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Abstract

Semi-supervised learning through deep gen-
erative models and multi-lingual pretraining
techniques have orchestrated tremendous suc-
cess across different areas of NLP. Nonethe-
less, their development has happened in isola-
tion, while the combination of both could po-
tentially be effective for tackling task-specific
labelled data shortage. To bridge this gap,
we combine semi-supervised deep genera-
tive models and multi-lingual pretraining to
form a pipeline for document classification
task. Compared to strong supervised learning
baselines, our semi-supervised classification
framework is highly competitive and outper-
forms the state-of-the-art counterparts in low-
resource settings across several languages. 1

1 Introduction

Multi-lingual pretraining has been shown to effec-
tively use unlabelled data through learning shared
representations across languages that can be trans-
ferred to downstream tasks (Artetxe and Schwenk,
2019; Devlin et al., 2019; Wu and Dredze, 2019;
Conneau and Lample, 2019). Nonetheless, the
lack of labelled data still leads to inferior perfor-
mance of the same model compared to those trained
in languages with more labelled data such as En-
glish (Zeman et al., 2018; Zhu et al., 2019).

Semi-supervised learning is another appealing
paradigm that supplements the labelled data with
unlabelled data which is easy to acquire (Blum and
Mitchell, 1998; Zhou and Li, 2005; McClosky et al.,
2006, inter alia). In particular, deep generative
models (DGMs) such as variational autoencoder
(VAE; Kingma and Welling (2014)) are capable of
capturing complex data distributions at scale with
rich latent representations, and they have been used

∗Work done while at Microsoft Research Cambridge.
1Code is available at https://github.com/

cambridgeltl/mling_sdgms.

for semi-supervised learning in various tasks in
NLP (Xu et al., 2017; Yin et al., 2018; Choi et al.,
2019; Xie and Ma, 2019), as well as inducing cross-
lingual word embeddings (Wei and Deng, 2017),
and representation learning in combination with
Transformers via pretraining (Li et al., 2020).

To leverage the benefits of both worlds, we
propose a pipeline method by combining semi-
supervised DGMs (SDGMs) based on M1+M2
model (Kingma et al., 2014) with multi-lingual
pretraining. The pretrained model serves as multi-
lingual encoder, and SDGMs can operate on top of
it independently of encoding architecture. To high-
light such independence, we experiment with two
pretraining settings: (1) our LSTM-based cross-
lingual VAE, and (2) the current stat-of-the-art
(SOTA) multi-lingual BERT (Devlin et al., 2019).

Our experiments on document classification
in several languages show promising results via
the SDGM framework with different encoders,
outperforming the SOTA supervised counterparts.
We also illustrate that the end-to-end training of
M1+M2 that was previously considered too unsta-
ble to train (Maaløe et al., 2016) is possible with a
reformulation of the objective function.

2 Semi-supervised Learning with DGMs

Variational Autoencoder. VAE consists of a
stochastic neural encoder qφ(z|x) that maps an in-
put x to a latent representation z, and a neural
decoder pθ(x|z) that reconstructs x, jointly trained
by maximising the evidence lower bound (ELBO)
of the marginal likelihood of the data:

Eqφ(z|x)
[
log pθ(x|z)

]
− KL

(
qφ(z|x)‖p(z)

)
(1)

where the first term (reconstruction) maximises the
expectation of data likelihood under the posterior
distribution of z, and the Kullback-Leibler (KL) di-
vergence regulates the distance between the learned
posterior and prior of z.

https://github.com/cambridgeltl/mling_sdgms
https://github.com/cambridgeltl/mling_sdgms
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L(x, y) = Eqφ(z1|x)[log pθ(x|z1)]︸ ︷︷ ︸
Reconstruction

−Eqφ(z1|x)qφ(z2|z1,y)[log
qφ(z2|z1, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

]︸ ︷︷ ︸
KL

+ log p(y)︸ ︷︷ ︸
Constant

z1

z2y

(a) M1+M2

x

(b) VAE

x

z

U(x) = Eqφ(z1|x)[log pθ(x|z1)]︸ ︷︷ ︸
Reconstruction

−Eqφ(z1|x)qφ(y|z1)qφ(z2|z1,y)[log
qφ(z2|z1, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

+ log
qφ(y|z1)
p(y)

]︸ ︷︷ ︸
KL

Table 1: Labelled and unlabelled objectives for M1+M2 model (left), and its corresponding graphical model (right).

Semi-supervised Learning with VAEs. The
SDGM we use for semi-supervised learning is
M1+M2 (Kingma et al., 2014), a graphical model
(Table 1 (right)), with two layers of stochastic vari-
ables z1 and z2, with each being an isotropic Gaus-
sian distribution. The first layer encodes the input
sequence x into a deterministic hidden representa-
tion h, and outputs the posterior distribution of z1:

qφ(z1|x) = N
(
µφ(h), diag

(
σ2
φ(h)

))
(2)

As our SDGM is independent of the encoding archi-
tecture, we use different pretrained multi-lingual
models to obtain h, µφ(h), and σ2

φ(h), described
in §3. The second layer computes the posterior
distribution of z2, conditioned on sampled z1 from
qφ(z1|x) and a class variable y.

When we use labelled data, i.e. y is ob-
served, qφ(z2|z1, y) can be directly obtained.
With unlabelled data, we calculate the posterior
qφ(z2, y|z1) = qφ(y|z1)qφ(z2|z1, y) by inferring
y with the classifier qφ(y|z1), and integrate over all
possible values of y. Therefore, the ELBO for the
labelled data Sl = {x, y} is L(x, y):

Eqφ(z1,z2|x,y)
[
log

pθ(x, y, z1, z2)

qφ(z1, z2|x, y)

]
≤ log p(x, y)

and for the unlabelled data Su = {x} is U(x):

Eqφ(z1,z2,y|x)
[
log

pθ(x, y, z1, z2)

qφ(z1, z2, y|x)

]
≤ log p(x)

where the generation part is pθ(x, y, z1, z2) =
p(y)p(z2)pθ(z1|z2, y)pθ(x|z1), p(y) is uniform
distribution as the prior of y, p(z2) is standard
Gaussian distribution as the prior of z2, and
pθ(x|z1) is the decoder, which can have different
architectures depending on the encoder (§4).

The objective function maximises both the la-
belled and unlabelled ELBOs while training di-
rectly the classifier with the labelled data as well:

J =
∑

(x,y)∈Sl

(
L(x, y) + αJcls(x, y)

)
+
∑
x∈Su

U(x)

where Jcls(x, y) = Eqφ(z1|x)[qφ(y|z1)], and α is a
hyperparameter to tune. Considering the factorisa-
tion of the model according to the graphical model,
we can rewrite the L(x, y) and U(x) as shown in

Table 1(left). The reconstruction term is the ex-
pected log likelihood of the input sequence x, same
for both ELBOs. The KL term regularises the pos-
terior distributions of z1 and z2 according to their
priors. Additionally for U(x), as mentioned before,
we first infer y and treat it as if it were observed,
so we need to compute the expected KL term over
qφ(y|z1) regularised by KL(qφ(y|z1)‖p(y)).

Due to its training difficulty, M1+M2 is trained
layer-wise in Kingma et al. (2014), where the first
layer is trained according to Eq. 1 and fixed, before
the second layer is trained on top. However, in our
experiments (§4.1) we found that M1+M2 is easier
to train end-to-end. We attribute this to our math-
ematical reformulation of the objective functions,
giving rise to a more stable optimisation schedule.

3 SDGMs with Multi-lingual Pretraining

LSTM-based Encoder with VAE Pretraining.
Our pretraining is based on the framework of Wei
and Deng (2017), in which they pretrain a cross-
lingual VAE with parallel corpus as input. How-
ever, the parallel corpus is expensive to obtain, and
only the resulting cross-lingual embeddings rather
than the whole encoder could be used due to the
parallel input limitation of the model. To address
these shortcomings, we propose non-parallel cross-
lingual VAE (NXVAE), which has the same graph-
ical model as the vanilla VAE. Each language i
is associated with its own word embedding ma-
trix, and its input sequence xi is processed via
a two layer BiLSTM (Hochreiter and Schmidhu-
ber, 1997) shared across languages. We use the
concatenation of the BiLSTM last hidden states
as h, and compute qφ(z|xi) with Eq. 2, so that
z becomes the joint cross-lingual semantic space.
A language specific bag-of-word decoder (BOW;
Miao et al. (2016)) is then used to reconstruct the
input sequence. Additionally, we optimise a lan-
guage discriminator as an adversary (Lample et al.,
2018a) to encourage the mixing of different lan-
guage representations and keep the shared encoder
language-agnostic. After pretraining NXVAE, we
transfer the whole encoder, including µφ(h) and
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σ2
φ(h), directly into our SDGM framework and

treat it as qφ(z1|x) component of the model (§4.1).

Multi-lingual BERT Encoder. To show that our
SDGM is effective with other encoding architec-
tures, we use the pretrained multi-lingual BERT
(mBERT; Devlin et al. (2019))2 as our encoder.
Given an input sequence, the pooled [CLS] repre-
sentation is used as h to compute qφ(z1|x) (Eq. 2).
Different from NXVAE, we initialise the parame-
ters of µφ(h) and σ2

φ(h) randomly.

4 Experiments

We perform document classification on the class
balanced multilingual document classification cor-
pus (MLDoc; Schwenk and Li (2018)). Each doc-
ument is assigned to one of the four news topic
classes: corporate/industrial (C), economics (E),
government/social (G), and markets (M). We ex-
periment with five representative languages: EN,
DE, FR, RU, ZH, and use 1k instance training set
along with the standard development and test set.
For experiments with varying labelled data size,
the rest training data from 1k corpus is used as
unlabelled data. The full statistics are shown in
Table 2. Three languages (EN, DE, FR) are tested
for LSTM encoder with VAE pretraining (§4.1) and
all five languages for mBERT encoder (§4.2). All
documents are lowercased. We report accuracy for
evaluation following Schwenk and Li (2018).

For all experiments, We use Adam (Kingma and
Ba, 2015) as optimiser, but with different learning
rates for both settings and pretraining. We imple-
mented the model with Pytorch3 1.10 (Paszke et al.,
2019), and use GeForce GTX 1080Ti GPUs. See
the Appendix for details about model configura-
tions and training.

4.1 LSTM Encoder with VAE Pretraining

Experimental Setup. For pretraining NXVAE,
we use three language pairs: EN-DE, EN-FR and DE-
FR constructed from Europarl v7 parallel corpus
(Koehn, 2005),4 where only two language pairs are
available: EN-DE and EN-FR, which consist of four
datasets in total: (EN, DE)EN-DE, and (EN, FR)EN-FR.
For DE-FR, we pair DEEN-DE and FREN-FR directly as
pseudo parallel data. We trim all datasets into ex-
actly the same sentence size, and preprocess them

2https://github.com/google-research/
bert/blob/master/multilingual.md.

3https://pytorch.org/.
4https://www.statmt.org/europarl/.

C E G M Total

EN
270 234 252 244 1000
228 238 266 268 1000
991 1000 1030 979 4000

DE
270 240 245 245 1000
229 268 266 237 1000
984 1026 1022 968 4000

FR
227 262 258 253 1000
257 237 237 269 1000
999 973 998 1030 4000

RU
261 288 184 267 1000
265 272 204 259 100
1073 1121 706 1100 4000

ZH
294 286 109 311 1000
324 300 93 283 1000
1169 1215 363 1253 4000

Table 2: Statistics of MLDoc in five languages. In-
stance numbers for each class along with the total num-
bers are shown. For each language, three rows are train-
ing, development and test set instance numbers.

with: tokenization, lowercasing, substituting digits
with 0, and removing all punctuations, redundant
spaces and empty lines. We randomly sample a
small part of parallel sentences to build a develop-
ment set. For models which do not require parallel
input, e.g. NXVAE, we mix the two datasets of
a language pair together. To avoid KL-collapse
during pretraining, a weight α on the KL term in
Eq. 1 is tuned and fixed to 0.1 (Higgins et al., 2017;
Alemi et al., 2018). We only run one trial with
fixed random seed for both pretraining and docu-
ment classification. Training details can be found
in the Appendix.

As our supervised baselines we compare with
the following two groups: (I) NXVAE-based su-
pervised models which are pretrained NXVAE en-
coder with a multi-layer perceptron classifier on
top (denoted by NXVAE-z1 (qφ(y|z1)) or NXVAE-
h (qφ(y|h)) depending on the representation fed
into the classifier; or NXVAE-z1 models initialised
with different pretrained embeddings: random ini-
tialisation (RAND), mono-lingual fastText (FT; Bo-
janowski et al. (2017)), unsupervised cross-lingual
MUSE (Lample et al., 2018b), pretrained embed-
dings from Wei and Deng (2017) (PEMB), and
our resulting embeddings from pretrained NXVAE
(NXEMB).5 (II) We also pretrain a word-based
BERT (BERTW) with parameter size akin to NX-
VAE on the same data, and fine-tune it directly.6

For our semi-supervised experiments, we test

5All embeddings are pretrained on the same Europarl data.
6We also trained subword-based models for BERT and

NXVAE, and observed similar trends. See the Appendix.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://pytorch.org/
https://www.statmt.org/europarl/
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Word pair Lang kNNs (k = 3)

president (EN) EN mr, madam, gentlemen
DE präsident, herr, kommissar

präsident (DE) EN president, mr, madam
DE herr, kommissar, herren

great (EN) EN deal, with, a
DE große, eine, gute

groß (DE) EN striking, gets, lucrative
DE gering, heikel, hoch

said (EN) EN already, as, been
DE gesagt, mit, dem

sagte (DE) EN he, rightly, said
DE vorhin, kollege, kommissar

Table 3: Cosine similarity-based nearest neighbours of
words (left column) in embedding spaces of EN and DE.

two types of decoders with different model capac-
ities: BOW and GRU (Cho et al., 2014). We use
M1+M2+BOW (GRU) to denote the model with
joint training using a specific decoder, and M1+M2
to denote the original model in Kingma et al. (2014)
with layer-wise training.7 We also add a semi-
supervised self-training method (McClosky et al.,
2006) for BERTW to leverage the unlabelled data
(BERTW+ST), where we iteratively add predicted
unlabelled data when the model achieves a better
dev. accuracy until convergence.

Qualitative Results. Table 3 illustrates the qual-
ity of the learned alignments in the cross-lingual
space of NXVAE for EN-DE word pairs.

Classification Results. Table 4 (EN-DE) shows
that within supervised models the NXVAE-z1
substantially outperforms other supervised base-
lines with the exception of BERTW. The fact that
NXVAE-z1 is significantly better than NXVAE-h,
suggests that pretraining has enabled z1 to learn
more general knowledge transferable to this task.
Combining with SDGMs, our best pipeline out-
performs all baselines across data sizes and lan-
guages, including BERTW+ST with bigger gaps in
fewer labelled data scenario. We observe the same
trend of performance in both supervised and semi-
supervised DGM settings on EN-FR and DE-FR.

For decoder, BOW outperforms the GRU, a find-
ing in line with the results of Artetxe et al. (2019)
which suggests a few keywords seem to suffice for
this task. The poor performance of the original
M1+M2, implies the domain discrepancy between

7We also compared this against a more complex Skip Deep
Generative Model (Maaløe et al., 2016), but found that end-to-
end M1+M2 performs better. Details in the Appendix.

# Labels 32 64 128 1K 32 64 128 1K

EN-DE EN DE

NXVAE-h 56.5 61.7 59.5 78.4 53.6 66.7 78.9 87.2
NXVAE-z1 63.9 71.4 77.0 91.6 65.0 73.8 82.7 93.0
RAND 50.1 54.2 62.3 82.5 47.2 60.8 69.0 84.8
FT 36.3 49.4 61.1 80.9 45.0 54.3 69.2 86.1
MUSE 59.8 65.4 71.8 88.4 45.1 66.2 79.7 90.4
PEMB 36.4 53.9 50.9 84.4 39.4 52.0 69.0 86.7
NXEMB 61.5 62.0 68.6 85.4 53.4 71.2 75.9 88.8
BERTW 67.7 72.7 84.6 91.8 58.1 77.5 89.2 94.0

M1+M2 56.6 67.1 70.3 - 52.6 67.2 76.8 -
M1+M2+BOW 79.8 81.7 87.2 - 70.5 79.6 89.7 -
M1+M2+GRU 75.3 79.4 84.9 - 75.1 80.0 87.1 -
BERTW+ST 68.4 73.9 86.4 - 59.6 79.7 89.4 -
EN-FR EN FR

NXVAE-h 71.4 73.8 78.6 88.0 62.8 72.7 79.9 88.9
NXVAE-z1 71.2 75.3 80.4 91.2 68.3 75.0 81.4 91.7

M1+M2 71.8 73.5 76.5 - 66.2 78.7 79.7 -
M1+M2+BOW 81.0 85.5 88.2 - 80.3 86.0 88.8 -
M1+M2+GRU 75.3 81.4 83.8 - 80.7 82.3 87.4 -

DE-FR DE FR

NXVAE-h 42.4 53.3 74.3 85.7 39.8 51.8 58.5 86.9
NXVAE-z1 63.3 75.4 81.3 92.1 60.1 71.1 78.4 91.4

M1+M2 59.1 70.6 75.4 - 48.5 57.4 60.7 -
M1+M2+BOW 78.0 83.2 88.3 - 81.4 84.5 88.4 -
M1+M2+GRU 74.6 80.5 86.2 - 66.2 77.2 81.9 -

Table 4: MLDoc test accuracy for EN-DE, EN-FR and
DE-FR pairs. The best results for supervised and semi-
supervised models are in bold.

pretraining and task data, and highlights the im-
pact of fine-tuning. In addition, our NXEMB, as a
byproduct of NXVAE, performs comparably well
with MUSE, and better than all other embedding
models including its parallel counterpart PEMB.

4.2 Multi-lingual BERT Encoder

Experimental Setup. We use the cased mBERT,
a 12 layer Transformer (Vaswani et al., 2017)
trained on Wikipedia of 104 languages with 100k
shared WordPiece vocabulary. The training cor-
pus is larger than Europarl by orders of magni-
tude, and high-resource languages account for most
of the corpus. We use the best SDGM setup
(M1+M2+BOW §4.1), on top of mBERT encoder
against the mBERT supervised model with a linear
layer as classifier (SUP-h) in 5 representative lan-
guages (EN, DE, FR, RU, ZH). We report the results
over 5 runs due to the training instability of BERT
(Dodge et al., 2020; Mosbach et al., 2020).

Classification Results. Figure 1 demonstrates
that M1+M2+BOW outperforms the SOTA super-
vised mBERT (SUP-h) on average across all lan-
guages. This corroborates the effectiveness of our
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Figure 1: Boxplot of test accuracy scores for SUP-h and M1+M2+BOW over 5 runs. The mean is shown as white
dot. The dashed line is the test mean accuracy of SUP-h trained on 1k labelled data of the corresponding language.

SDGM in leveraging unlabelled data within smaller
labelled data regime, as well as its independence
from encoding architecture.8 As expected, the gap
is generally larger with 8 and 16 labelled data, but
reduces as the data size grows to 32. The vari-
ance shows similar pattern, but with relatively large
values because of the instability of mBERT. Inter-
estingly, the performance difference seems to be
more notable in high-resource languages with more
pretrained data, whereas in languages with fewer
pretrained texts or vocabulary overlaps such as RU

and ZH, the two models achieve closer results.

5 Conclusion

We bridged between multi-lingual pretraining and
deep generative models to form a semi-supervised
learning framework for document classification.
While outperforming SOTA supervised models in
several settings, we showed that the benefits of
SDGMs are orthogonal to the encoding architecture
or pretraining procedure. It opens up a new avenue
for SDGMs in low-resource NLP by incorporating
unlabelled data potentially from different domains
and languages. Our preliminary results in cross-
lingual zero-shot setting with SDGMs+NXVAE are
promising, and we will continue the exploration in
this direction as future work.
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A Derivations of semi-supervised ELBOs

We derive the full ELBOs of both labelled and un-
labelled data for M1+M2 and Auxiliary Skip Deep
Generative Model (AUX; Maaløe et al. (2016)).9

We first use (·) to represent different conditional
variables for the two models so that the deriva-
tions can be unified, then we will realise it with the
model-specific conditions in the end.

As written in the paper, the labelled ELBO for
both models is:

Eqφ(z1,z2|x,y)
[
log

pθ(x, y, z1, z2)

qφ(z1, z2|x, y)

]
= L(x, y) ≤ log p(x, y)

Expanding the ELBO, we will have:

Eqφ(z1,z2|x,y)[log
pθ(x, y, z1, z2)

qφ(z1, z2|x, y)
]

=Eqφ(z1|x)qφ(z2|·)[

log p(z2) + log pθ(z1|z2, y) + log pθ(x|·) + log p(y)−
log qφ(z2|·)− log qφ(z1|x)]

=Eqφ(z1|x)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(z2|·)[

log qφ(z2|·) + log qφ(z1|x)−
log p(z2)− log pθ(z1|z2, y)− log p(y)]

=Eqφ(z1|x)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(z2|·)[

log
qφ(z2|·)
p(z2)

+ log
qφ(z1|x)
pθ(z1|z2, y)

− log p(y)]

After realising (·), we can then obtain the labelled
ELBO for M1+M2 and AUX in the original paper:

LM1+M2(x, y)

=Eqφ(z1|x)[log pθ(x|z1)]−
Eqφ(z1|x)qφ(z2|z1,y)[

log
qφ(z2|z1, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

− log p(y)]

LAUX(x, y)

=Eqφ(z1|x)qφ(z2|z1,x,y)[log pθ(x|z1, z2, y)]−
Eqφ(z1|x)qφ(z2|z1,x,y)[

log
qφ(z2|z1,x, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

− log p(y)]

9As mentioned in the footnote of original paper, we com-
pare M1+M2 with AUX in LSTM encoder with VAE pre-
training, but found that the simpler M1+M2 performs better.
Results on AUX can be found in §D.
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For the unlabelled ELBO, y is unobservable:

Eqφ(z1,z2,y|x)
[
log

pθ(x, y, z1, z2)

qφ(z1, z2, y|x)

]
= U(x) ≤ log p(x)

After expansion:

Eqφ(z1,z2,y|x)[log
pθ(x, y, z1, z2)

qφ(z1, z2, y|x)
]

=Eqφ(z1|x)qφ(y|·)qφ(z2|·)[

log p(z2) + log pθ(z1|z2, y) + log pθ(x|·) + log p(y)−
log qφ(z2|·)− log qφ(z1|x)− log qφ(y|·)]

=Eqφ(z1|x)qφ(y|·)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(y|·)qφ(z2|·)[

log qφ(z2|·) + log qφ(z1|x) + log qφ(y|·)−
log p(z2)− log pθ(z1|z2, y)− log p(y)]

=Eqφ(z1|x)qφ(y|·)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(y|·)qφ(z2|·)[

log
qφ(z2|·)
p(z2)

+ log
qφ(z1|x)
pθ(z1|z2, y)

+ log
qφ(y|·)
p(y)

]

Similarly, we will get unlabeled ELBO of M1+M2
and AUX:
UM1+M2(x)

=Eqφ(z1|x)[log pθ(x|z1)]−
Eqφ(z1|x)qφ(y|z1)qφ(z2|z1,y)[

log
qφ(z2|z1, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

+ log
qφ(y|z1)
p(y)

]

UAUX(x)

=Eqφ(z1|x)qφ(y|z1,x)qφ(z2|z1,x,y)[log pθ(x|z1, z2, y)]−
Eqφ(z1|x)qφ(y|z1,x)qφ(z2|z1,x,y)[

log
qφ(z2|z1,x, y)

p(z2)
+ log

qφ(z1|x)
pθ(z1|z2, y)

+ log
qφ(y|z1,x)

p(y)
]

In our experiments, we sample z1 and z2 once
during inference, so both labeled and unlabeled
ELBOs can be approximated by:

L(x, y)
=Eqφ(z1|x)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(z2|·)[

log
qφ(z2|·)
p(z2)

+ log
qφ(z1|x)
pθ(z1|z2, y)

− log p(y)]

≈ log pθ(x|·) + log p(y)−
KL(qφ(z2|·)‖p(z2))− KL(qφ(z1|x)‖pθ(z1|z2, y))

U(x)
=Eqφ(z1|x)qφ(y|·)qφ(z2|·)[log pθ(x|·)]−
Eqφ(z1|x)qφ(y|·)qφ(z2|·)[

log
qφ(z2|·)
p(z2)

+ log
qφ(z1|x)
pθ(z1|z2, y)

+ log
qφ(y|·)
p(y)

]

≈ log pθ(x|·)− KL(qφ(y|·)‖p(y))−
Eqφ(y|·)[KL(qφ(z2|·)‖p(z2))]−
Eqφ(y|·)[KL(qφ(z1|x)‖pθ(z1|z2, y))]

B Factorisation of M1+M2 and AUX

The two models have different factorisations, with
M1+M2 being written as:
qφ(z1, z2|x, y) = qφ(z1|x)qφ(z2|z1, y)
qφ(z1, z2, y|x) = qφ(z1|x)qφ(y|z1)qφ(z2|z1, y)
pθ(x, y, z1, z2) = p(y)p(z2)pθ(z1|z2, y)pθ(x|z1)

Jcls(x, y) = Eqφ(z1|x)[qφ(y|z1)]
and AUX is factorised as follows:

qφ(z1, z2|x, y) = qφ(z1|x)qφ(z2|z1,x, y)
qφ(z1, z2, y|x) = qφ(z1|x)qφ(y|z1,x)qφ(z2|z1,x, y)
pθ(x, y, z1, z2) = p(y)p(z2)pθ(z1|z2, y)pθ(x|z1, z2, y)

Jcls(x, y) = Eqφ(z1|x)[qφ(y|z1,x)]

where qφ(z1|x), qφ(z2|·), and pθ(z1|z2, y) are pa-
rameterised as diagonal Gaussians, and other dis-
tributions are defined as:
qφ(y|·) = Cat(y|πφ(·)) p(y) = Cat(y|π)
p(z2) = N (z2|0, I) pθ(x|·) = f(x, ·; θ)

where Cat(·) is a multinomial distribution and y
is treated as latent variables if it is unobserved in
unlabelled case. f(x, ·; θ) serves as the decoder
and calculates the likelihood of the input sequence
x.

C Details on LSTM Encoder with VAE
Pretraining

C.1 Data preprocessing and statistics

We use two pairs of data from Europarl v7 (Koehn,
2005):10 EN-DE and EN-FR, which consist of
four datasets in total: ENEN-DE, DEEN-DE, ENEN-FR,
and FREN-FR. Regarding DE-FR data, we take the
datasets of DEEN-DE and FREN-FR.

For each language pair, the sentences in the same
line of both datasets are a pair of parallel sentences.
We do the following preprocessing to each dataset:
tokenization; lower case; substitute digits with 0;
remove all punctuations; remove redundant spaces
and empty lines. Then we trim all four datasets
into exactly the same sentence size. We randomly
split a small part of parallel sentences to build a dev.
set, which leads to 189m lines of training set and
13995 lines of dev. set for each language. Then we
shuffle each dataset so that each language pair is
not parallel anymore (for both train and dev. sets).

Our goal is to merge the two datasets of each
pair and scramble them to form a single dataset. In
practice, we keep each dataset separate, and sample

10https://www.statmt.org/europarl/.

https://www.statmt.org/europarl/
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a batch randomly from one language alternatively
during pretraining, so that the data from both lan-
guages are mixed.

C.2 Model and training details

Instead of optimising the standard VAE, we opti-
mise the following objective for NXVAE (Higgins
et al., 2017; Alemi et al., 2018):

J (x) = Eqφ(z|x)[log pθ(x|z)]− αKL(qφ(z|x)‖p(z)) (3)

where we manually tune the fixed hyperparameter
α on EN-DE data to reach a good balance between
the reconstruction and the KL empirically. We se-
lect α = 0.1 and apply it for the pretraining of
other language pairs as well. The model and train-
ing details of XNVAE are shown in Table 5 (left).

C.3 Pretraining other models

For MLDoc supervised document classification,
we also pretrain other baseline models to compare
with ONLY for EN-DE pair:

Cross-lingual VAE with parallel input (PEMB;
Wei and Deng (2017)): For the model of Wei
and Deng (2017), we run the original code directly
on the same EN-DE Europarl data without changing
any of the model architecture. Since the model re-
quires parallel input, we take the preprocessed and
split EN-DE data. However, we do not shuffle each
dataset, but rather feed them as parallel input to the
model, so that the model and our corresponding
NXVAE use the same amount and content of the
data.

Subword-based non-parallel cross-lingual VAE
SNXVAE: Instead of having separate vocabulary
and decoders for each language, we use a single
vocabulary and decoder for SNXVAE. We build the
vocabulary with SentencePiece11 of size 1e4. All
other settings are the same as NXVAE. Its model
and training details can be found in Table 5 (right).

Word and subword-based BERT model
BERTW/BERTSW : For BERTW, we change
the vocabulary and model size to be comparable
with NXVAE. Note that the vocabulary size of
BERTW is the same as the intersected vocabulary
size of the two languages in NXVAE. We only
use the masked language model objective during
pretraining, and discard the objective of next

11https://github.com/google/
sentencepiece.

sentence prediction.12 For BERTSW, we use the
same vocabulary as SNXVAE and set the model
to similar parameter size as SNXVAE. The model
and training details of BERTW and BERTSW are
shown in Table 6.

D More Results on Document
Classification

D.1 LSTM Encoder with VAE Pretraining
Supervised Learning. Our base model is
NXVAE-z1, which adds an MLP classifier qφ(y|z1)
on top of the encoder with the same architecture of
the NXVAE. The similar applies to the subword-
based models SNXVAE-z1. NXVAE-h takes the
deterministic h as the input to qφ(y|x). All our
baseline models with pretrained embeddings use
the architecture of NXVAE-z1. For fastText (FT),
we train the embeddings of both languages with
the same data of ENEN-DE and DEEN-DE. For MUSE,
we align on the pretrained FT embeddings. For
BERTW and BERTSW, we use the library Trans-
formers13 for classification, and initialise the mod-
els with the corresponding pretrained parameters.
All model and training details can be found in Ta-
ble 7. The comparison results of word-based and
subword-based models are shown in Table 8.

Semi-supervised learning with SDGMs. The
main model (NXVAE) and training details are the
same as in supervised learning. Besides M1+M2,
we also compare with AUX (Maaløe et al., 2016)
with the two decoder types. The training details are
shown in Table 9. Regarding the decoding of GRU,
all conditional latent variables of pθ(x|·) are fed as
extra input at each decoding step (Xu et al., 2017).

We tune all semi-supervised models on ENEN-DE

with 32 labels in semi-supervised settings, and then
apply it to all other languages and data sizes. We
tune only one hyperparameter: the scaling factor
β in the weight for the classification loss α in the
original SDGM paper (Maaløe et al., 2016):

α = β
Nl +Nu

Nl

where Nl and Nu are labelled and unla-
belled data point numbers. We tune β from
{0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0}. We pick
the β with the best dev. performance for each

12Both word and subword-based models are trained with:
https://github.com/google-research/bert.

13https://github.com/huggingface/
transformers.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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model, and randomly select one when there is a
tie. Then we use such fixed β for all other ex-
periments across different training data sizes and
languages.

The results of AUX can be seen in Table 10 along
with M1+M2 results from the original paper. The
parameter size of each model is shown in Table 11.

D.2 mBERT Encoder

The supervised model (SUP-h) adds a single lin-
ear transformation layer on the pooled [CLS] rep-
resentation of mBERT, and M1+M2+BOW adds
the corresponding SDGM framework on the same
mBERT output. Like BERT, as mBERT uses a
shared WordPiece vocabulary across languages, the
parameter size of the same model will be the same
for each language. All model and training details
along with parameter size can be found in Table
12.

For tuning the hyperparameter of
M1+M2+BOW, different from LSTM en-
coder with VAE pretraining, we set α fixed
to α = β. We tune β on EN with 8 labels
in semi-supervised settings with 5 trials from
{0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0}, pick
the β with the best average dev. performance, and
then apply it to all other languages and data sizes.
We report the mean and variance over 5 trials, and
the full results for both models can be seen in
Table 13.

E Conditional document generation

Semi-supervised deep generative models can not
only explore the complex data distributions, but
are also equipped with the ability to generate doc-
uments conditioned on latent codes, which is an-
other advantage over other semi-supervised mod-
els. We follow Kingma et al. (2014) by varying
latent variable y for generation, and fixing z2 ei-
ther sampled from the prior (Table 14) or obtained
from the input through the inference model (Ta-
ble 15), and generate sequence samples from the
trained semi-supervised models M1+M2+BOW
and M1+M2+GRU.14

Overall, all models generate words or utterances
directly related to the class, with the class labels
among top nouns generated by BOW models, and
subjects/objects in sentences from GRU are also
pertaining to corresponding classes. However, we
also observe that the utterances in GRU are not

14All models are treined on ENen-fr with 128 labelled data.

fluent with many repetitions. We argue that it
is caused by the high proportion of UNK in the
training corpus that makes the sequence generation
harder, supported by the fact that the most probable
word in all BOW decoders is always UNK.
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Hyperparameter NXVAE SNXVAE
vocabulary size 4e4 (EN), 5e4 (DE, FR) 1e4
embedding size 300 300
embedding dropout 0.2 0.2
encoder BiLSTM BiLSTM
encoder input dimension 300 300
encoder hidden dimension 600 for each direction 600 for each direction
encoder layer number 2 2
encoder dropout 0.2 0.2
discriminator configuration [2 × 600, 1024, leakyrelu, 1024, 1] [2 × 600, 1024, leakyrelu, 1024, 1]
inferer (h to µ or log σ) configuration [2 × 600, 300, batchNorm, relu, 300] [2 × 600, 300, batchNorm, relu, 300]
z dimension 300 300
parameter size 41.8M (EN-DE and EN-FR)/ 44.9M (DE-FR) 17.8M
running time ∼ 1 day less than 1 day
tie embeddings of encoder and decoder True True
sentence length threshold median length of training data median length of training data
α in Equation 3 {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0} 0.1
training epoch 500 500
early stopping 5 epochs on dev. negative likelihood 5 epochs
batch size 128 128
validate on dev. every 4000 iterations every 4000 iterations
optimiser Adam Adam
learning rate 5e-4 5e-4

Table 5: Model and training details of NXVAE.

Hyperparameter BERTW BERTSW

vocabulary size 84101 10005
hidden size 300 300
max position embeddings 512 512
hidden dropout prob 0.1 0.1
hidden activation gelu gelu
intermediate size 2100 1800
num attention heads 12 12
attention probs dropout prob 0.1 0.1
num hidden layers 12 11
parameter size 45.0M 19.1M
running time ∼ 5 days ∼ 3 days

max seq length 200
max predictions per seq 30
masked lm prob 0.15
batch size 32
optimiser Adam
learning rate 1e-4
weight decay 0.01
num train steps 1e6

Table 6: Model and training details of BERTW and BERTSW.

Hyperparameter BERTW/BERTSW VAE-based
vocabulary same as pretrained model same as pretrained model
training epoch 5000 5000
early stopping 1000 epochs on dev. accuracy 1000
batch size 16 16
running time ∼5.5h ∼2.5h
sentence length 200 200
optimiser Adam Adam
learning rate 2e-5 5e-4
classifier [input dim, class num] [input dim, 1024, leakyrelu, 1024, class num]

Table 7: LSTM encoder with VAE pretraining: model and training details of MLDoc supervised document classi-
fication. The running time is calculated on ENEN-DE with 32 labelled data for all models.
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EN-DE EN DE

32 64 128 FULL 32 64 128 FULL

BERTW 67.7 72.7 84.6 91.8 58.1 77.5 89.2 94.0
BERTSW 54.4 69.0 83.0 91.4 62.2 80.1 84.3 94.1

NXVAE-z1 63.9 71.4 77.0 91.6 65.0 73.8 82.7 93.0
SNXVAE-z1 68.9 76.5 79.2 90.3 69.0 79.4 85.5 91.7

Table 8: LSTM encoder with VAE pretraining: comparisons of word-based models and subword-based models
for BERT and NXVAE in MLDoc supervised document classification. Word-based results are directly from the
original paper.

Hyperparameter M1+M2 M1+M2+BOW M1+M2+GRU AUX+BOW AUX+GRU
training epoch 5000 5000 5000 5000 5000
early stopping 1000 1000 1000 1000 1000
best β 0.1 0.2 10.0 20.0 5.0
z1 dim 300 300 300 300 300
z2 dim 300 300 300 300 300
tie embedding - False False False False
running time ∼2h ∼12h ∼14h ∼13h ∼ 14.5h
GRU input dim - - 100 - 100
GRU hidden dim - - 50 - 50
GRU layers - - 1 - 1
GRU dropout prob - - 0.5 - 0.5

Table 9: LSTM encoder with VAE pretraining: model and training details of MLDoc semi-supervised document
classification. The running time is calculated on ENEN-DE with 32 labelled data for all models.

EN-DE EN DE

32 64 128 FULL 32 64 128 FULL

M1+M2 56.6 67.1 70.3 - 52.6 67.2 76.8 -
M1+M2+BOW 79.8 81.7 87.2 - 70.5 79.6 89.7 -
M1+M2+GRU 75.3 79.4 84.9 - 75.1 80.0 87.1 -
AUX+BOW 78.8 81.7 87.7 - 75.2 86.2 89.3 -
AUX+GRU 74.8 80.0 85.1 - 72.2 76.5 87.6 -
EN-FR EN FR

32 64 128 FULL 32 64 128 FULL

M1+M2 71.8 73.5 76.5 - 66.2 78.7 79.7 -
M1+M2+BOW 81.0 85.5 88.2 - 80.3 86.0 88.8 -
M1+M2+GRU 75.3 81.4 83.8 - 80.7 82.3 87.4 -
AUX+BOW 79.8 83.4 87.1 - 80.4 85.7 88.1 -
AUX+GRU 78.3 81.3 86.6 - 80.7 83.2 85.4 -
DE-FR DE FR

32 64 128 FULL 32 64 128 FULL

M1+M2 59.1 70.6 75.4 - 48.5 57.4 60.7 -
M1+M2+BOW 78.0 83.2 88.3 - 81.4 84.5 88.4 -
M1+M2+GRU 74.6 80.5 86.2 - 66.2 77.2 81.9 -
AUX+BOW 74.6 82.9 89.0 - 73.9 79.5 82.1 -
AUX+GRU 70.7 79.5 80.3 - 67.3 81.0 83.6 -

Table 10: LSTM encoder with VAE pretraining: test accuracy of AUX models. The header numbers denote number
of labelled training data instances. The best results are in bold. Other results related to M1+M2 are directly from
the original paper.
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EN DE FR

EMBEDDING MODELS 25.8M 28.8M 28.8M
NXVAE-h 26.8M 29.8M 29.8M
NXVAE-z1 25.8M 28.8M 28.8M
SNXVZE-z1 16.8M 16.8M 16.8M
BERTW 45.0M 45.0M 45.0M
BERTSW 19.1M 19.1M 19.1M

M1+M2 0.9M 0.9M 0.9M
M1+M2+BOW 38.5M 44.5M 44.5M
M1+M2+GRU 43.2M 49.2M 49.2M
AUX+BOW 43.8M 49.8M 49.8M
AUX+GRU 48.5M 54.5M 54.5M

Table 11: LSTM encoder with VAE pretraining: parameter size of all supervised and semi-supervised models.
The difference between NXVAE-based models and BERTW is caused by language specific vocabulary of NXVAE,
where only one vocabulary is used for mono-lingual document classification.

Hyperparameter SUP-h M1+M2+BOW
vocabulary size 1e5 1e5
z1 dim 768 768
z2 dim 768 768
tie embedding True True
best β - 10.0
training epoch 500 500
early stopping 100 epochs on dev. accuracy 100
batch size 4 4
running time ∼1h ∼5h
sentence length 200 200
optimiser Adam Adam
learning rate 2e-5 2e-5
classifier [768, class num] [768, class num]
parameter size 178M 185M

Table 12: mBERT encoder: model and training details of MLDoc document classification. The running time is
calculated on ENEN-DE with 8 labelled data for both models.

Model 8 16 32 1K

E
N SUP-h 42.2 (4.7) 68.9 (9.7) 82.4 (3.0) 94.2 (0.8)

M1+M2+BOW 63.5 (12.8) 77.1 (2.8) 85.0 (1.5) -

D
E SUP-h 55.9 (9.9) 63.5 (10.2) 81.5 (6.5) 95.0 (0.3)

M1+M2+BOW 63.2 (11.5) 70.9 (6.3) 87.5 (2.6) -

F
R SUP-h 38.6 (3.3) 55.9 (11.4) 78.5 (3.0) 93.5 (0.7)

M1+M2+BOW 42.4 (4.6) 66.4 (9.1) 81.1 (2.7) -

R
U SUP-h 49.4 (6.0) 53.8 (2.6) 68.2 (5.2) 87.2 (0.4)

M1+M2+BOW 51.5 (6.0) 61.5 (4.6) 72.6 (2.3) -

Z
H SUP-h 63.4 (12.5) 70.7 (6.5) 81.2 (3.9) 91.1 (0.1)

M1+M2+BOW 65.1 (11.1) 77.1 (2.4) 81.4 (3.8) -

Table 13: mBERT Encoder: MLDoc average test accuracy for both SUP-h and M1+M2+BOW models. The
variance is in the bracket after the mean score. The first row denotes the number of labelled instances. The best
results are in bold.
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Class M1+M2+BOW M1+M2+GRU

C 1: UNK, industry, credibility, agreement, ticket, co, decision, con-
cept, ltd, people, sale, government, market, president, designations,
minister, firm, plans, partner, deal

1: the bank said it lump of the united ... the new girls ltd said
the concept ... the new extraordinary and the concept ... said the
statement ...

2: UNK, ticket, year, shares, days, results, age, net, demand,
securities, period, stock, concept, construction, bank, programme,
procedure, statement, value, commission

2: the bank of organisation said on thursday that it had revoked by
the first girls ... first year to ...

E 1: UNK, finance, market, loophole, budget, surprise, bank, ba-
sis, issue, government, system, exchanges, committee, municipal,
world, securities, holding, net, confidence, minister

1: the international basic fund said on acknowledged that it said
on publish to vote on publish to a bank said on publish ...

2: UNK, ticket, city, escalation, finance, bank, budget, concept,
revenue, net, price, sale, trade, tax, prices, markets, series, rate,
fund, pack

2: the bank of submitting on publish florence said on acknowl-
edged that ... it said on publish that ... to the new coherent said on
acknowledged to bumping the bank said the bank ...

G 1: UNK, government, state, minister, delay, pension, work, presi-
dent, plans, summit, ticket, people, procedure, conference, ambas-
sador, country, talks, opposition, nations, house

1: the president remarkable said on thursday it surprise of ethno-
cide arrival the infidels of the islamic of the waterway the bank
was ...

2: UNK, state, president, war, police, office, authorities, prob-
lem, information, result, country, rights, committee, city, people,
biodiversity, justice, health, securities, issue

2: the summit in the authors and a virtual geological and the first
time of the first party of the first time of ...

M 1: UNK, ticket, phase, market, government, minister, markets,
banks, bank, budget, floor, points, rate, traders, procedure, strength,
economy, finance, prices, loophole

1: the database distinctions the market closed sharply entire on
thursday on acknowledged ...

2: UNK, markets, market, stock, loophole, points, trade, shares,
ticket, corporate, speaker, issues, fund, bank, group, exchanges,
results, anticipation, companies, surprise

2: the following of the the the ries and not have embargo costs
unveiling on publish pleading a impact of the japanese ... market
and a bank was to be of the bank ...

Table 14: Generated samples from M1+M2+GRU (BOW) for class C (Corporate/Industrial), E (Economics), G
(Government/Social), and M (Markets). We randomly sample z2 from the prior while varying y.
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1: Fiat shares lost nearly two percent on Wednesday, slipping below the psychologically important 4,000 lire level in thin trading on a generally
easier Milan Bourse, traders said. ”The stock has gradually lost ground but without any major sell orders. At the moment there just isn’t any interest
in Fiat,” one trader said. At 1439 GMT, Fiat was quoted 1.99 percent off at 3,980 lire, after touching a day’s low of 3,970 lire, in volume of just
under four million shares. The all-share Mibtel index posted a 0.47 percent fall. – Milan newsroom +392 66129589 (E)
1: fiat shares lost nearly two percent on UNK slipping below the psychologically important UNK lire level in thin trading on a generally easier milan
UNK traders UNK UNK stock has gradually lost ground but without any major sell UNK at the moment there just UNK any interest in UNK one
trader UNK at UNK UNK fiat was quoted UNK percent off at UNK UNK after touching a UNK low of UNK UNK in volume of just under four
million UNK the UNK UNK index posted a UNK percent UNK UNK milan UNK UNK UNK
2: The top prosecutor of Honduras said on Wednesday that his country is a haven for money laundering. ”In Honduras it’s easy to launder money, the
system allows it,” Edmundo Orellana told reporters. ”It’s permitted because there is no law in Honduras that obligates a Honduran to explain the
origin of his wealth.” Honduran authorities estimate that $300 million in illegal drug profits is laundered through the country each year. Money
laundering is not classified as an offence in Honduras, although legislators have been working on a bill to outlaw it since last year. (G)
2: the top prosecutor of honduras said on wednesday that his country is a haven for money UNK UNK honduras UNK easy to launder UNK the
system allows UNK UNK UNK told UNK UNK permitted because there is no law in honduras that UNK a honduran to explain the origin of his
UNK honduran authorities estimate that UNK million in illegal drug profits is laundered through the country each UNK money laundering is not
classified as an offence in UNK although legislators have been working on a bill to outlaw it since last UNK
Class M1+M2+BOW M1+M2+GRU

C 1: UNK, ticket, profit, concept, net, market, escalation, share, results,
shares, delay, group, revision, profits, period, misery, statement, bank,
key, procedure

1: the bank said on fourthly it has inject requirement of the first group
of ...

2: UNK, concept, ticket, group, market, shares, delay, president,
stock, companies, bank, statement, government, stake, price, co,
state, girls, meeting, ltd

2: the bank of organisation said on acknowledged that it had a
meeting ...

E 1: UNK, ticket, escalation, inflation, key, revision, delay, period,
floor, consumer, bank, contexts, result, instance, show, market, level,
government, gross, price

1: the bank of submitting on publish florence said on acknowledged
that it said on publish that ... the new coherent ... to the bank ...

2: UNK, ticket, bank, government, finance, market, state, budget, tax,
minister, rate, delay, debt, issue, trade, investment, surprise, policy,
sale, procedure

2: the international basic fund said on acknowledged that it said on
publish ... to vote on acknowledged to a bank ...

G 1: UNK, world, ticket, policies, time, surprise, procedure, demand,
campaigns, group, team, president, match, communities, place, min-
ister, bank, government, number, relief

1: the ana police said acknowledged it had a tackling ...

2: UNK, president, government, people, state, minister, pension,
police, designations, meeting, talks, opposition, leaders, country,
security, result, statement, authorities, peace, summit

2: the president remarkable said on thursday that it surprise of ethno-
cide arrival infidels of her wines of her recall and the white house of
...

M 1: UNK, shares, ticket, contexts, touch, market, stock, points, esca-
lation, share, traders, phase, immigrants, procedure, price, pledges,
revision, agriculture, group , level

1: the bank of the settlement following the following vocational
meda of the deal was delay ... and the market ...

2: UNK, market, ticket, bank, traders, anticipation, delay, procedure,
trade, prices, immigrants, rate, government, money, meda, escalation,
demands, exchange, points, reallocation

2: the bank of the settlement following the following vocational value
of the relative gains of ...

Table 15: Generated samples from M1+M2+GRU (BOW) by varying class label y. We take z2 from the input
examples shown above. For each example, the first is the original document with the class label in the end, and the
second is the real input to the system.


