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Abstract

Neural natural language generation (NLG) and
understanding (NLU) models are data-hungry
and require massive amounts of annotated data
to be competitive. Recent frameworks ad-
dress this bottleneck with generative models
that synthesize weak labels at scale, where
a small amount of training labels are expert-
curated and the rest of the data is automatically
annotated. We follow that approach, by au-
tomatically constructing a large-scale weakly-
labeled data with a fine-tuned GPT-2, and em-
ploy a semi-supervised framework to jointly
train the NLG and NLU models. The pro-
posed framework adapts the parameter updates
to the models according to the estimated label-
quality. On both the E2E and Weather bench-
marks, we show that this weakly supervised
training paradigm is an effective approach un-
der low resource scenarios with as little as 10
data instances, and outperforming benchmark
systems on both datasets when 100% of train-
ing data is used.

1 Introduction

Natural language generation (NLG) is the task that
transforms meaning representations (MR) into nat-
ural language descriptions (Reiter and Dale, 2000;
Barzilay and Lapata, 2005); while natural language
understanding (NLU) is the opposite process where
text is converted into MR (Zhang and Wang, 2016).
These two processes can thus constrain each other
– recent exploration of the duality of neural natu-
ral language generation (NLG) and understanding
(NLU) has led to successful semi-supervised learn-
ing techniques where both labeled and unlabeled
data can be used for training (Su et al., 2020; Tseng
et al., 2020; Schmitt and Schütze, 2019; Qader
et al., 2019; Su et al., 2020).

Standard supervised learning for NLG and NLU
depends on the access to labeled training data – a
major bottleneck in developing new applications.
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Figure 1: Training scenario: Each × represents a labeled
data instance. The goal is to learn both from few human-
labeled instances (inner) and large amounts of weakly labeled
data (outer).

In particular, neural methods require a large anno-
tated dataset for each specific task. The collection
process is often prohibitively expensive, especially
when specialized domain expertise is required. On
the other hand, learning with weak supervision
from noisy labels offers a potential solution as it
automatically builds imperfect training sets from
low cost labeling rules or pretrained models (Zhou,
2018; Ratner et al., 2017; Fries et al., 2020). Fur-
ther, labeled data and large unlabeled data can be
utilized in semi-supervised learning (Lample et al.,
2017; Tseng et al., 2020), as a way to jointly im-
prove both NLU and NLG models.

To this end, we target a weak supervision sce-
nario (shown in Figure 1) consisting of small, high-
quality expert-labeled data and a large set of un-
labeled MR instances. We propose to expand the
labeled data by automatically annotating the MR
samples with noisy text labels. These noisy text
labels are generated by a weak annotator, which is
built upon recent works that directly fine-tune GPT-
2 (Radford et al., 2019) on joint meaning repre-
sentation (MR) and text (Mager et al., 2020; Hark-
ous et al., 2020). Then, we jointly train the NLG
and NLU models in a two-step process with semi-
supervised learning objectives (Tseng et al., 2020).
First, we use pretrained models to estimate quality
scores for each sample. Then, we down-weight the
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loss updates in the back-propagation phase using
the estimated quality scores. This way, the models
are guided to avoid mistakes of the weak annotator.

On two benchmarks, E2E (Novikova et al.,
2017b) and Weather (Balakrishnan et al., 2019),
we utilize varying amount of labeled data and show
that the framework is able to successfully learn
from the synthetic data generated by weak anno-
tator, thereby allowing jointly-trained NLG and
NLU models to outperform other baseline systems.

This work makes the following contributions:

1. We propose an automatic method to overcome
the lack of text labels by using a fine-tuned
language model as a weak annotator to con-
struct text labels for the vast amount of MR
samples, resulting in a much larger labeled
dataset.

2. We propose an effective two-step weak su-
pervision using the dual mutual information
(DMI) measure which can be used to modu-
late parameter updates on the weakly labeled
data by providing quality estimates.

3. We show that the approach can even be used
to improve upon baselines with 100% data to
establish new state-of-the-art performance.

2 Related Work

Learning with Weak Supervision. Learning
with weak supervision is a well-studied area that
is popularized by the rise of data-driven neural
approaches (Ratner et al., 2017; Safranchik et al.,
2020; Bach et al., 2017; Wu et al., 2018; Dehghani
et al., 2018; Jiang et al., 2018; Chang et al., 2020a;
de Souza et al., 2018). Our approach incorpo-
rates similar line of work, by providing noisy la-
bels (text) with a fine-tuned LM which incorpo-
rates prior knowledge from general-domain text
and data-text pair (Budzianowski and Vulić, 2019;
Chen et al., 2020; Peng et al., 2020; Mager et al.,
2020; Harkous et al., 2020; Shen et al., 2020;
Chang et al., 2020b, 2021b,a), and use it as the
weak annotator, similar by functionality to that of
fidelity-weighted learning (Dehghani et al., 2017),
or data creation tool Snorkel (Ratner et al., 2017).

Learning with Semi-Supervision. Work on
semi-supervised learning considers settings with
some labeled data and a much larger set of unla-
beled data, and then leverages both labeled the unla-
beled data as in machine translation (Artetxe et al.,

2017; Lample et al., 2017), data-to-text genera-
tion (Schmitt and Schütze, 2019; Qader et al., 2019)
or more relevantly the joint learning framework for
training NLU and NLG (Tseng et al., 2020; Su
et al., 2020). Nonetheless, these approaches all
assume that a large collection of text is available,
which is an unrealistic assumption for the task due
to the need for expert curation. In our work, we
show that both NLU and NLG models can bene-
fit from (1) automatically labeling MR with text,
and (2) by semi-supervisedly learning from these
samples while accounting for their qualities.

3 Approach

We represent the set of meaning representation
(MR) as X and the text samples as Y. There are no
restrictions on the format of the MR: each x ∈ X
can be a set of slot-value pairs, or can take the form
of tree-structured semantic definitions as in Balakr-
ishnan et al. (2019). Each text y ∈ Y consists of a
sequence of words.

In our setting, we have (1) k labeled pairs and
(2) a large quantity of unlabeled MR set XU where
|XU | � k > 0. (We force k > 0 as we believe
a reasonable generation system needs at least a
few demonstrations of the annotation.) This is a
realistic setting for novel application domains, as
unlabeled MR are usually abundant and can also
be easily constructed from predefined schemata.
Notably, we assume no access to outside resources
containing in-domain text. The k annotations are
all we know about in-domain text.

The core of our approach consists of first label-
ing MR samples with text, and then training on
the expanded dataset. We start with describing the
process of creating weakly labeled data (§4). Next,
we delve into the semi-supervised training objec-
tives for the NLU and NLG models, which allow
the models to learn from labeled and unlabeled
data (§5). Lastly, we explain the training process
where NLG and NLU models are jointly optimized
in two steps: In step 1, we pretrain the models on
the weakly-labeled corpus, then continue updat-
ing the models on the combined data consisting
of the weak and real data in step 2. Importantly,
to account for the noise that comes with the au-
tomatic weak annotation, step 2 trains the model
with quality-weighted updates (§6). We depict this
process in Figure 2.
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1. Build Label Model 2. Label Dataset 3. Train Model

Label Model: Optimize PGPT-2 (X,Y)

[MR] restaurant_name=Green Man, food=english,
price_range=cheap, customer_rating=average,
family_friendly=yes, near=sunshine vegetarian cafe
[TEXT] Green Man offers british food in the low price 
range. it is family friendly with a 3 out of 5 star rating.
you can find it near the sunshine vegetarian cafe
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[MR] restaurant_name=blue spice, food=Indian,
price_range=high, customer_rating=average
[TEXT] Blue spice is an expensive Indian restaurant
with an average customer rating.
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Figure 2: Depiction of the proposed framework. In joint learning, gradients are back-propagated through solid lines.

4 Creating Weakly Labeled Data

We construct synthetic data in two ways: (1) cre-
ating more MR samples (see §4.1), and (2) by
creating a larger parallel set of MRs with texts
(see §4.2).

4.1 Generating Synthetic MR Samples

We consider a simple way of MR augmentation via
value swapping. This creates more unlabeled MR
to be annotated by the weak annotator and also
provide a substantial augmentation that benefits the
autoencoding on MR samples (see Equation 3) by
exposing it to a larger set of MR.
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Figure 3: Depiction of MR augmentation in the E2E corpus.

Since each slot in the MR samples corresponds
to multiple possible values, we pair each slot with
a randomly sampled value collected from the set of
all MR samples to obtain new combination of slot-
value pairs. This way, we create a large synthetic
MR set.

4.2 Creation of Parallel MR-to-Text Set

GPT-2 (Radford et al., 2019) is a powerful lan-
guage model pretrained on the large WebText cor-
pus. Recent work on conditional data-to-text gen-
eration (Harkous et al., 2020; Mager et al., 2020)
demonstrated that fine-tuning GPT-2 on the joint
distribution of MR and text for text-only generation
yields impressive performance.

The fine-tuned model generates in-domain text
by conditioning on samples from the augmented
MR set (XU ). Rather than using GPT-2 outputs

directly, we employ them in a process analogous
to knowledge distillation (Tan et al., 2018; Tang
et al., 2019; Baziotis et al., 2020) where the fine-
tuned GPT-2 provides supervisory signals instead
of being used directly for generation.

We now describe the process of GPT-2 fine-
tuning. Given the sequential MR representa-
tion x1 · · ·xM and a sentence y1 · · · yN in the la-
beled dataset (XL, YL), we maximize the joint
probability pGPT-2(XL, YL), where each sequence
is concatenated into “[MR] x1 · · ·xM [TEXT]
y1 · · · yN”. In addition, we also freeze the input
embeddings when fine-tuning had positive impact
on performance, following Mager et al. (2020). At
test time, we provide the MR samples as context as
in conventional conditional text generation:

ỹj = argmax
yj
{pGPT-2(yj | y1:j−1, x1:N )}

The fine-tuned LM conditions on augmented MR
sample set XU to generate the in-domain text1,
forming the weak label dataset DW = (XU , ỸL)
with noisy labels ỹi ∈ ỸL. In practice, the fine-
tuned LM produces malformed, synthetic text
which does not fully match with the MR it was
conditioned on, as it might hallucinate additional
values not consistent with its MR counterpart.
Thus, it is necessary to check for factual consis-
tency (Moryossef et al., 2019). We address this
point next.

Past findings showed (e.g. (Wang, 2019)) that
the removal of utterance with “hallucinated” facts
(MR values) from MR leads to considerable per-
formance gain, since inconsistent MR-Text cor-
respondence might misguide systems to generate
incorrect facts and deteriorate the NLG outputs.
We filter out the synthetic, poor quality MR-text

1We adopt the Top-k random sampling with k = 2 to en-
courage diversity and reduce repetition (Radford et al., 2019)
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pairs by training a separate NLU model on the orig-
inal labeled data to predict MR from generated text
labels. These MRs can then be checked against
the paired MR in DW via pattern matching as in-
spired by Cai and Knight (2013); Wiseman et al.
(2017). Specifically, we use a measure of semantic
similarity in terms of f-score via matching of slots
between the two MRs. We keep all MR-text pairs
with f-scores above 0.7, as we found empirically
that this criterion retains a sufficiently large amount
of high-quality data. The removed text sentences
are used for unsupervised training objectives as in
Eq. 1-3. Using this method, we create a collection
of parallel MR-text samples (~500k) an order of
magnitude larger than even the full training sets
(~40k for E2E and ~25k for Weather).

5 Joint learning of NLG and NLU

For both NLU and NLG models, we adopt the
same architecture as Tseng et al. (2020), which
use two Bi-LSTM-based (Hochreiter and Schmid-
huber, 1997) encoders for each model. The NLU
decoder for slot-value structured data (e.g., E2E,
Mrkšić et al., 2017) contains several 1-layer feed-
forward neural classifiers for each slot; while for
tree-structured meaning representation in Balakr-
ishnan et al. (2019), the decoder is LSTM-based.
In this framework, both NLU and NLG models are
trained to infer the shared latent variable repeat-
edly – starting from either MR or text, in order to
encourage semantic consistency. Each model can
be improved via gradient passing between them
using REINFORCE (Williams, 1992). This way,
the models benefit from each other’s training in
a process known as the dual learning (Su et al.,
2020), which consists of both unsupervised and
supervised learning objectives. We now go into
details describing them.

Unsupervised Learning. Starting from either a
MR sample or a text sample, the models project the
sample from one space into the other, then map it
back to the original space (either MR or text sam-
ple, respectively), and compute the reconstruction
loss after the two operations. This repetition will
result in aligned pairs between the MR samples and
corresponding text (He et al., 2016). Specifically,
let pθ(y|x) be the probability distribution to map x
to its corresponding y (NLG), and pφ(x|y) be the
probability distribution to map y back to x (NLU).

Starting from x ∈ X , its objective is:

max
φ

Ex∼p(X) log pφ(x|y′); y′ ∼ pθ(y|x) (1)

which ensures the semantic consistency by first
performing NLG accompanied by NLU in direc-
tion x → y′ → x. Note that only pφ is updated
in this direction and pθ serves only as as an auxil-
iary function to provide pseudo samples y′ from x.
Similarly, starting from y ∈ Y , the objective en-
sures semantic consistency in the direction where
the NLU step is followed by NLG: y → x′ → y2:

max
θ

Ey∼p(Y ) log pθ(y|x′); x′ ∼ pφ(x|y) (2)

We further add two autoencoding objectives on
both MR and text samples:

max
θ,φ

Ex∼p(X),y∼p(Y ) log pφ(x|x)pθ(y|y) (3)

Thus, unlabeled text samples can be used as they
are shown to benefit the text space (Y ) by intro-
ducing new signals into learning directions y →
x′ → y and ỹ → y. Thus, we use all in-domain text
data whether they have corresponding MR or not.
Note that following (Tseng et al., 2020), we also
adopt the variational optimization objective upon
the latent variable z which was shown to pull the
inferred posteriors q(z|x) and q(z|y) closer to each
other. In this case, the parameters of both NLG and
NLU models are updated.

Supervised Learning. Apart from the above un-
supervised objectives, we can impose the super-
vised objective on the k labeled pairs:

max
θ,φ

Ex,y∼p(XL,YL) log pθ(y|x)+log pφ(x|y) (4)

Each MR is flattened into a sequence and fed into
the NLG encoder, giving NLG and NLU models an
inductive bias to project similar MR/text into the
surrounding latent space (Chisholm et al., 2017).
As we observed anecdotally3, the information flow
enabled by REINFORCE allows the models to uti-
lize unlabeled MR and text, boosting the perfor-
mance in our scenarios.

2This direction is usually termed as back translation in MT
community (Sennrich et al., 2016; Lample et al., 2018)

3Tseng et al. (2020) noticed similar trend in the experi-
ments.
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6 Learning with Weak Supervision

The primary challenge that arises from the syn-
thetic data is the noise introduced during the gener-
ation process. Noisy and poor quality labels tend
to bring little to no improvements (Elman, 1993;
Frénay and Verleysen, 2013). To better train on the
large and noisy corpus described in section §4 (size
~500k), we employ a two-step training process
motivated by fidelity-weighted learning (Dehghani
et al., 2018). The two-step process consists of (1)
pretraining and (2) quality-weighted fine-tuning to
account for the heterogenous data quality.

Step 1: Pre-train two sets of models on weak and
clean data, respectively. We train the first set of
models (teacher) consisting of NLU, NLG, and
autoencoder (AUTO) models on the clean data. The
second set of models (i.e. NLU and NLG) is the
student that pretrains on the weak data.

Step 2: Fine-tune the student model parameters
on the combined clean and weak datasets. We
use each teacher model to determine the step size
for each iteration of the stochastic gradient descent
(SGD) by down-weighting the training step of the
corresponding student model using the sample qual-
ity given by the teacher. Data points with true la-
bels will have high quality, and thus will be given
a larger step-size when updating the parameters;
conversely, we down-weight the training steps of
the student for data points where the teacher is not
confident. For this specific fine-tuning process, we
update the parameters of the student (i.e. NLG
and NLU models) at time t by training with SGD,
where L(·) is the loss of predicting ŷ for an input
xi when the label is ỹ. The weighted step is then
c(xi, ỹi)∇L(ŷ, ỹ), where c(·) is a scoring function
learned by the teacher taking as input MR xi and
its noisy text label ỹi. In essence, we control the
degree of parameter updates to the student based on
how reliable its labels are according to the teacher.

We denote c(·) as the function of the label qual-
ity based on the dual mutual information (DMI),
defined as the absolute difference between mutual
information (MI)4 in inference directions x → y
and y → x. Bugliarello et al. (2020) shows that
MIx→y correlates to the difficulty in predicting y
from x, and vice versa. Thus we expect the dif-
ference between MIx→y and MIy→x for clean sam-
ple (x, y) to be relatively small compared to noisy

4Mutual information for x → y can be seen as H(x →
y) = HAUTO(y)−HNLG(y|x) (Bugliarello et al., 2020).

samples, since the level of difficulty is largely pro-
portional between NLU and NLG on the samples –
difficulty in inferring x from y will result in harder
prediction of y from x. Based on this intuition, the
DMI score of the sample (x, y) is defined as:

exp

{ ∣∣∣∣∣∣∣∣∣log
qAUTO(y)

qNLG(y|x)︸ ︷︷ ︸
MIx→y

− log
qAUTO(x)

qNLU(x|y)︸ ︷︷ ︸
MIy→x

∣∣∣∣∣∣∣∣∣
}
.

where q(·) are the two respective models. The DMI
for a clean MR-text pair should be relatively small,
as the two sides contain proportional semantic in-
formation5, and so poor quality samples tend to
have higher DMI scores and lower c(·) as they are
less semantically aligned. Thus, c(·) defines the
confidence (quality) the teacher has about the cur-
rent MR-text sample. We use c(·) to scale ηt. Note
that ηt(t) does not necessarily depend on each data
point, whereas c(·) does. We define c(xt, yt) as:

c(xt, yt) = 1−N (DMI(xt, yt))

where N (·) normalizes DMI over all samples in
both clean and weak data to be in [0, 1].

7 Experiment Setting

Data. We conduct experiments on the
Weather (Balakrishnan et al., 2019) and
E2E (Novikova et al., 2017b) datasets. Weather
contains 25k instances of tree-structure annotations.
E2E is a crowd-sourced dataset containing 50k
instances in the restaurant domain. The inputs are
dialogue acts consisting of three to eight slot-value
pairs.

Configurations. Both NLU and NLG models are
implemented in PyTorch (Paszke et al., 2019) with
2 Bi-LSTM layers and 200-dimensional token em-
beddings and Adam optimizer (Kingma and Ba,
2014) with initial learning rate at 0.0002. Batch
size is kept at 28 and we employ beam search with
size 3 for decoding. The score is averaged over
10 random initialization runs. In our implemen-
tation, the sequence-to-sequence models are built
upon the bi-directional long short-term memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997).
For LSTM cells, both the encoder and decoder
have 2 layers, amounting to 18M parameters for

5We found that mutual information for x → y is usually
greater than that of y → x since NLG is a one-to-many and
more difficult process as opposed to NLU.
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Model E2E (NLG) E2E (NLU)

10 50 1% 5% 50% 10 50 1% 5% 50%

WA 0.195 0.287 0.563 0.649 0.714 9.48 11.66 13.20 45.21 65.81
JUG∗ 0.002 0.015 0.726 0.7671 0.819 0.00 0.00 32.24 53.20 78.93

decoupled 0.261 0.279 0.648 0.693 0.793 0.00 0.00 20.51 52.77 73.68
joint 0.218 0.336 0.732 0.764 0.775 0.00 6.18 24.98 49.66 70.33
joint+aug 0.275 0.381 0.748 0.781 0.797 5.88 15.79 25.15 53.20 69.68
step 1 0.441 0.487 0.610 0.642 0.685 13.18 14.28 15.37 44.72 65.20
Ours (step 1+2) 0.489 0.558 0.754 0.775 0.822 15.81 23.67 34.09 56.33 72.45

Weather (NLG) Weather (NLU)

Model 10 50 1% 5% 50% 10 50 1% 5% 50%

WA 0.261 0.332 0.518 0.567 0.611 8.42 30.64 66.41 70.19 75.26
JUG∗ 0.005 0.244 0.618 0.670 0.726 0.00 33.48 67.44 79.19 89.17

decoupled 0.250 0.288 0.598 0.632 0.719 0.00 28.21 70.24 73.46 88.45
joint 0.270 0.348 0.577 0.639 0.658 0.00 24.52 64.30 69.92 86.86
joint+aug 0.329 0.361 0.589 0.662 0.671 4.21 26.33 67.43 71.19 87.10
step 1 0.371 0.429 0.570 0.607 0.632 12.19 35.89 72.90 72.01 84.73
Ours (step 1+2) 0.401 0.458 0.644 0.672 0.717 16.62 42.74 75.94 80.36 87.77
‘

Table 1: Performance for NLG (BLEU-4) and NLU (joint accuracy (%)) on E2E and Weather datasets with increasing amount
of labeled data from 10, 50 labeled instances to 1%, 5%, and 100% of the labeled data (DL). Models that have access to
unlabeled ground-truth text labels are marked with *. We provide results for the NLG and NLU models trained separately
using supervised objectives alone (decoupled), our semi-supervised joint-learning model (joint), joint with all unlabeled data
(joint+aug), and weakly-supervised models (step 1). Step 1+2 denotes the full proposed approach.

DL DW XU YSL YWL

JUG X 7 X X 7

WA X 7 7 7 7

decoupled X 7 7 7 7

joint X 7 X 7 7

joint+aug X 7 X 7 X
step 1 7 X X 7 X

Ours (step 1+2) X X X 7 X

Table 2: Summary of training data used in each model.
Sources of data include labeled data (DL), unlabeled MR
(XU ), weakly labeled data (DW ), 100% real text (YSL), and
weak text labels (YWL).

the seq2seq model. All models were trained on
1 Nvidia V100 GPU (32GB and CUDA Version
10.2) for 10k steps. The average training time
for seq2seq model was approximately 1 hour, and
roughly 2 hours for the proposed semi-supervised
training with 100% data. The total number of up-
dates is set to 10k steps for all training and patience
is set as 100 updates. At decoding time, sentences
are generated using greedy decoding.

8 Results

We first compare our model with other baselines
on both datasets, then perform a set of ablation
studies on the E2E dataset to see the effects of each
component. Finally, we analyze the strength of
the weak annotator, and the effect of the quality-
weighted weak supervision, before concluding with
the analysis of dual mutual information.

E2E NLG BLEU-4
TGEN (Dušek and Jurcicek, 2016) 0.6593
SLUG (Juraska et al., 2018) 0.6619
Dual supervised learning (Su et al., 2019) 0.5716
JUG (Tseng et al., 2020) 0.6855
GPT2-FT (Chen et al., 2020) 0.6562
WA (Harkous et al., 2020) 0.6445
Ours (step 1+2) 0.7025

Weather NLG BLEU-4
S2S-CONSTR (Balakrishnan et al., 2019) 0.7660
JUG (Tseng et al., 2020) 0.7768
Ours (step 1+2) 0.7986

Table 3: For comparison, we show the performance of pre-
vious systems on the datasets following the original split, so
the scores are not comparable to Table 1.

In particular, we experiment with various low
resource conditions of training set (10 instances,
50 instances, 1% of all data, 5% of all data). To
show that our proposed approach is consistently
better, we include the scenario with 0-100% of the
data at 10% interval, to show that performance does
not deteriorate as more training samples are added
(Figure 4). Table 2 shows the summary of training
data used for all models in Table 1. We compare our
model with (1) a fine-tuned GPT2 model (GPT2-
FT) that uses a switch mechanism to select between
input and GPT2 knowledge (Chen et al., 2020)6,
(2) a fine-tuning approach to be used as the weak

6https://github.com/czyssrs/
Few-Shot-NLG

https://github.com/czyssrs/Few-Shot-NLG
https://github.com/czyssrs/Few-Shot-NLG


824

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of weak data

76.5

77.0

77.5

78.0

78.5

79.0

BL
EU

4

w/o quality weighting
quality weighting

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of strong data

68

70

72

74

76

78

80

82

BL
EU

4

w/o quality weighting
quality weighting

Figure 4: Model performance (BLEU-4) on 5% E2E data with varying percentages of strong and weak data with and without
DMI-based quality weighting. Left plot begins with models trained on labeled data while right plot starts with the weak
synthesized dataset instead.

Method
NLU NLG

Miss Redundant Wrong Fluency Miss Wrong
decoupled 72 78 87 4.10 69 73
JUG 65 72 75 4.23 64 65
Ours (step 1+2) 54 77 68 4.50 63 61

Table 4: Human evaluation on the sampled E2E outputs (100
instances) for models with 1% training data. Numbers of
missing, redundant and wrong predictions on slot-value pairs
are reported for NLU; fluency, numbers of missing or wrong
generated slot values are listed for NLG.

annotator (WA) that predict text from MR or MR
from text, depending on the input format during
fine-tuning (Harkous et al., 2020)7, and (3) the
semi-supervised model 8 (JUG) from Tseng et al.
(2020). Note that the specialized encoder in GPT2-
FT cannot be easily adapted to the tree-structured
input in Weather, and so we do not provide its score
on the Weather dataset.

In Table 1, we show that our proposed approach
(step 1+2) generally performs better than the base-
lines for both tasks (NLG and NLU) for most se-
lected labeled data sizes. We show that even with
only 10 labeled instances, our approach (step 1+2)
is able to yield decent results compared to the base-
lines. The difference between models tends to
be larger for settings with few training instances,
and the advantage of the method diminishes as
the amount of labeled data available for JUG in-
creases, to the point where JUG is able to outper-
form the proposed approach. Overall, the benefit
of the noisy supervisory signal from the weak data
is able to boost performance, especially at lower
resource conditions.

We observe that training with weakly labeled
data alone (step 1) is not sufficient, and so strong
data is required to provide the supervisory signals

7No released source code so we re-implemented it based
on paper.

8https://github.com/andy194673/
Joint-NLU-NLG

necessary (step 2). Further, the fact that joint+aug
displays noticeable improvements over joint sug-
gests that simply having augmented text helps
to improve the encoded latent space as projected
by both the NLU and NLG encoders. This also
shows an alternative way to introduce additional in-
domain information to both models, even though
the NLU model does not benefit directly from ad-
ditional text. Importantly, our approach shows that
the weak annotator is able to bridge the gap as
defined by the access to ground-truth text labels
in JUG – outperforming it significantly at low re-
source conditions (10, 50, 1%, 5%) with the differ-
ence in NLG being as large as 48.7 BLEU points
with 10 instances. We find that the proposed model
also performs well in the high resource (100% of
labeled data) condition, as shown in Table 3. More-
over, with 100% labeled data, our model is still
able to produce superior performance over some of
the baselines, which shows that weak annotation
does capture additional useful patterns that benefit
the NLG process.

9 Analysis

Error Analysis. Since word-level overlapping
scores usually correlate rather poorly with hu-
man judgements on fluency and information ac-
curacy (Reiter and Belz, 2009; Novikova et al.,
2017a), we perform human evaluation on the E2E
corpus on 100 sampled generation outputs. For
each MR-text pair, the annotator is instructed to
evaluate the fluency (score 1-5, with 5 being most
fluent), miss (count of MR slots that were missed)
and wrong (count of included slots not in MR) are
presented in Table 4, where fluency scores are av-
eraged over 50 crowdworkers. We show that with
1% data, both NLU and NLG models yield signif-

https://github.com/andy194673/Joint-NLU-NLG
https://github.com/andy194673/Joint-NLU-NLG
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Figure 5: Visualization of dual mutual information (DMI) on both datasets where × markers are 50 random samples from
annotated data and ◦ markers are 50 random samples in the weak dataset. Dotted lines are trend lines for ◦ markers and solid
black lines are diagonal reference that correspond to the perfect NLG-NLU balance where both tasks have equal difficulties.

Method
NLG NLU

BLEU-4 (Accuracy (%)) Accuracy (%) (F1)
w/ DF 0.683 (77.69) 24.71 (0.6443)
with DF 0.703 (79.08) 27.19 (0.6840)
with WS 0.733 (82.65) 30.23 (0.7028)
with WS+CW 0.754 (86.44) 34.09 (0.7200)

Table 5: Ablation study of weak supervision (1% E2E labeled
data DL) including data fidelity (DF), the proposed model
(step 1+2) with weak supervision (WS), and WS with quality-
weighted weak supervision (WS+CW).

icantly fewer errors in terms of misses and wrong
facts, while having more fluent outputs. However,
it generates more redundant slot-value pairs which
we attribute to the noisy augmentation that “mis-
guided” the NLU model.

How Strong is the Weak Annotator? To assess
the strength of the weak annotator (WA) itself,
we also computed its NLG scores with varying
amounts of labeled data (see Table 1). We observe
that the WA suffers from a performance drop in
lower resource conditions (i.e. 0.195 BLEU with
10 labeled instances), when the given training sam-
ples are not sufficient for the pretrained model to
converge upon a region of in-domain generation.
However, it yields some quality data when condi-
tioned on a large number of possible MR (i.e. 50%
data), forming a useful in-domain text set (See Ta-
ble 6).

Analysis of Weak Supervision. In Table 5, we
present the results of an ablation study on weak su-
pervision (see §6) where the effect of data fidelity
is stronger on NLU than on NLG, which is due to
the nature of the filtering process which removes
faulty text labels which influences both x → y
and y → y training directions. Next, though weak
supervision boosted the model by giving direct su-
pervision in training directions x→ y and y → x,
the noisy nature of the augmentation limits its ef-

fectiveness. The model is further improved with
the proposed quality-weighted update that takes
into account the sample quality and alleviate the
influence of poor quality samples. Refer to Table 7
for output comparison.

Analysis of the Two-Step Training Process. As
inspired by Dehghani et al. (2018), we justify the
two-step training process by performing two types
of experiments with 5% data (see Figure 4): In
the first experiment, we use all the available strong
data but consider different ratios of the entire weak
dataset – as used in our 2-step approach. In the
second, we fix the amount of weak data and pro-
vide the model with varying amounts of strong
data. The results show that the student models are
generally better off by having the teacher’s super-
vision. Further, pretraining on weak data prior to
fine-tuning on strong data appears to be the better
approach and this motivates the reasoning behind
our two-step approach.

Analysis of the Dual Mutual Information. Fig-
ure 5 depicts DMI with the visualization ofMIx→y
as x-axis and MIy→x as y-axis, in which 100 ran-
domly sampled noisy and ground-truth samples are
plotted for both datasets. On the plot, the diagonal
reference represents the scenario in which NLG
and NLU inference are equally difficult, and we
see that annotated data cluster more around the di-
agonal reference. This means that expert-labeled
samples’ DMI scores tend to be smaller, where
NLU and NLG inference for these samples carry
similar levels of difficulty. Importantly, since DMI
scores are normalized over both clean and noisy
samples, the proximity of data to the trendlines
can then be used to estimate the sample quality –
clean data are closer as compared to the noisy sam-
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mr [name] Giraffe, [eat type] pub, [area] riverside
synthetic reference Giraffe is a pub in the riverside of the city just down the street.

mr [name] Strada, [eat type] restaurant, [food] Italian, [area] city centre, [familyfriendly] no, [near] Avalon
synthetic reference Strada is an Italian restaurant not for the families! it is near Avalon in the city centre.

mr [name] Cocum, [eat type] restaurant, [food] French, [area] riverside, [familyfriendly] no, [near] Raja Indian Cuisine
synthetic reference Cocum sells French food near Raja Indian Cuisine.

Table 6: Display of weakly-labeled data samples.

mr [name] Blue Spice, [eat type] coffee shop, [area] city centre

step 1+2 Blue Spice is a coffee shop in the city centre that of the city.
JUG Blue Spice serves Italian food and is family friendly.
decoupled Blue Spice is an adult Italian coffee shop with high customer rating located in

Table 7: Display of text generations from different models.

ples. Thus clean data will have smaller normalized
scores, higher c(·), and a larger update step. This
further supports the use of the proposed sample
quality-based updates on the parameters.

10 Conclusion and Future Work

In this paper, we show the efficacy of the frame-
work where data is automatically labeled and both
NLU and NLG models learn with quality-weighted
weak supervision so as to account for the individ-
ual data quality. Most importantly, we show that
not only is the two-step training process useful in
improving the model, it yields decent quality text.
This work serves as a starting point for weakly-
supervised learning in natural language genera-
tion, especially for topics related to instance-based
weighting approaches.

For future work, we hope to extend on the frame-
work and propose ways with which it can be incor-
porated into existing text annotation systems.
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Christopher Ré. 2017. Learning the structure of gen-
erative models without labeled data. Proceedings of
machine learning research, 70:273.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural nlg from compositional
representations in task-oriented dialogue. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 831–844.

Regina Barzilay and Mirella Lapata. 2005. Model-
ing local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 141–148, Ann Arbor, Michigan. Association
for Computational Linguistics.

Christos Baziotis, Barry Haddow, and Alexandra
Birch. 2020. Language model prior for low-
resource neural machine translation. arXiv preprint
arXiv:2004.14928.

Paweł Budzianowski and Ivan Vulić. 2019. Hello, it’s
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