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Abstract

Despite the recent success of deep neural net-
works in natural language processing, the ex-
tent to which they can demonstrate human-like
generalization capacities for natural language
understanding remains unclear. We explore
this issue in the domain of natural language
inference (NLI), focusing on the transitivity of
inference relations, a fundamental property for
systematically drawing inferences. A model
capturing transitivity can compose basic infer-
ence patterns and draw new inferences. We
introduce an analysis method using synthetic
and naturalistic NLI datasets involving clause-
embedding verbs to evaluate whether models
can perform transitivity inferences composed
of veridical inferences and arbitrary inference
types. We find that current NLI models do
not perform consistently well on transitivity
inference tasks, suggesting that they lack the
generalization capacity for drawing compos-
ite inferences from provided training exam-
ples. The data and code for our analysis are
publicly available at https://github.com/
verypluming/transitivity.

1 Introduction

Deep neural networks (DNNs) have shown impres-
sive performance in many natural language pro-
cessing tasks. In particular, DNN models pre-
trained with large-scale data such as BERT (De-
vlin et al., 2019) have achieved high accuracy in
various benchmark tasks (Wang et al., 2019a,b),
which suggests that they might possess some gen-
eralization capacities that are a hallmark of human
cognition. However, recent analyses (Talmor and
Berant, 2019; Liu et al., 2019; McCoy et al., 2019)
have shown that high accuracy on a test set drawn
from the same distribution as the training set does
not always indicate that the model has obtained the
intended ability, so it remains unclear to what ex-

Veridical inference

Boolean inference

A: Jo knows that Ann and Bob left.

B: Ann and Bob left.

A′: Jo hopes that Ann and Bob left.

C: Ann left.

Figure 1: Illustration of transitivity inferences (indi-
cated by ) composed of two basic inferences, veridi-
cal and Boolean. Arrows indicate entailment and ar-
rows with a cross ( ) indicate non-entailment.

tent DNN models can learn the systematic general-
ization in natural language from training instances.

Central to human-like generalization capacities
is the fact that ability to understand a given sen-
tence is related to ability to understand other sen-
tences, called systematicity of human cognition in
Fodor and Pylyshyn (1988). Thus, if speakers un-
derstand the meaning of the sentence Ann loves
Bob, they must also understand the meaning of
structurally related sentences such as Bob loves
Ann. We explore whether DNN models possess
this type of generalization capacity in the domain
of natural language inference (NLI), which is the
task to judge whether a premise entails a hypothe-
sis (Dagan et al., 2013; Bowman et al., 2015a).

A key property underlying systematicity of
drawing inferences is the transitivity of inference
relations, illustrated in Figure 1. Schematically, if
a model learns a basic inference pattern from A
to B and one from B to C, it should be able to
compose the two patterns to draw a new inference
from A to C. If a model lacks this generalization
capacity, it must memorize an exponential number
of inference combinations independently of basic
patterns.

Among the various inference patterns, we focus
on transitivity inferences that combine veridical in-

https://github.com/verypluming/transitivity
https://github.com/verypluming/transitivity
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ferences with other types. In veridical inferences,
one must distinguish two entailment types. For ex-
ample, the verb know is called veridical in that “x
knows that P ” entails that P is true, while the verb
hope is called non-veridical since “x hopes that
P ” does not entail that P is true. Veridical infer-
ences can relatively easily compose transitivity in-
ferences at scale by embedding various inference
types into clause-embedding verbs. For instance,
as Figure 1 shows, if a model has the ability to per-
form both Boolean inference and veridical infer-
ence, it is desirable to have the ability to combine
both types to make a chained inference.

Such transitivity inferences are by no means
trivial. For instance, if the premise is changed
to Jo knows that Ann or Bob left, it does not fol-
low that Bob left, even though the veridical verb
know appears. Models relying on shallow heuris-
tics such as lexical overlap can wrongly predict
entailment in this case. To correctly handle such
composite inferences, models must capture struc-
tural relations between veridical inferences and
various kinds of embedded inference.

Previous studies on the generalization capac-
ities of NLI models have addressed how mod-
els could learn inferences with various challeng-
ing linguistic phenomena (Bowman et al., 2015b;
Dasgupta et al., 2018; Geiger et al., 2019, 2020;
Yanaka et al., 2019a,b; Richardson et al., 2020).
However, these studies have focused on the lin-
guistic phenomena in isolation, and thus do not ad-
dress how a model could learn the interactions be-
tween them. Our aim is to fill this gap by present-
ing a method for probing generalization capacity
of DNN models performing transitivity inferences.

This study provides three main contributions.
First, we create and publicly release two types of
NLI datasets for testing model ability to perform
transitivity inferences: a fully synthetic dataset
that combines veridical inferences and Boolean in-
ferences, and a naturalistic dataset that combines
veridical inferences with lexical and structural in-
ferences. Second, we use these datasets to system-
atically expose models to basic inference patterns
and test them on a variety of combinations. This
will demonstrate that the models lack the ability to
capture transitivity of inference. Third, we inves-
tigate whether data augmentation with new com-
bination patterns helps models to learn transitiv-
ity. Experiments show that the data augmentation
improves model performance on similar combina-

tions, regardless of the existence of basic inference
patterns in the training set. These results suggest
there is much room for improving the generaliza-
tion capacities of DNN models for combining ba-
sic inferential abilities.

2 Related Work

Transitivity The transitivity of entailment rela-
tions, which derives A → C from A → B and
B → C, is incorporated into logic-based NLI sys-
tems using automated theorem proving (Abzian-
idze, 2015; Mineshima et al., 2015). This is a ba-
sic property of formal logic, also known as syllo-
gism in traditional logic or the cut rule in proof
theory (Troelstra and Schwichtenberg, 2000; van
Dalen, 2013). Transitivity inference in its various
forms has also been widely studied as a fundamen-
tal property of human reasoning in cognitive psy-
chology (Johnson-Laird and Byrne, 1991; Khem-
lani and Johnson-Laird, 2012). In the context
of NLP, previous works have proposed a method
for training models with transitivity constraints
in multi-hop reasoning tasks (Asai and Hajishirzi,
2020) and temporal relation extraction tasks (Ning
et al., 2017). Clark et al. (2020) investigated a
transformer’s ability to perform a chain of reason-
ing where reasoning rules are explicitly given. In
this work, we study model ability to learn transitiv-
ity of entailment relations from training examples,
rather than explicitly providing rules.

Systematicity There has been extensive discus-
sion of whether neural networks (aka Connection-
ist models) can exhibit systematicity of cognitive
capacities (Fodor and Pylyshyn, 1988; Marcus,
2003). Recent works have explored whether mod-
ern neural networks can learn systematicity in se-
mantic parsing tasks (Lake and Baroni, 2017; Ba-
roni, 2020; Kim and Linzen, 2020) and question
answering tasks (Sinha et al., 2019), whereas our
focus is the systematicity in NLI.

In works related to the systematicity in NLI,
Goodwin et al. (2020), Yanaka et al. (2020), and
Geiger et al. (2020) used a manually constructed
NLI dataset of monotonicity inferences with and
without negation (e.g., The child is not holding
plants → The child is not holding flowers) to exam-
ine DNN models’ generalization capacities. While
these approaches concentrate on monotonicity in-
ferences involving quantifiers and negative expres-
sions, our method using veridical inference is gen-
eral in that it can be applied to any entailment
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relation that combines basic inference patterns;
we generate composite inferences by embedding
various types of sentences into clause-embedding
verbs.

Fodor and Pylyshyn (1988) distinguished sys-
tematicity (roughly, the ability to understand sen-
tences that are structurally related to each other)
from productivity (the ability to understand an in-
finite set of sentences), claiming that systematic-
ity poses a serious challenge to neural network
models. Yanaka et al. (2020) tested both system-
aticity and productivity of DNN models with a
synthetic dataset of monotonicity inferences for
upward (e.g., some, at least three) and down-
ward (e.g., few, at most three) quantifiers, where
handling productivity (recursion) makes sentences
more involved (e.g., iterated relative clauses and
negation). Focusing on systematicity rather than
productivity allows testing models with more nat-
ural and less complicated data, as compared to sen-
tences appearing in monotonicity inferences.

Veridicality Veridical inferences, including
those licensed by factive and implicative verbs,
have been intensively studied in the literature
of semantics and pragmatics (Karttunen and
Peters, 1979; Beaver, 2001). Recent work has
revealed graded and context-sensitive aspects
of veridicality inferences, creating veridicality
judgement datasets (de Marneffe et al., 2012;
White and Rawlins, 2018; White et al., 2018).
While we use only a subset of veridical predicates
discussed in the literature, our method can be
extended to more complex inferences, such as
factive presupposition.

Ross and Pavlick (2019) presented a naturalistic
veridicality dataset and compared the predictions
of a BERT-based NLI model and human judge-
ments. These previous studies on veridicality in-
ferences have tended to focus on relations between
whole sentences (e.g., Jo remembered that there
was a wild deer jumping a fence) and its embed-
ded material (e.g., There was a wild deer jumping
a fence). By contrast, we consider the interactions
of veridicality inferences and other inference types
(see Section 3.2), including cases where the em-
bedded material is further paraphrased via linguis-
tic phenomena (e.g., Jo remembered that there was
a wild deer jumping a fence ⇒ An animal was
jumping). We also collect human judgements on
our dataset and compare them with model predic-
tions (see Section 4.4).

Probing NLI models Many studies of probing
NLI models have found that current models of-
ten fail on linguistically challenging (adversarial)
inferences (Rozen et al., 2019; Nie et al., 2019;
Yanaka et al., 2019a; Richardson et al., 2020),
learning undesired biases (Glockner et al., 2018;
Poliak et al., 2018; Tsuchiya, 2018; Liu et al.,
2019), and heuristics (McCoy et al., 2019). Our
approach also provides adversarial test sets against
such heuristics by considering combinations of
veridical inferences and diverse (lexical, structural,
and logical) types of inferences.

One way to learn challenging inferences is data
augmentation, and prior studies (Yanaka et al.,
2019b; Richardson et al., 2020; Min et al., 2020)
have shown that data augmentation with synthe-
sized datasets improves performance with chal-
lenging linguistic phenomena. However, it re-
mains unclear whether data augmentation can help
models learn composite inferences mixing several
inference types from training instances. We ad-
dress this question in Section 4.3.

3 Dataset

3.1 Overview

To investigate whether models can capture tran-
sitivity, we consider two basic inference patterns
and their combinations. The first basic pattern, I1,
is veridical inference. We write f(s1)→ s1 to de-
note a schematic veridical inference, where f is
a clause-embedding verb and s1 is the embedded
clause. For instance, in the case of the inference
pattern A → B in Figure 1, “Jo knows that x” cor-
responds to f(x) and “Ann and Bob left” to s1.

The second basic pattern, I2, provides an infer-
ence from the embedded material. We denote a
premise-hypothesis pair of this second inference
by s1 → s2. Given two inferences f(s1)→ s1 in
I1 and s1→s2 in I2, we consider a new inference
f(s1) → s2, where premise f(s1) is the same as
that of I1 and hypothesis s2 is the same as that of
I2. See Table 1 and Table 2 for some examples of
inferences f(s1)→ s1, s1 → s2, and f(s1)→ s2.
In this work, we consider binary labels, entailment
and non-entailment, denoted by yes and unk, re-
spectively. As Table 3 shows, the gold label on the
f(s1)→ s2 pattern can be determined from those
of the basic patterns f(s1)→ s1 and s1 → s2, fol-
lowing the transitivity of entailment relations.

We train models with the first and second pat-
terns, f(s1)→ s1 and s1→ s2, and then test them
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f f(s1)→s1 s1→s2 f(s1)→s2 Example

V yes yes yes
f(s1): Someone noticed that [Henry and Daniel found Elliot, John and Fred].
s1: Henry and Daniel found Elliot, John and Fred.
s2: Henry found John.

NV unk yes unk
f(s1): Someone expects that [Tom and Ann admire Greg and Fred].
s1: Tom and Ann admire Greg and Fred.
s2: Tom admires Greg.

NV unk unk unk
f(s1): Someone argued that [it was not the case that Greg hated John or Elliot].
s1: It was not the case that Greg hated John or Elliot.
s2: Greg hated John.

Table 1: Examples from our fully synthetic transitivity inference datasets. V and NV indicate types of clause-
embedding verbs (veridical/non-veridical); yes means entailment and unk means non-entailment.

ID f f(s1)→s1 s1→s2 f(s1)→s2 Example

2299 V yes yes yes
f(s1): Someone realized that [a boy was playing a guitar].
s1: A boy was playing a guitar.
s2: A kid was playing a guitar.

2049 V yes unk unk
f(s1): Someone remembered that [a cat was playing with a device].
s1: A cat was playing with a device.
s2: The boy was enthusiastically playing in the mud.

5024 NV unk yes unk
f(s1): Someone doubts that [the woman is putting makeup on the man].
s1: The woman is putting makeup on the man.
s2: A man’s face is being painted by a woman.

Table 2: Examples from our naturalistic transitivity inference datasets. V and NV indicate types of clause-
embedding verbs (veridical/non-veridical); yes means entailment and unk means non-entailment. ID indicates
the original ID of s1→s2 in the SICK dataset.

f(s1)→s1 s1→s2 f(s1)→s2
yes yes yes
yes unk unk
unk yes unk
unk unk unk

Table 3: Rule for determining the f(s1) → s2 label
from the basic patterns f(s1)→s1 and s1→s2.

on a set of the composite inferences f(s1) → s2
that combines them. Note that due to how they
are constructed, the training and test sets do not
overlap. Model capable of applying the transitiv-
ity inference from f(s1) → s1 and s1 → s2 to
f(s1) → s2 should consistently predict the cor-
rect label of f(s1) → s2 for any combination of
f(s1)→s1 and s1→s2.

3.2 Data creation

We generate basic inferences f(s1) → s1 and
s1 → s2 and combine them to produce transitivity
inferences f(s1) → s2. To test diverse inference
patterns, we consider two types of the second ba-
sic inference s1 → s2: synthesized Boolean infer-
ences and naturalistic inferences using an existing
NLI dataset, SICK (Marelli et al., 2014), which
contains lexical inferences (e.g., boy → kid in ID

Type of f Verbs
Veridical realize, acknowledge, remember,

note, find, notice, learn, see, reveal,
discover, understand, know, admit,
recognize, observe

Non-veridical feel, claim, doubt, hope, predict, im-
ply, suspect, wish, think, believe,
hear, expect, estimate, assume, argue

Table 4: Clause-embedding verbs used for our dataset.

2299 in Table 2) and structural inferences (e.g.,
active-passive alternation in ID 5024 in Table 2).
Since the ratio of the gold labels (yes and unk) is
set to 1 : 1 in both basic inference sets, the ratio of
the gold labels for the transitivity test set is 1 : 3
by the rule in Table 3. We reserve 10% of the basic
inference set for the validation set.

Clause-embedding verbs We focus on clause-
embedding verbs that take tensed subordinate
clauses. Specifically, we collect 67 verbs appear-
ing in both MegaVeridicality2 (White et al., 2018)
and the verb veridicality dataset (Ross and Pavlick,
2019). As Table 4 shows, we select a final set of
30 clause-embedding verbs.

Following a previous study (White et al., 2018),
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we slot a clause-embedding verb f into a template
with the form “Someone f that s1” and generate
premise f(s1) of veridical inference to avoid con-
founds introduced by world knowledge and prag-
matic inference in the main clause. The clause-
embedding verb f is in past or present tense, and
we inflect the verb in the complement s1 to match
the tense of f .

When measuring the extent to which models
can learn transitivity of entailment relations from
training instances, it is desirable to determine the
gold labels of composite inferences from those
of basic inferences. Thus, we take the labels of
veridical inference datasets predicted by the veridi-
cal and non-veridical distinction in lexical seman-
tics as the gold standard. In addition, veridical
inferences are sensitive to context, influenced by
world knowledge and pragmatic factors (de Marn-
effe et al., 2012). Accordingly, we also present
additional experiments to take into account such
complexity of veridical inferences in Section 4.2.

Boolean inference To provide a fully synthetic
transitivity inference dataset, we generate Boolean
inferences with conjunction, disjunction, and nega-
tion. The data generation process is similar to the
one in Yanaka et al. (2020): sentences are gener-
ated using a context-free grammar (CFG) associ-
ated with semantic composition rules in lambda-
calculus. We first generate a set of premise sen-
tences by the CFG rules and translate each sen-
tence s1 into a first-order-logic (FOL) formula
F1 in accordance with semantic composition rules
specified in the CFG rules. Appendix A pro-
vides a set of CFG rules and semantic composition
rules. We randomly select one of the atomic sub-
formulas appearing in F1 and take its positive or
negative form, which we denote by F2. Then we
convert F2 to a sentence s2 using the same gram-
mar. We set s2 as a hypothesis.

The gold label for inference pair s1 → s2 is
determined by checking whether formula F1 en-
tails formula F2 using an FOL theorem prover.
The gold labels for f(s1) → s1 and f(s1) → s2
pairs are automatically determined according to
the veridicality of a clause-embedding verb and
the rule in Table 3, respectively. To restrict the
complexity of generated sentences, we set the
maximum number of logical connectives appear-
ing in formula F1 to 6.

Table 1 illustrates examples of fully synthetic
transitivity inference datasets. We generate 3,000

Boolean inference examples s1→s2, 6,000 veridi-
cal inference examples f(s1) → s1, and 6,000
composite inference examples f(s1)→s2.

Naturalistic inference To generate a naturalis-
tic transitivity inference dataset, we collect an ex-
ample s1 → s2 of naturalistic inference from the
SICK dataset, which is constructed from existing
sentences (image descriptions given by different
people) and covers various lexical and structural
phenomena. (1) is an example of lexical inference
(brush → comb) in SICK, whose label is yes.

(1) s1: A person is brushing a cat.
s2: A person is combing the fur of a cat.

By selecting a clause-embedding verb f and an
embedded sentence s1, we generate a new sen-
tence f(s1). As shown in (2), we construct a
veridical inference example f(s1)→s1 by setting
f(s1) as a premise and s1 as a hypothesis.

(2) f(s1): Someone sees that a person is
brushing a cat.

s1: A person is brushing a cat. (yes)

Likewise, as in (3), we can obtain a composite in-
ference example f(s1)→s2 whose label is yes:

(3) f(s1): Someone sees that a person is
brushing a cat.

s2: A person is combing the fur of a cat.

Table 2 illustrates examples of naturalistic tran-
sitivity inference datasets. We sample 1,000 natu-
ralistic inference examples s1→s2 from the SICK
training set and obtain 30,000 veridical inference
examples f(s1)→ s1 and 30,000 composite infer-
ence examples f(s1)→s2.

4 Experiments and Analysis

We analyze whether models trained with the ba-
sic inference set can consistently perform compos-
ite inferences on the test set. We use two DNN
models, BERT and LSTM, which are known to
perform well with linguistic phenomena such as
subject-verb agreement and hierarchical and struc-
tural probing tasks (Linzen et al., 2016; Weiss
et al., 2018; Kuncoro et al., 2018).

4.1 Experimental setup
In all experiments, we train each model for 25
epochs or until convergence and select the best-
performing model based on its accuracy on the val-
idation set. We perform five runs and report the
average and standard deviation of their accuracies.
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Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-M LSTM-B LSTM-M&B BERT-M BERT-B BERT-M&B

yes yes yes 74.2± 2.0 89.0± 9.1 87.9± 3.7 66.3± 3.4 100.0± 0.0 100.0± 0.0
yes unk unk 16.0± 4.3 6.3± 12.8 60.0± 10.2 4.9± 1.5 0.4± 0.7 60.5± 0.6
unk yes unk 14.7± 3.8 93.4± 8.3 89.0± 9.5 12.6± 4.8 99.4± 9.0 92.9± 3.6
unk unk unk 17.8± 5.5 92.1± 7.2 99.7± 0.5 13.2± 3.4 99.5± 0.5 99.9± 0.0

Test Overall 30.9± 3.2 70.2± 3.4 84.2± 1.2 24.4± 1.6 75.7± 0.4 88.3± 0.9

Validation (f(s1)→s1) 50.5± 1.7 93.3± 11.1 91.4± 5.7 68.1± 1.3 99.2± 0.2 98.3± 0.3
Validation (s1→s2) 41.5± 3.4 89.2± 3.4 85.2± 1.2 54.4± 2.3 100.0± 0.0 99.4± 0.5

Table 5: Accuracies for the fully synthetic transitivity test set and the validation set. -B indicates a model trained
with the basic inference set, -M indicates a model trained with MNLI, and -M&B indicates a model trained with
MNLI mixed with the basic inference set. The label yes means entailment, and unk means non-entailment.

Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-M LSTM-B LSTM-M&B BERT-M BERT-B BERT-M&B

yes yes yes 64.6± 12.1 97.1± 2.7 100.0± 0.1 85.9± 1.1 100.0± 0.0 100.0± 0.0
yes unk unk 45.6± 10.5 0.0± 0.0 3.6± 1.4 28.4± 0.9 8.9± 7.8 22.3± 13.6
unk yes unk 24.4± 12.1 97.1± 2.7 99.7± 0.5 13.3± 1.7 100.0± 0.0 100.0± 0.0
unk unk unk 45.4± 11.2 97.3± 2.6 99.9± 0.1 31.1± 0.9 100.0± 0.0 100.0± 0.0

Test Overall 45.0± 5.5 72.9± 2.0 75.8± 0.5 39.7± 0.2 77.2± 2.0 80.6± 3.4

Validation (f(s1)→s1) 46.2± 1.2 82.1± 3.3 89.8± 6.5 68.7± 1.6 99.2± 0.0 97.1± 0.3
Validation (s1→s2) 58.0± 1.0 81.9± 3.0 82.1± 1.4 62.0± 1.0 89.1± 2.0 91.0± 0.0

Table 6: Accuracies for the naturalistic transitivity test set and the validation set.

LSTM We use an LSTM (Hochreiter and
Schmidhuber, 1997) model, where each premise
and hypothesis is processed as a sequence of
words using RNN with LSTM cells, and the fi-
nal hidden state of each serves as its representa-
tion. The model concatenates the premise and
hypothesis representations and passes the result
to three hidden layers followed by a two-way
softmax classifier. The model is initialized with
300-dimensional GloVe vectors (Pennington et al.,
2014) and optimized using Adam (Kingma and
Ba, 2015). We search dropout probabilities of
[0, 0.1, 0.2] on the output.

BERT We use the base-uncased pretrained
BERT (Devlin et al., 2019) model1, fine-tuned for
the NLI classification task on training data in the
standard way. When fine-tuning BERT, we search
dropout probabilities of [0, 0.1, 0.2] on the output,
and hyperparameters are the same as those com-
monly used for MultiNLI.

4.2 Testing transitivity
We first evaluate whether the models trained with
basic inferences f(s1)→ s1 and s1 → s2 can con-
sistently make judgements on the composite in-
ferences f(s1) → s2. As a previous work (Ross
and Pavlick, 2019) reported that a BERT model

1We use the Pytorch implementation of BERT released at
https://github.com/huggingface/transformers.

trained with the benchmark NLI dataset MultiNLI
(MNLI; Williams et al., 2018) is sensitive to verb
veridicality, we regard the accuracy of models
trained with MNLI as a baseline. We also analyze
models trained with MNLI mixed with the basic
inference set.

Table 5 shows accuracies for the fully synthetic
transitivity test set that combines veridical and
Boolean inferences. Models trained with the basic
inference set achieved over 80% accuracy on the
test cases, except for cases where f(s1)→s1 is yes
and s1 → s2 is unk. Table 6 shows accuracies for
the naturalistic transitivity test set. Again, models
trained with the basic inference set performed sub-
stantially below chance for the cases f(s1)→ s2,
where f(s1)→ s1 is yes and s1 → s2 is unk. This
suggests that while the models achieve over 80%
accuracy on both f(s1)→ s1 and s1 → s2 valida-
tion sets, they do not apply transitivity inference
from the inferences f(s1)→ s1 and s1 → s2, but
rather predict the label for the composite inference
f(s1)→ s2 by judging whether it is similar to the
veridical inference f(s1)→s1 in the training set.

Accuracy of models trained with MNLI was
low because they predicted yes for many examples
where correct labels were unk, as in (4).

(4) f(s1): Someone wished that John saw
Tom or Greg.

s2: John saw Tom. (unk)
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Type Templates
Pronoun At that moment, we f that s
Pronoun Then he f that s
Specific group The customers f that s
Specific group Some economists f that s
Proper noun Hanson f that s

Table 7: Examples of additional templates used for gen-
erating veridical inference datasets. Here f is a place
for a veridical verb and s for an embedded sentence.

The models predicted yes for over 80% of the fully
synthetic transitivity test set and more than 60% of
the naturalistic transitivity test set. These results
are consistent with the findings in McCoy et al.
(2019), namely, that models trained with MNLI
tend to predict entailment relations when the hy-
pothesis is a subsequence of the premise, as in (4).

When models are trained with MNLI mixed
with the basic inference set, they seem to improve
performance on the fully synthetic transitivity test
set. One reason for this result is that the models
might use heuristics to make predictions for some
unk examples in the fully synthetic inference set.
Error analysis shows that the models tend to pre-
dict unk when either a premise or a hypothesis con-
tains a negation like (5).

(5) f(s1): Someone knew that Fred praised
Henry or Ann.

s2: Fred did not praise Ann. (unk)

These heuristics might be related to the annota-
tion artifact (Gururangan et al., 2018) in MNLI,
because an inference example involving negation
words tends to be a contradiction2. Moreover,
models can memorize the basic inference set re-
gardless of the existence of MNLI in the training
set, so performance seems to be better.

Note that models trained with MNLI mixed
with the basic inference set still failed on the nat-
uralistic transitivity inference f(s1) → s2 where
f(s1) → s1 is yes and s1 → s2 is unk. Since the
naturalistic basic inference examples s1→s2 con-
tain various linguistic phenomena, models cannot
rely on the heuristics for such examples.

Is poor performance of transitivity infer-
ence due to overfitting on verbs? To deter-
mine whether models do not overfit on clause-
embedding verbs, we analyze the models under

2We use binary labels (entailment/non-entailment) and
take contradiction as non-entailment.

Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-B (△) BERT-B (△)

yes yes yes 97.9 (+0.8) 100.0 (0.0)
yes unk unk 0.0 (0.0) 2.3 (−6.6)
unk yes unk 99.0 (+1.9) 100.0 (0.0)
unk unk unk 99.2 (+1.9) 100.0 (0.0)

Table 8: Accuracies of models in the setting (I). (△) is
the difference from the accuracy in Table 6.

Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-B (△) BERT-B (△)

yes yes yes 90.0 (−7.1) 93.6 (−6.4)
yes unk unk 2.2 (+2.2) 17.9 (+9.0)
unk yes unk 89.9 (−7.2) 94.0 (−6.0)
unk unk unk 98.3 (+1.0) 95.6 (+1.8)

Table 9: Accuracies of models in the setting (II). (△) is
the difference from the accuracy in Table 6.

two additional settings using naturalistic transitiv-
ity datasets: (I) we use various templates other
than “Someone f that s1” to generate the main
clause in f(s1), and (II) we flip the gold labels
of 10% veridical inference f(s1) → s1 instances,
randomly sampled, instead of using gold labels
uniquely fixed from verb types. These two com-
plex settings expose models to more natural eval-
uation settings that consider the context-sensitive
property of veridicality.

For evaluation setting (I) using various tem-
plates involving clause-embedding verbs, we man-
ually select forty main clauses of the verb veridi-
cality dataset (Ross and Pavlick, 2019) and pro-
vide additional templates. Table 7 shows ex-
amples of additional templates involving clause-
embedding verbs used for generating veridical in-
ference datasets.

Table 8 and Table 9 show the results for (I) and
(II), respectively. These results show the same
trends as those in Table 6, indicating that even
when we consider the complexity of veridical in-
ference in our analysis, the models fail to consis-
tently perform composite inferences.

4.3 Analysis with data augmentation

We further hypothesize that even if the current
models fail to consistently perform composite in-
ferences, data augmentation with a small num-
ber of composite inference examples might al-
low models to learn transitivity inference. Thus,
we evaluate models trained with basic inferences
f(s1) → s1 and s1 → s2 and with a subset of
the composite inferences f(s1) → s2 on a natu-
ralistic inference test set. Considering that models
fail on composite inference f(s1) → s2 where f
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(a) f(s1)→s1, s1→s2, and a subset of f(s1)→s2 (b) f(s1)→s1 and a subset of f(s1)→s2

Figure 2: Accuracies of models trained with (a) and (b). I1 indicates the first basic pattern f(s1) → s1 and I2
indicates the second basic pattern s1→s2. Y means entailment and U means non-entailment. The horizontal axis
shows the number of veridical verbs for the additional training set.

Data Model Human
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-B BERT-B

yes yes yes 100.0± 2.7 100.0± 0.0 98.8
yes unk unk 0.0± 0.0 8.9± 7.8 98.8
unk yes unk 97.1± 2.7 100.0± 0.0 44.9
unk unk unk 97.3± 2.6 100.0± 0.0 99.6

Test Overall 72.9± 2.0 77.2± 2.0 85.5

Table 10: Comparison between accuracies of humans and the models trained with the basic inference set.

is veridical and s1 → s2 is unk, we gradually add
veridical verbs (e.g., know) one-by-one to generate
an additional training set of composite inference
f(s1)→ s2 and analyze performance on a test set.
Figure 2(a) shows that this data augmentation im-
proved performance on test examples f(s1)→ s2
where f is veridical and s1 → s2 is unk, while
maintaining accuracy on the remaining examples
in the test set. BERT achieved 100% accuracy over
the entire test set by adding composite inferences
generated from four veridical verbs, whereas in the
case of LSTM twelve veridical verbs were needed
to achieve the same accuracy.

To determine whether models augmented with
composite inference examples learn the ability to
combine basic inferences to perform transitivity
inference, we analyze the performance of mod-
els where basic inference examples are not in-
cluded in the training set. Figure 2(b) shows that
models trained with only the basic inference set
f(s1)→s1 and a subset of the composite inference
set f(s1)→ s2 also had improved accuracy. This
result supports findings that models do not com-
bine the basic inference f(s1)→ s1 and s1 → s2,
but rather predict the label for a composite infer-
ence f(s1)→ s2 by judging whether it is similar
to inference patterns found in the training set.

4.4 Comparison with humans

To investigate how humans perform on transi-
tivity inference tasks, we collect human judge-

ments for a subset of our naturalistic inference
dataset. We asked crowdsourced workers to la-
bel 960 transitivity inference examples involving
all the clause-embedding verbs in Table 4. Fol-
lowing prior works involving crowdsourced NLI
datasets (Zhang et al., 2017; Ross and Pavlick,
2019), we instructed raters to label each premise-
hypothesis pair with the degree of entailment on
a 5-point Likert scale, with 1 meaning a hypothe-
sis is definitely not true given the premise, and 5
meaning a hypothesis is definitely true. We col-
lected three annotations per pair on Amazon Me-
chanical Turk (see Appendix D for details), and
the inter-rater agreement (the Pearson correlation
among raters, averaged across both examples and
raters) was 0.76. As model predictions are dis-
crete (yes or unk), we discretized human scores
into evenly sized bins, setting yes if the score was
4 or higher and set unk if the score was 3 or lower.
We assumed the majority of three discretized la-
bels as the final human judgement.

Table 10 shows that humans generally follow
the distinction between veridical and non-veridical
verbs traditionally assumed in the lexical seman-
tics, as well as the transitivity of entailment rela-
tion. In particular, while as we saw in Section 4.2
the DNN models performed substantially below
chance for transitivity inferences where f(s1) →
s1 is yes and s1 → s2 is unk, human performance
is near perfect for such inferences.

Interestingly, however, humans tend to predict
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incorrect labels for transitivity inferences where
the verb f is non-veridical (so f(s1)→ s1 is unk)
and the embedded inference s1 → s2 is yes. This
might be because a natural complement as in (6)
induces veridicality bias (Ross and Pavlick, 2019),
that is, no matter whether a complement verb f
is veridical or non-veridical, humans tend to de-
cide the truth value of f(s1) by judging whether
its complement s1 is true. Thus, judgement for
f(s1)→ s2 coincides with that of s1 → s2 in this
case.

(6) f(s1): Someone believed that a man is
jumping off a low wall.

s1: A man is jumping off a low wall.

s2: A man is jumping a wall.

5 Conclusion

We introduced an analysis method using transitiv-
ity inferences for evaluating systematic general-
ization capacities of NLI models. We found that
current NLI models do not perform consistently
well on transitivity inference tasks. Furthermore,
data augmentation analysis suggested that models
can memorize composite inference examples, but
do not perform the intended transitivity inferences
combining basic inference examples.

Overall, our results indicated that despite the
impressive performance of DNN models on stan-
dard NLI datasets, there remains much room for
improving their systematic generalization capac-
ities with respect to combining basic inferential
abilities on various linguistic phenomena. Regard-
ing what is necessary for improving the systematic
generalization capacity, one interesting possibility
is explicitly feeding some form of logic-guided
transitivity rules to models, which is left for fu-
ture work. Our analysis method using transitivity
can be an effective tool for further progress in the
study of compositional NLI.
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A Details about the Boolean logic
fragment

Table 11 shows the context-free grammar used to
generate sentences for Boolean logic reasoning
with conjunction, disjunction, and negation. Each
rewriting rule is paired with the corresponding se-
mantic composition rule in standard Montagovian
semantics to generate the logical form of a sen-
tence (Montague, 1973; Heim and Kratzer, 1998).
We use ten items each for proper names (PN), in-
transitive verbs (IV), and transitive verbs (TV).
Each sentence is generated with a verb in the past
tense.

For sentences with multiple NPs, we as-
sume the surface-scope reading where the sub-
ject NP takes scope over the object NP. For in-
stance, the sentence Ann and Bob saw Chris
or Daniel, where the subject NP is conjunctive
and the object NP is disjunctive, has the logical
form (see(ann, chris) ∨ see(ann,daniel)) ∧
(see(bob, chris) ∨ see(bob,daniel)).

There are two types of negation, sentential nega-
tion (SNEG) and verbal negation (VNEG), which
are distinguished with respect to their scope inter-
pretation. Thus, the sentence Ann and Bob did
not swim has the logical form ¬swim(ann) ∧
¬swim(bob), while the sentence It is not the
case that Ann and Bob did not swim has the log-
ical form ¬(swim(ann) ∧ swim(bob)).

To generate a premise-hypothesis pair (s1, s2)
using this Boolean logic fragment, we first gener-
ate a sentence s1 and derive its logical form F1

using the grammar in Table 11. We then randomly
select one of the atomic formulas appearing in F1,
say A, and takes its positive (A) or negative (¬A)
form, which is in turn converted to the hypothe-
sis sentence s2 using the same grammar. The gold
label (entailment or non-entailment) for the pair
(s1, s2) is determined by checking whether F1 log-
ically entails A or ¬A using a first-order-logic the-
orem prover3.

B Training details

In all experiments, we trained models on eight
NVIDIA DGX-1 Tesla V100 GPUs. The runtime
for training each model was about 1-8 hours, de-
pending on the size of the training set. The order
of training instances was shuffled for each model.

3https://github.com/vprover/vampire

C Supplementary results on the random
train-test split

To confirm that our transitivity inference dataset is
not excessively difficult, we conducted additional
experiments using the random 9 : 1 train:test split
of transitivity inference (f(s1) → s2) datasets.
We evaluate models under two settings: (i) mod-
els trained with the train split of transitivity infer-
ence datasets and (ii) models trained with the train
split mixed with MNLI. Table 12 shows the results
on the random train-test split of our full-synthetic
transitivity dataset, and Table 13 shows the results
on the random train-test split of our naturalistic
transitivity dataset. These results showed that re-
gardless of the existence of MNLI in the training
set, models achieved perfect performance on our
transitivity inference test set with the standard ran-
dom train-test split setting.

D Human judgement details

Using Amazon Mechanical Turk, we collected hu-
man judgements for 960 naturalistic veridical in-
ference examples and 960 naturalistic transitivity
inference examples. We required raters to have
completed at least 5,000 approved tasks to main-
tain a 99% approval rating. Raters could indicate
by a checkbox that one or both sentences did not
make sense, but no rater clicked the checkbox. We
collected three annotations per pair and paid $0.06
per labeled pair.

Since humans predict incorrect labels for some
composite inference examples f(s1)→ s2 where
the verb f is non-veridical, we checked the ac-
curacy of human judgement on a set of premise-
hypothesis pairs f(s1) → s1 and f(s1) → s2 in-
volving each non-veridical verb, as shown in Ta-
ble 14. Annotators tended to incorrectly make
judgements for both f(s1)→ s1 and f(s1)→ s2.
Regarding accuracy for each non-veridical verb,
annotators correctly drew inferences containing
wish and hope, while they tended to draw infer-
ences containing claim and hear incorrectly.

In comparison with the previous veridicality
dataset MegaVeridicality2 (White et al., 2018),
the accuracy tended to be lower than that in
MegaVeridicality24. As (7) shows, while a simple
complement is used for MegaVeridicality2, a natu-
ral complement like (8) might induce veridicality

4We calculated the percentage of the majority judge-
ment for each verb for ten different annotations in
MegaVeridicality2.
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Syntax Semantics
S → NP VPpast [[S]] = [[NP]]([[VPpast]])
S → SNEG S [[S]] = [[SNEG]]([[S]])
NP → PN [[NP]] = [[PN]]
NP → PN CON PN [[NP]] = λF.[[CON]]([[PN]](F ), [[PN]](F ))
NP → PN , PN , CON PN [[NP]] = λF.[[CON]]([[PN]](F ), [[CON]]([[PN]](F ), [[PN]](F )))
VPtense → IVtense [[VPtense]] = [[IVtense]]
VPtense → TVtense NP [[VPtense]] = λx.[[NP]](λy.[[TVtense]](x, y))
VPpast → VNEG VPbase [[VPpast]] = λx.[[VNEG]]([[VPbase]](x))
PN → Ann | Bob | Chris | · · · [[PN]] = λF.F (sym)
IVbase → swim | drink | smoke | · · · [[IVbase]] = λx.sym(x)
IVpast → swam | drank | smoked | · · · [[IVpast]] = λx.sym(x)
TVbase → see | visit | touch | · · · [[TVbase]] = λyλx.sym(x, y)
TVpast → saw | visited | touched | · · · [[TVpast]] = λyx.sym(x, y)
SNEG → it is not the case that [[SNEG]] = λP.¬P
VNEG → did not [[VNEG]] = λP.¬P
CON → and [[CON]] = λPλQ.P ∧Q
CON → or [[CON]] = λPλQ.P ∨Q

Table 11: Grammar for the Boolean logic fragment with semantic composition. Feature tense for VP is either
“base” or “past.” In semantic composition, sym is the place where the symbol (lemma) for a lexical item appears.

Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-T LSTM-M&T BERT-T BERT-M&T

yes yes yes 99.8± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0
yes unk unk 99.3± 0.0 99.7± 0.1 100.0± 0.0 100.0± 0.0
unk yes unk 99.4± 0.2 99.8± 0.1 100.0± 0.0 100.0± 0.0
unk unk unk 99.6± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0

Table 12: Accuracies on the random train-test split of our fully synthetic transitivity dataset. -T indicates a model
trained with the train split of the transitivity inference set, and -M&T indicates a model trained with MNLI mixed
with the train split.

Data Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM-T LSTM-M&T BERT-T BERT-M&T

yes yes yes 99.2± 0.0 100.0± 0.1 100.0± 0.0 100.0± 0.0
yes unk unk 98.4± 0.2 99.1± 0.1 100.0± 0.0 100.0± 0.0
unk yes unk 98.3± 0.2 99.3± 0.1 100.0± 0.0 100.0± 0.0
unk unk unk 99.6± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0

Table 13: Accuracies on the random train-test split of our naturalistic transitivity test set.

bias (Ross and Pavlick, 2019), resulting in incor-
rect judgements on veridical inference. Whether a
verb is veridical or non-veridical, humans tend to
judge the complement as true.

(7) f(s1): Someone believed that something
happened.

s1: Something happened.

(8) f(s1): Someone believed that a man is
jumping off a low wall.

s1: A man is jumping off a low wall.

s2: A man is jumping a wall.

E Supplementary results with data
augmentation

In Section 4.3, we gradually added a subset of
the composite inferences f(s1) → s2 involving
a veridical verb (e.g., know) to the training set
and evaluated the performance of models on a
naturalistic inference test set. We also evaluated
the performance of models under two conditions:
(a) models trained with the basic inference set
s1 → s2 and a subset of the composite inference
set f(s1)→ s2 and (b) models trained with a sub-
set of the composite inference set f(s1)→s2. Fig-
ure 3(a) shows that the models significantly im-
proved accuracy on composite inferences except
for the test example f(s1)→ s2, whose label dif-
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(a) s1→s2, and a subset of f(s1)→s2 (b) a subset of f(s1)→s2

Figure 3: Accuracies of models trained with (a) and (b). I1 is the first basic pattern f(s1) → s1 and I2 is the
second basic pattern s1 → s2. Y indicates entailment and U indicates non-entailment. The horizontal axis shows
the number of veridical verbs for the additional training set.

Verb f(s1)→s1 f(s1)→s2 MegaV2
argue 34 (-46) 66 (-14) 80
assume 70 (-15) 79 (-6) 85
believe 19 (-71) 59 (-31) 90
claim 15 (-65) 56 (-24) 80
doubt 91 (+9) 96 (+16) 80
estimate 35 (-50) 64 (-21) 85
expect 53 (-27) 70 (-10) 80
feel 42 (-53) 67 (-28) 95
hear 14 (-41) 53 (-2) 55
hope 77 (-8) 92 (+7) 85
imply 18 (-47) 58 (-7) 65
predict 50 (-25) 73 (-2) 75
suspect 48 (-47) 79 (-16) 95
think 18 (-77) 57 (-38) 95
wish 77 (+7) 92 (+22) 70

Table 14: Accuracy (%) of human judgements for each
non-veridical verb. MegaV2 indicates the percentage
of those annotators who judge each verb to be non-
veridical in MegaVeridicality2 (White et al., 2018). A
number in parentheses is a difference from the accuracy
in MegaVeridicality2.

fered from that of s1 → s2. Moreover, their per-
formance was maintained even without composite
inference examples in the training set. This indi-
cates that models predict labels for the composite
inference example only by judging whether it is
similar to the basic inference example in the train-
ing set.

Figure 3(b) shows the result when models are
trained only with a subset of the composite in-
ference set f(s1) → s2. As non-veridical verbs
are not included in the training set in this setting,
the models predict labels for composite inferences
involving non-veridical verbs by judging whether
they are similar to composite inferences involving
veridical verbs in the training set. The models thus
fail on composite inference examples f(s1)→ s2
where f is non-veridical and s1→s2 is yes. The la-

bels of such non-veridical inference examples are
opposite to those of veridical inference examples
in the training set.


