

0

0.5

P
ea

rs
on

C
or

re
la

ti
on

BERTbase : MRPC

pos.

neg.

1 2 3 4 5 6 7 8 9 10 11 12
Exit Layer

-0.5

0

0.5

P
ea

rs
on

C
or

re
la

ti
on

BERTbase : QQP

pos.

neg.

90

95

100

R
el

at
iv

e
S

co
re

(%
)

80

90

100

R
el

at
iv

e
S

co
re

(%
)

Figure 8: Comparison between BLEU–confidence cor-
relation (red and blue) and layer-wise scores (black).

in the early layers, the model relies more on sim-
ple features such as n-gram matching for making
semantic judgments: the higher the BLEU score
is, the more certain it is for making positive pre-
dictions and the less certain it is for negative ones;
however, with more layers, the model acquires the
ability to look beyond the BLEU score, reducing its
reliance on n-gram matching and achieving better
performance. Therefore, with MRPC as an exam-
ple, analyzing differences between layers 3 and 4
may reveal how the model detects n-gram match-
ing, and analyzing differences between layers 4 and
6 may reveal advanced semantic features learned
by the model.

6 Conclusion and Future Work

To improve early exiting for Muppets, we present
BERxiT, including the Alternating fine-tuning strat-
egy which outperforms methods from previous pa-
pers and the LTE idea which extends early exiting
to a broader range of tasks. Experiments show
the effectiveness of Alternating in providing bet-
ter quality–efficiency trade-offs and the successful
application of LTE to regression tasks. They also
show that early exiting is cumulative with other
acceleration methods such as DistilBERT and has
the potential for model interpretation.

Future Work The fundamental question of early
exiting for Muppets is how many transformer lay-
ers are sufficient for making good predictions. We
draw inspiration from the Limit performance of
Muppets: the score of Limit at the ith layer is ob-
tained by taking the first i transformer layers from
the pre-trained Muppet model, attaching a classifier
to the ith layer, and fine-tuning this single-output

99

6 12 18 24
75

80

85

90

Diff = 5.9

MRPC

6 12 18 24
75

80

85

90

Diff = 4.0

QNLI

Average Exit Layer

S
co

re
(%

)

Figure 9: Comparison between LIMIT of BERTBASE

(brown) and BERTLARGE (blue). Red arrow: difference
between the two models when they both use 12 layers.

model. Limit estimates the upper bound for any
fine-tuning methods by removing inter-classifier in-
terference. We compare the Limit performance of
BERTBASE and BERTLARGE in Figure 9, and notice
that with the same number of layers (and identi-
cal fine-tuning strategy), BERTBASE almost always
outperforms BERTLARGE by a large margin. This
suggests that most transformer layers’ potential
to provide information for early exiting is limited
by the single-output nature of pre-training. If we
want to further improve early exiting Muppets for
better trade-offs, adding more exiting paths in pre-
training would be a promising direction.

Acknowledgements

We thank anonymous reviewers for their insight-
ful suggestions. We also gratefully acknowledge
funding support from the Natural Sciences and En-
gineering Research Council (NSERC) of Canada.
Computational resources used in this work were
provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and com-
panies sponsoring the Vector Institute.

References
Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-

Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In Interna-
tional Conference on Learning Representations.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28. Curran
Associates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens van der Maaten, and Kilian Weinberger. 2018.
Multi-scale dense networks for resource efficient im-
age classification. In International Conference on
Learning Representations.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Darryl Lin, Sachin Talathi, and Sreekanth Anna-
pureddy. 2016. Fixed point quantization of deep
convolutional networks. In Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Re-
search, pages 2849–2858, New York, New York,
USA. PMLR.

100

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017.
Runtime neural pruning. In Advances in Neural In-
formation Processing Systems, volume 30. Curran
Associates, Inc.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages
216–223, Reykjavik, Iceland. European Language
Resources Association (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Mary Phuong and Christoph H. Lampert. 2019.
Distillation-based training for multi-exit architec-
tures. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model
and instance complexities. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 6640–6651, Online.
Association for Computational Linguistics.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. BranchyNet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E. Gonzalez. 2018b. SkipNet: Learning dy-
namic routing in convolutional networks. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar,
Steven Rennie, Larry S. Davis, Kristen Grauman,
and Rogerio Feris. 2018. BlockDrop: Dynamic in-
ference paths in residual networks. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020a. DeeBERT: Dynamic early ex-
iting for accelerating BERT inference. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2246–2251,
Online. Association for Computational Linguistics.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin.
2020b. Early exiting BERT for efficient document
ranking. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing,
pages 83–88, Online. Association for Computational
Linguistics.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. 2019. Slimmable neural networks.
In International Conference on Learning Represen-
tations.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen,
Chenglong Bao, and Kaisheng Ma. 2019. Be your
own teacher: Improve the performance of convolu-
tional neural networks via self distillation. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

101

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages
18330–18341. Curran Associates, Inc.

102

A Negative Results for Self-Distillation

FastBERT (Liu et al., 2020) does not provide re-
sult for BERTLARGE or RoBERTaLARGE. We show
BERTLARGE and RoBERTaLARGE layer-wise scores
for different fine-tuning strategies in Figure 10. SD

in the legend stands for self-distillation. We can see
that for Two-stage and Alternating, the patterns are
similar to those of BERTBASE: Alternating better in
earlier layers while Two-stage better in later layers.

However, self-distillation’s behavior is inconsis-
tent between models and datasets. While it per-
forms as expected for BERTLARGE in SST-2 and
MNLI, and for RoBERTaLARGE in MRPC, self-
distillation fails to improve after the first few layers
for BERTLARGE in MRPC and for RoBERTaLARGE

in SST-2 and MNLI, and most layers’ quality is
considerably worse than Alternating. We therefore
consider self-distillation an unstable and premature
fine-tuning strategy.

B Additional Experiment Setting

For pre-trained models, we use the following
ones provided by the Huggingface Transformer
Library (Wolf et al., 2020) as backbone models:

• BERT-BASE-UNCASED

• BERT-LARGE-UNCASED

• ROBERTA-BASE

• ROBERTA-LARGE

• ALBERT-BASE-V2

• DISTILBERT-BASE-UNCASED

For BERT, ALBERT, and DistilBERT, we fine-
tune for 3 epochs; for RoBERTa, we fine-tune for
10 epochs; no early-stopping or checkpoint selec-
tion is performed.

Experiments are done on a single NVIDIA P100
GPU with CUDA 10.1. For inference, we use a
batch size of 1 (since we need to perform early ex-
iting based on each individual sample’s difficulty).
Inference runtime for the entire dev set for all mod-
els and datasets is shown in Table 4. RoBERTa has
the same model structure as BERT, and therefore
its runtime is also very close to that of BERT. Note
that this is affected by competing processes, and
may vary between different runs.

Numbers of parameters for BERT and ALBERT
backbone models can be found in the paper by Lan

0 10 20

90

95

100

MRPC

2stg alt sd

0 10 20

90

95

100

MRPC

0 10 20

80

90

100

SST-2

0 10 20

80

90

100

SST-2

0 10 20

60

80

100

MNLI

0 10 20

60

80

100

MNLI

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 10: Layer-wise score for different fine-
tuning strategies on BERTLARGE (left column) and
RoBERTaLARGE (right column).

et al. (2020). RoBERTa shares the same model
structure with BERT and has the same number
of parameters. Numbers of parameters for early-
exiting-specific modules, such as additional clas-
sifiers and the LTE module, are on the order of
thousands, and are therefore negligible compared
with those of backbone models (millions).

C Additional Experiment Results

In the main paper, we report results of
RoBERTaBASE and ALBERTBASE only on the two
smallest datasets. Results of the other datasets
are provided in Figure 11. We can see that while
Two-stage is visibly less preferable, Joint and Al-
ternating are close to each other with larger dataset
sizes, and this is the reason why we keep only the
low-resource datasets in the main paper.

D Analyses of Efficiency Metric

In our experiments, we use average exit layer as the
metric of efficiency for the following three reasons.

It is linear w.r.t. the amount of computation. In-
ference time computation in our model occurs in
the following parts: the embedding layer, trans-
former layers, classifiers, and the LTE module (if
used). If a layer is chosen, i.e., the exit layer is after

103

RTE MRPC SST-2 QNLI QQP MNLI STS-B SICK

BERT-base 5.8 8.4 18.0 110.4 856.8 209.4 33.2 107.8
BERT-large 11.6 17.4 35.9 223.2 1952.8 400.3 61.3 209.8
ALBERT-base 6.5 9.4 18.5 114.6 864.8 204.8 31.6 104.2
DistilBERT 3.0 4.3 9.1 55.4 407.1 106.2 15.9 50.9

Table 4: Inference runtime in seconds for each model and dataset.

0 5 10

50

75

100

SST-2

2stg joint alt

0 5 10

50

75

100

QNLI

0 5 10

50

75

100

QQP

0 5 10

50

75

100

MNLI

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

0 5 10

50

75

100

SST-2

2stg joint alt

0 5 10

50

75

100

QNLI

0 5 10

50

75

100

QQP

0 5 10

50

75

100

MNLI

Average Exit Layer

R
el

at
iv

e
S

co
re

(%
)

Figure 11: Additional layer-wise score for different fine-tuning strategies on RoBERTaBASE (left four) and
ALBERTBASE (right four).

it, all components of the layer (transformer, classi-
fier, LTE module) are used and incur computation
cost. Additionally, embedding look-up (selecting a
column in the matrix) is much faster than the above
components (involving matrix-vector multiplica-
tion), and can therefore be neglected.

It is stable across different runs. With a fine-
tuned model, an inference sample’s exit layer only
depends on the confidence (or LTE-predicted cer-
tainty) at each layer and the threshold. On the other
hand, direct measurement of wall-clock runtime
is frequently affected by competing processes and
fluctuates between different runs.

The computation overhead of early exiting is
negligible. With the above reasons, there is only
one concern left for using average exit layer as the
efficiency metric: how do additional layers in our
model (including the additional classifier and pos-
sibly the LTE module) compare with transformer
layers in the original BERT paper? We estimate
FLOPS used in one sample’s inference as follows.
Since we will eventually end up with orders of mag-
nitude differences, we use the big-theta asymptotic
notation for estimation.

Most computation is incurred for matrix and vec-

tor multiplication. Using the naı̈ve implementation,
the cost for multiplying two vectors in Rd is Θ(d),
and the cost for multiplying a matrix in Rd1×d2 and
a vector in Rd2 is Θ(d1d2).

We denote d as the hidden state size of our model
(768 for base models and 1024 for large models),
c as the number of classes (less than 4 in our ex-
periments), n as the sequence length (typically in
the hundreds), and h as the number of heads in
multi-head attention (12 for base and 16 for large).

The classifier is a one-layer fully-connected
layer, mapping a vector in Rd to an output in Rc,
therefore the cost is Θ(cd). Similarly, the cost of
the LTE module is Θ(2d), since its output is always
a vector in R2.

The transformer layer mainly consists of multi-
head self-attention, a fully-connected layer, and
two layer normalization modules. Layer normaliza-
tion is much faster than the other two and we there-
fore neglect it. The fully connected layer maps n
vectors from Rd to Rd, therefore the cost is Θ(nd2).
The multi-head attention10 computes h individual
uni-head attention. For each uni-head attention,
the mapping from original query, key, and value

10Details can be found in the paper by Vaswani et al. (2017).

104

vectors (Rd) to head-specific ones (Rd/h) incurs a
cost of Θ(nd2/h); calculating the attention results
incurs a cost of Θ(nd/h). Therefore the total cost
here is Θ(nd2 + nd) = Θ(nd2). Finally, results
of each head are combined and one more matrix–
vector multiplication is needed, incurring a cost of
Θ(nd). The total cost of one transformer layer is
therefore Θ(nd2).

Comparing the above, the ratio of a transformer
layer to a classifier/LTE module is

Θ(nd2)

Θ(cd+ 2d)
= Θ(nd). (12)

Considering the value of n and d, the classifier and
the LTE module are several orders of magnitude
lighter than the transformer layer. Even with ad-
vanced algorithms and parallel hardware that may
accelerate transformer layers, we can still safely
come to the conclusion that the computation over-
head of early exit is negligible.

