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Abstract

In this paper, we address the representation of
coordinate constructions in Enhanced Univer-
sal Dependencies (UD), where relevant depen-
dency links are propagated from conjunction
heads to other conjuncts. English treebanks for
enhanced UD have been created from gold ba-
sic dependencies using a heuristic rule-based
converter, which propagates only core argu-
ments. With the aim of determining which
set of links should be propagated from a se-
mantic perspective, we create a large-scale
dataset of manually edited syntax graphs. We
identify several systematic errors in the orig-
inal data, and propose to also propagate ad-
juncts. We observe high inter-annotator agree-
ment for this semantic annotation task. Using
our new manually verified dataset, we perform
the first principled comparison of rule-based
and (partially novel) machine-learning based
methods for conjunction propagation for En-
glish. We show that learning propagation rules
is more effective than hand-designing heuris-
tic rules. When using automatic parses, our
neural graph-parser based edge predictor out-
performs the currently predominant pipelines
using a basic-layer tree parser plus converters.

1 Introduction

The Universal Dependencies (UD) formalism
(de Marneffe et al., 2014) is a framework for repre-
senting syntactic dependencies between words, pri-
oritizing links between content words. UD parses
provide two levels of analysis. Basic dependencies
form standard syntactic dependency trees in which
each node has exactly one governor (black links on
top in Figure 1). Enhanced dependencies (Schuster
and Manning, 2016) are extensions of these trees
including additional relations (blue links below sen-
tence) with the aim of representing linguistic phe-
nomena such as coordination, control, or relative
clauses. They have been shown to provide valuable

In 1594 PEREZ wrote and published a book .
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Figure 1: UD basic (top) and enhanced (bottom) de-
pendencies. Green dotted link: proposed addition.

input for information extraction tasks (Schuster
et al., 2017). One of the most frequent phenom-
ena addressed by enhanced UD is coordination. In
the English Web Treebank (EWT), more than 15%
of all sentences contain conjoined verbs. Hence,
a good representation of coordination clearly is
crucial for downstream tasks. For example, in Fig-
ure 1, the enhanced layer explicitly captures that
the arguments of the predicate “wrote” also fill the
corresponding slots of “published,” which is highly
relevant for natural language understanding tasks.

In many cases, enhanced representations can be
derived from the gold basic layer in a rule-based
fashion (Schuster and Manning, 2016). The cur-
rently available English enhanced UD treebanks
have been created by applying such a converter.
However, we are not aware of a large study re-
garding their correctness and completeness. Fo-
cusing on precision, the converter only propagates
core arguments. In this paper, we take a comple-
mentary approach, performing a large-scale annota-
tion study in order to determine which set of links
should be propagated from a semantic perspective.
On a new dataset of 1,417 sentences from the EWT
containing conjoined verbs, we verify and if nec-
essary modify/extend the links involved in coordi-
nate constructions. We argue that adjuncts such as
obliques should in fact be propagated at times, e.g.,
in Figure 1, the additional (green dotted) link that
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we propose to add facilitates answering questions
like “When was the book published?”. To the best
of our knowledge, our work constitutes the first
large-scale annotation effort of this kind.

On the basis of our new dataset, we make the
following contributions. First, we estimate the de-
gree of correctness and completeness of the rule-
based converter/existing treebanks. We find that
the converter usually generates correct graphs when
applied on gold basic trees, with some notable
exceptions involving non-parallel syntactic con-
structions (e.g., conjuncts having different voice or
mood). In addition, the converter does not propa-
gate links correctly in presence of multiple interact-
ing conjunctions. Our inter-anntotator agreement
study shows high overlap for propagation decisions,
with F1 between pairs of annotators of about 0.9
on average and around 0.75 for obliques.

Second, we address the question of how to
create high-quality treebanks for enhanced UD
from gold basic dependencies, again focusing on
coordinate constructions. Based on the findings of
our corpus study, we improve the rule-based con-
verter by Schuster and Manning (2016). We also
compare machine-learning (ML) based conjunc-
tion propagation classifiers in the form of (a) SVM-
based classifiers as previously used for Finnish,
Swedish and Italian (Nyblom et al., 2013; Nivre
et al., 2018), and (b) a novel neural approach inte-
grating tree- and RoBERTa-based features. We find
that all systems mostly rely on tree-based features,
but contextual embeddings also provide useful in-
formation. Performance on propagation decisions
has promising F1 around 0.9, already similar to hu-
man agreement. ML-based classifiers outperform
the rule-based converters on the EWT test set.

Third, we compare methods for extracting
propagated dependencies in an automatic pars-
ing setting. The currently predominant approach
is to run a basic-layer tree parser and then the same
converter that has been used for gold standard con-
struction. We propose to use a neural graph-parser
based edge predictor with an architecture similar to
Dozat and Manning (2018) instead, and show that
this approach outperforms pipelines by around 9
points F1 on propagating links in conjunctions.

In sum, our contributions include: (1) a manu-
ally curated large-scale dataset of 1,417 sentences
addressing semantically motivated correct and com-
plete conjunction propagation in enhanced UD; (2)
the proposal of novel neural approaches to conjunc-

tion propagation; and (3) experimental evidence
that these models outperform rule- and pipeline-
based approaches in both gold standard treebank
enhancing and automatic parsing settings. To the
best of our knowledge, our work constitutes the
first principled comparison of various approaches
to propagating conjunctions in enhanced UD on
manually corrected gold standard data for En-
glish. Both our model implementations and the
dataset are freely available.1 We will contribute
our changes to the EWT corpus to the next UD
release.

2 Related Work

Coordinate Constructions in UD are represented
using the conj relation, with the first conjunct being
the head to which all dependencies of the phrase
are attached (see Figure 1). In the basic layer, all
governors and dependents of a conjoined phrase are
attached to the first conjunct. In the enhanced layer,
relations are propagated to the dependent if sug-
gested by the semantics of the sentence.2 Schuster
and Manning (2016) present an algorithm for cre-
ating enhanced dependencies automatically based
on the basic layer. While it propagates links with
high precision, it propagates only core arguments
by design (see Appendix A). In addition, it is highly
reliant on correct basic dependencies (see Sec. 5).

Conjunction propagation classifiers. Nyblom
et al. (2013) present an SVM-based approach
for enhancing Finnish syntax trees. They ob-
serve high performance on conjunction propagation
when operating on gold basic trees, but markedly
worse results when using automatic parser output.
Nivre et al. (2018) evaluate a similar approach for
Swedish and Italian. We show that their approach
also works well for English, and extend it with neu-
ral models and contextualized word embeddings.
Simi and Montemagni (2018) de-lexicalize their
rule-based converter developed for Italian, show-
ing that their language-independent system also
correctly produces most of the propagations for En-
glish. However, they evaluate on EWT, which is
itself the result of a rule-based system. In contrast,
we evaluate on manually checked gold data.

For the related task of dealing with gapping con-
structions such as “Paul likes coffee and Mary tea,”

1https://github.com/boschresearch/
coordinate_constructions_english_
enhanced_ud_eacl2021

2https://universaldependencies.org/u/
overview/enhanced-syntax.html

https://github.com/boschresearch/coordinate_constructions_english_enhanced_ud_eacl2021
https://github.com/boschresearch/coordinate_constructions_english_enhanced_ud_eacl2021
https://github.com/boschresearch/coordinate_constructions_english_enhanced_ud_eacl2021
https://universaldependencies.org/u/overview/enhanced-syntax.html
https://universaldependencies.org/u/overview/enhanced-syntax.html
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Schuster et al. (2018) reconstruct elided predicates
by first parsing into an intermediate representa-
tion and then applying either a rule-based or an
ML-based algorithm to copy over lexical mate-
rial. We here focus on dependency propagation
and operate on gold tokens as annotated in the en-
hanced UD treebanks, which already include traces.
Other related work exists in the area of manual and
rule-based error correction on UD treebanks (Wis-
niewski, 2018; Alzetta et al., 2018).

There is still little published work regarding fully
automatic enhanced UD parsing, however, the
topic has recently been addressed by the IWPT
2020 Shared Task (Bouma et al., 2020). Among
the top-performing systems, several approaches
first parse into basic UD and then added trans-
formation rules (e.g., Heinecke, 2020; Dehouck
et al., 2020). Others directly employ graph parsing
techniques (e.g., Wang et al., 2020; He and Choi,
2020; Hershcovich et al., 2020). The overall win-
ner TurkuNLP (Kanerva et al., 2020) transforms
enhanced UD into a tree format and then makes use
of UDify (Kondratyuk and Straka, 2019). In addi-
tion, much work exists on semantic dependency
parsing (SDP, Oepen et al., 2014, 2015; May and
Priyadarshi, 2017). These works differ from UD-
based approaches as the respective formalisms rep-
resent meaning less close to syntactic structure,
thus not requiring propagation. From a modeling
point of view, our work is most similar to that of
Grünewald and Friedrich (2020), who also use a
graph-based biaffine architecture for enhanced UD
parsing, and to that of Dozat and Manning (2018),
who achieve state-of-the-art results for SDP.

3 Coordinate Constructions Dataset

In this section, we describe our creation of our
manually created dataset and analyse the results.

conj. sentences edited

train 1,926 999
dev 222 222
test 196 196

total 2,344 1,417

Table 1: Coordinate constructions dataset statistics.
conj. sentences: sentences in EWT containing verb
phrase conjunctions; we edited 60% of these.

3.1 Data
Our dataset consists of 1,417 sentences collected
from EWT,3 containing data from five genres of
web media (weblogs, newsgroups, emails, reviews,
and Yahoo! answers).4 The basic dependencies
of this UD gold standard have been derived from
the original Stanford dependencies (de Marneffe
et al., 2006) and were then hand-corrected. The en-
hanced layer has been created using the automatic
converter (Schuster and Manning, 2016, see Ap-
pendix A). We retrieve all sentences containing at
least one conj link between two verbs. More than
15% of all sentences in EWT contain conjoined
verbs. Out of these sentences, we edit all sentences
of the dev and test sets, and 999 sentences of the
training set, amounting to more than 60% of all rel-
evant sentences in EWT (see Table 1). The careful
curation of each sentence took around 10 minutes
on average, amounting to a total annotation effort
of around 240 hours (total costs ca. $4,750). We
exclude 18 sentences when reporting our statistics:
In 12 cases, the conj relation is annotated wrongly
in the basic layer and six sentences contain syntac-
tically non-standard English.5

3.2 Annotation Methodology
The manual corrections of the treebank were per-
formed by a French native speaker with an ex-
tensive background in linguistics. The annotation
project involved regular discussions among all au-
thors to decide on uncertain cases and to ensure
consistency. Additionally, in case of doubt, an En-
glish native speaker with an extensive linguistics
background was consulted. Dependencies were
checked carefully sentence-wise using the ConLL-
U-Editor tool (Heinecke, 2019). If necessary, the
full document was consulted to make sure interpre-
tations were correct in context.

Annotation Guidelines. We verify and modify
all links involved in coordinate constructions in-
cluding conjoined verbs, but also noun or adjectival
phrases. First, we make sure that the automatically
constructed enhanced representations adhere to the
official guidelines for enhanced UD (see Sec. 2),
propagating heads and dependents of conjuncts if

3Linguistic Data Consortium LDC2012T13.
4https://universaldependencies.org/

treebanks/en_ewt/index.html
5Such as “i want to be able to use it in my car, out n about

etc...i guess like an iphone, but thats later on and ,i know what
they are so no suggestions on just goin out to buy one im
talking about right now just for an ipod??” (EWT dev set)

https://universaldependencies.org/treebanks/en_ewt/index.html
https://universaldependencies.org/treebanks/en_ewt/index.html
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A B C

A - 90.1 94.9
B 95.2 - 97.2
C 80.5 77.9 -

Table 2: Inter-annotator agreement on propagated links
for 100 sentences: precision when treating the row an-
notator as gold standard (or, equivalently, recall when
treating the column annotator as gold standard).

the interpretation of the sentence suggests addi-
tional syntactic relations between words.

As each verb may also have its own comple-
ments, this task requires a semantic interpretation
leveraging context and knowledge about selectional
preferences. If an ambiguity has already been re-
solved in the basic layer,6 we follow this interpreta-
tion unless obviously wrong. Second, we propose
to also propagate non-core dependents such as obl,
advcl and advmod if suggested by semantics, an
annotation task similar to prepositional phrase at-
tachment resolution. We only propagate such links
if the adjunct clearly modifies each conjunct (as
in Figure 1). Finally, we extend the attachment
of relative pronouns (ref ) to all antecedents if in-
volved in coordinations. We focus on propagating
dependencies between content words, not propa-
gating relations such as aux or cop, which could be
handled as traces.

Inter-annotator agreement study. We sampled
100 sentences, half of them from cases where
the primary annotator had judged the original ver-
sion to be correct, and half of them cases that in-
cluded modifications. This sample was blindly
re-annotated by two secondary annotators, both
German native speakers with an extensive com-
putational linguistics background. Table 2 shows
agreement in terms of precision and recall on the set
of dependencies resulting from conjunction propa-
gation, i.e., the links involved in conjunctions that
are present in the enhanced layer but not in the ba-
sic layer. For a formal definition, see Appendix B.
Agreement is generally high, particularly between
annotators A and B. Annotator C was more conser-
vative in propagating links, especially in generally
ambiguous cases. However, the links that C prop-
agates are also propagated by A and B. Pairwise
agreement was high on nsubj, obj and xcomp. Mod-
ifier clauses (acl, advcl) and adverbials (advmod)

6For example, in “She was reading or watching a movie,”
“movie” is attached to the second conjunct “watching” in the
basic layer, hence resolving the syntactic ambiguity.

were common sources of disagreement, indicating
the more ambiguous nature of these propagations.
Pairwise scores and more details can be found in
Appendix B.

3.3 Analysis and Discussion
In this section, we analyse and discuss the modifi-
cations made to the original treebanks.

Quantitative Analysis of Changes. Table 3
presents the numbers of dependency relations that
have been added and removed in coordinate con-
structions in the enhanced layer. More specifically,
we consider only the set of links not present in
the basic tree and count modifications regarding
links starting or ending at conjuncts.7 Counts for
coarse-grained labels (e.g., nmod) include all sub-
types (e.g., nmod:for) not explicitly listed in the
table. During our manual correction of the tree-
bank, around 15% of the total enhanced links in-
volved in conjoined phrases were added and about
3% were removed. This confirms that the converter
by Schuster and Manning (2016) is optimized for
precision rather than recall, though our additions of
course include labels that the converter does not ad-
dress. Note that in these cases, removed relations in
Table 3 are caused by fixes regarding attachment in
the basic layer, whose errors had been propagated
to the enhanced layer. In total, we fixed errors in
57 sentences in the basic layer. In 42 of these, this
led to changes in the enhanced layer.

Linguistic Analysis of Changes. One system-
atic error involves links to subjects in passive con-
structions: 18 out of 225 nsubj:pass links were
actually wrongly propagated. All of them have
been changed to nsubj. The reason is that the con-
verter automatically propagates an nsubj:pass link
if the first conjoined verb is in the passive form,
as, e.g., in “These Shiite movements had been sup-
pressed by Saddam Hussein’s regime, but have now
organized and armed themselves” (see Figure 2a).
Another common error (occurring 12 times) is the
propagation of the first conjoined verb’s subject to
the second verb, even though the latter is in imper-
ative mood, as, e.g., in “I think it was the Lincoln
Square area but don’t quote me on that” (see Fig-
ure 2b).

In sentences containing multiple coordinate
constructions, such as “Dr. Fortier and his girl-
friend lashed two canoes together and paddled

7We made some additional fixes (not necessarily related to
coordinations) to the original treebank, see Appendix C.
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They had been suppressed , but have now organized themselves .

nsubj:pass

root

conj

cc

nsubj:pass

(a) Passive voice: nsubj:pass links should not be propagated verbatim if the second conjunct is in active voice.

I think it was Lincoln Square but don’t quote me on that .

nsubj

root

conj
cc

nsubj

(b) Imperative mood: nsubj links should not be propagated if the second conjunct is in imperative mood.

Fortier and his girlfriend lashed two canoes together and paddled down the river .

conj

cc

nsubj
root

conj

cc

nsubj
nsubj

nsubj

(c) Multiple coordinate constructions: nsubj links should be propagated between the second conjuncts of each coordination.

Figure 2: Systematic errors found in the automatic propagation of dependencies. (Only coordination-relevant links
are depicted.) Red dashed link: Incorrect propagation or incorrectly labeled propagation. Green dotted link:
Missing propagation.

label #added #removed #sents #total

acl 14 4 12 68
acl:relcl 13 3 9 190
advcl 32 3 31 167
advmod 46 2 35 6
amod 19 2 14 7
ccomp 9 10 11 50
nmod 32 0 23 102
nmod:poss 11 0 10 18
nsubj 160 30 118 249
nsubj:pass 8 18 25 225
nsubj:xsubj 22 10 17 1688
obj 9 5 12 71
obl 72 0 51 150
ref 12 1 8 61
xcomp 7 5 10 8

all 466 93 386 3060

Table 3: Statistics of modifications made to 1,399 sen-
tences of the EWT. #sents reports the number of sen-
tences in which the respective reported changes were
made, #total reports the number of occurrences of the
label in the enhanced layer of the original treebank.

eight kilometres along the Soper River,” nsubj links
should be present in the enhanced layer between
both conjuncts of the subject noun phrase and both
verbs. However, in the original treebank, the sec-
ond subject conjunct was never propagated to the
second verb (see Figure 2c). Similarly, we also
added many relations in cases of nested coordina-
tions as in “These Shiite movements had been sup-
pressed by Saddam Hussein’s regime, but have now
organized and armed themselves.” The second con-
junct of the conjoined verb phrase is a conjoined
verb phrase itself, but the nsubj link to “armed” was
missing. In total, 194 sentences contain several co-
ordinations, and we modified 92 of them. This phe-
nomenon also accounts for 45 of the added nsubj
links.

Some originally missing propagations concern
adjectival and adverbial modifiers (acl, amod,
advcl, advmod), which are known to be ambiguous
cases. In “Handwritten notes and files on a laptop
were seized,” the adjective “handwritten” clearly
modifies the first conjunct “notes” only, but in “Sev-
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eral Indian scholars and politicians have been ready
to say and endorse anything,” the propagation of
“several” and “Indian” was added during our mod-
ifications. These cases involve world knowledge
that the converter currently does not handle.

Finally, consider the sentence “We recognize
that the state may not require religious groups to
officiate at, or bless, same-gender marriages.” Both
conjuncts take “marriages” as their argument, but
as an obl and as an obj relation, respectively. The
resolution of such non-parallel constructions re-
quires detailed subcategorization information.

4 Modeling

In this section, we describe three approaches to
generating links propagated due to coordination:
(1) an improved version of an existing converter
(Sec. 4.1); (2) ML-based propagation classification
operating on basic trees (Sec. 4.2); and (3) a graph-
parser based approach for directly predicting edges
between tokens (Sec. 4.3). While (1) and (2) may
be used to construct “silver standard” enhanced
UD graphs from gold trees, (3) is applicable in the
automatic parsing setting only.

4.1 Modifications to Rule-based Converter

Based on the error analysis in Sec. 3.3, we modify
the rule-based converter by Schuster and Manning
(2016) as follows. In order to fix errors related
to subject propagation in passive and imperative
constructions, we take the conjunction dependent’s
morphological features into account. In the gold
standard, the Voice feature is considered to be ac-
tive by default. Hence, if the conjunction depen-
dent does not have a Voice feature or is explicitly
marked as active, an nsubj:pass dependency will
be propagated as nsubj. Similarly, if it has the
feature Mood=Imp, an nsubj link will not be prop-
agated. Our second modification propagates com-
mon adjuncts of verbs as well (obl, advmod, and
advcl). We maintain the rule from object propa-
gation that a dependency is only propagated if the
dependent comes after the potential target in the
sentence. Finally, to handle multiple and nested co-
ordinations, we iterate the converter’s conjunction
propagation function until the dependency graph
does not change any more. This allows dependen-
cies that result from propagation to be propagated
themselves, retrieving links that would otherwise
be missed.

4.2 Conjunction Propagation Classifiers
The core idea of ML-based conjunction propaga-
tion classifiers is to take a basic-layer tree and to
decide for each incoming or outgoing dependency
of the head of a coordinated phrase whether to
propagate this dependency to the other coordinated
item(s). We refer to the coordinated nodes as con-
junction head and conjunction dependent and
to the candidate governor/dependent of the second
conjunct as the propagation target. In Figure 1,
these three nodes correspond to “wrote,” “pub-
lished” and “1954” (or “PEREZ”/“book”), respec-
tively. The output is a binary decision whether to
propagate the given dependency or not. In addition
to the features described below, we always provide
the candidate dependency label and direction.

SVM-based Classifier. We re-implement the
method proposed by Nyblom et al. (2013) using
scikit-learn’s SVC with a polynomial kernel of
degree 2.8 The features comprise morphological
information about the tokens for the conjunction
head/dependent and the target, as well as structural
tree features extracted from the basic-layer tree.
For a detailed description, see Appendix D.

Neural network classifier. We pass the sentence
through the transformer-based neural language
model RoBERTa (Liu et al., 2019) and extract the
word embeddings for the first wordpiece tokens
of the conjunction head, the conjunction depen-
dent, and the propagation target. In addition, we
use equivalents of the SVM tree features using
learned embeddings or one-hot encodings (see Ap-
pendix D). The inputs are concatenated and fed to
a multi-layer perceptron, which then outputs the
binary decision whether to propagate the depen-
dency or not. The multi-layer perceptron consists
of two linear layers with hidden sizes 1500 and
500 respectively. We implement the model using
Huggingface’s Transformers library (Wolf et al.,
2019). RoBERTa weights are not fine-tuned.

4.3 Graph-Parser Based Edge Prediction
In addition to the above approaches, we also eval-
uate a graph-parser based approach that predicts
dependencies between tokens directly, i.e., which
does not rely on a basic-layer tree. Our unfactor-
ized architecture is similar to that of Grünewald and
Friedrich (2020), i.e., our model predicts presence
of edges and the corresponding labels in a single

8https://scikit-learn.org

https://scikit-learn.org
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step, treating nonexistence of an edge as simply
another label (∅). As we focus on the dependen-
cies involved in conjunctions, we do not require
the parser’s output to constitute valid graphs.

Embeddings for input tokens are generated by
feeding gold tokens to the RoBERTa tokenizer and
then running the resulting word-pieces through the
RoBERTa-large model. We then generate an em-
bedding ri for the token at position i by forming a
weighted sum of the hidden layers’ embeddings at
the positions corresponding to the first word-piece
token of the original token as suggested by Kon-
dratyuk and Straka (2019). Weights for this scalar
mixture of layers are learned during training. Lay-
ers are randomly dropped during training to prevent
the model from focusing on only a single layer.

For each input embedding ri, we create a head
representation hheadi and a dependent representa-
tion hdepi via two feed-forward neural networks:

hhead
i = FNNhead(ri) (1)

hdep
i = FNNdep(ri) (2)

For each ordered pair (i, j) of tokens, we feed
their respective head and dependent representations
to a biaffine classifier (Dozat and Manning, 2017)
predicting logits si,j over the possible dependency
labels. We use these logits to extract the probabili-
ties P (yi,j) for each label:

Biaff(x1,x2) = x>
1 Ux2 +W (x1 ⊕ x2) + b (3)

si,j = Biaff
(
hhead
i ,hdep

j

)
(4)

P (yi,j) = softmax(si,j) (5)

U, W and b in (3) are learned parameters; ⊕
denotes concatenation. The model is trained to
minimize cross entropy loss w. r. t. the true depen-
dency label between each pair of tokens. If a token
is not assigned any head due to ∅ scoring highest
for all other tokens, we assign the highest-scoring
non-∅-relation and the corresponding head.

The model is simply trained to predict all link
types in enhanced UD graphs. In the training sec-
tion of the EWT corpus, we replace every sentence
that contains a coordinated verb phrase with our
manually corrected version of that sentence, or re-
move it from the corpus if it is one of the 927
conjunction sentences in the training section which
we did not correct. For hyperparameter settings,
see Appendix E.

5 Experiments

In this section, we describe our experiments on cre-
ating enhanced UD representations for coordinate
constructions. Analogous to Nyblom et al. (2013),
we measure precision, recall and F1 on enhanced
links that are the result of propagation in coordi-
nate constructions. For all experiments, we use
gold sentence segmentation and tokenization, and
evaluate on our manually corrected sentences from
the dev and test sets of the EWT corpus.

5.1 Gold Standard Treebank Enhancing

We first address the research question of how to
best generate enhanced representations for tree-
banks with gold standard basic annotations. We
compare the following models: (1) an “Always”
baseline, which simply propagates all incoming
and outgoing links from the conjunction head to
the conjunction dependent(s); (2) the rule-based
converter by Schuster and Manning (2016) and
the variations thereof we developed inspired by
our corpus study; (3) our re-implementation of the
SVM-based classifier by Nyblom et al. (2013); and
(4) our neural-network (NN) based classifier. The
latter uses AdamW (Loshchilov and Hutter, 2017)
with a learning rate of 5e-5, a batch size of 1 and
early stopping. Table 4 reports the results on the
development and test sets of our manually verified
conjunction dataset. The recall of the “Always”
baseline is not at 100% because a small number
of relations change their label during propagation,
e.g., nsubj→nsubj:pass.

Rule-based conversion. We show results for
successively adding components to the original con-
verter (RBC). On the test set, adding propagation
of non-core dependents and allowing several iter-
ations increases recall and improves F1 by more
than 2 points. On the dev set, in contrast, we do
not observe these effects.9 Adding our suggested
passive/imperative fix surprisingly decreased per-
formance. Analysis showed that the cases that our
converter got wrong were caused by erroneous mor-
phological feature annotations in the basic layer.
In sum, our suggested improvements (RBC2) of
heuristically propagating adjuncts (obl, advmod,
acl) and allowing several resolution passes of the

9We assume that the reason is the presence of several
informal-language sentences in the dev set that include mul-
tiple conjunctions (e.g., “etc. etc. etc.”), whose annotation is
unclear even in the basic gold standard.
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converter seem to improve treebank enhancing, pro-
vided that the basic layer is correct.

ML-based conversion. Overall, the SVM and
NN models show similar performance. As they
perform already close to human agreement (see
Table 2), further improvement may actually indi-
cate overfitting. On the test set, the ML-based
methods outperform the heuristic rule-based meth-
ods, surpassing the original converter by over 4
points F1. We conclude that learning structural
rules based on actual gold standard data is more
effective than hand-designing them. Differences
on the dev set are less pronounced despite models
being optimized on this data, again hinting to some
qualitative differences between the two sets.

In order to determine which sources of infor-
mation are most relevant, we perform ablation ex-
periments for both classifiers. The features rep-
resenting the candidate dependency label and the
direction of the link are essential and kept in each
case. Both the SVM and the NN classifiers draw
most of their information from tree-based features.
This effect is particularly pronounced for the SVM
classifier, where performance drops by 10 to al-
most 20 points F1 when ommitting these features.
The NN classifier’s performance does not deteri-
orate as strongly under the same condition, indi-
cating that some syntactic information can also be
retrieved from contextualized word embeddings
(see e.g., Tenney et al., 2019). Nonetheless, in
most experiments, adding token features improves
performance slightly, showing that they do contain
important information for propagation decisions.

5.2 Propagating Conjunction Links in
Automatic Parsing Setting

For the scenario of parsing from raw tokens, we
compare two state-of-the-art parsers, StanfordNLP
(Qi et al., 2018) and UDify (Kondratyuk and Straka,
2019), combined with the rule-based converter or
ML-based conjunction propagators, and our graph-
parser based edge predictor. The latter is trained
on the subset of training sentences that either do
not contain coordinated verb phrases or that were
corrected by us. Hyperparameters and training
settings are given in Appendix E.

Results for these experiments can be found in
Table 5. The impact of the quality of the parsed
basic dependencies is evident: Results are much
better for the UDify parser (LAS F1 of 89.4 for
basic dependencies on the EWT dev set) than for

Dev Test
P R F P R F

“Always” baseline 23.1 99.6 37.5 28.0 99.6 43.7

RBC 94.8 86.4 90.4 95.2 76.9 85.0
+ non-core deps 93.7 86.4 89.9 94.9 79.7 86.7

+ iteration (RBC2) 90.1 86.8 88.4 93.9 81.5 87.2
+ passive fix 91.7 85.3 88.4 95.7 78.6 86.3

SVM 87.6 87.9 87.8 93.4 85.4 89.2
- tree features 75.5 78.0 76.8 76.5 63.7 69.5
- token features 86.3 87.5 86.9 92.3 85.1 88.5

NN 87.0 87.9 87.4 92.0 85.8 88.8
- tree features 87.1 86.4 86.8 88.0 78.6 83.1
- token features 87.3 88.3 87.8 92.2 84.3 88.1

Table 4: Predicting relation propagation for coordi-
nate constructions on gold basic trees. Precision, re-
call and F1 on propagated relations in the predicted vs.
gold dependency graphs in our manually verified con-
junction dataset. The gold dev and test sets contain 273
and 281 instances, respectively.

StanfordNLP (LAS F1 of 87.4). In the automatic
setting, our heuristic extensions improve results
compared to using the original converter, and there
is no decrease in F1 on dev. As in the gold standard
settings, ML-based extensions improve upon RBC
on test, but not dev. Of the systems based on basic-
layer tree parsers, RBC2 works best. However,
performance of all pipeline systems show rather
poor performance at or below an F1 of 70. Our
graph-parser based edge predictor achieves by far
the best results, outperforming all other models by
a margin of over 7 points F1. This shows that in an
automatic setting, most robust results are achieved
by directly inducing dependency links between to-
kens, modeling conjunction only indirectly.

To estimate the impact of our corrections to the
gold standard, we also train the graph parser on un-
corrected data. The model trained on the corrected
data has higher recall, but lower precision. This is
expected to some extent as we introduce semanti-
cally motivated propagations of adjuncts, and we
suspect that they may require a larger training set.

5.3 Discussion

The main insights comparing our experiments in
the gold standard vs. the automatic parsing setting
are as follows. Overall, our heuristic extensions
for the rule-based converter are beneficial in both
settings. In the gold setting, ML-based extensions
lead to higher accuracy; when applying them on
noisy parser output, they do not work well. How-
ever, using one end-to-end machine-learning model
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Dev Test
P R F P R F

Stanford+RBC 70.8 63.0 66.7 56.5 47.7 51.7
Stanford+RBC2 68.7 65.2 66.9 56.2 50.2 53.0
Stanford+SVM 64.3 65.2 64.7 54.7 49.8 52.1
Stanford+NN 64.3 65.2 64.7 54.4 50.2 52.2

UDify+RBC 72.8 67.8 70.2 71.8 58.0 64.2
UDify+RBC2 71.9 68.5 70.2 75.0 61.9 67.8
UDify+SVM 70.6 68.5 69.5 70.9 59.1 64.5
UDify+NN 69.9 68.9 69.4 70.4 60.1 64.9

GBP (orig. data) 83.1 74.0 78.3 86.1 66.2 74.8
GBP (our data) 82.3 75.1 78.5 82.5 68.7 75.0

Table 5: Predicting relation propagation for coordi-
nate constructions on parser output. Otherwise same
evaluation setup as in Table 4.

directly to generate enhanced representations for
conjunctions outperforms the pipeline version. A
possible reason for this might be that these models
were all developed on gold data, while the graph-
based parser does not rely on potentially wrong
structural tree features and is also able to use in-
ternal confidence information for edges. Another
advantage of the end-to-end model may stem from
the fact that its training allows to leverage semantic
information from training data of a larger number
of dependency links, i.e., including those not oc-
curring in coordinate constructions. This points
to a promising future research direction, i.e, gen-
erating additional semi-artificial training data for
conjunction propagation.

6 Conclusion and Outlook

We have presented a large-scale manually curated
dataset for conjunction propagation in English.
In contrast to previous work focusing on high-
precision rule-based propagation, we propagate
links in all cases that semantically suggest argu-
ment or adjunct sharing. In the gold standard tree-
bank enhancing setting, we found ML-based mod-
els to outperform the de-facto standard rule-based
converter by learning to exploit mostly structural
features. However, one of our main insights is that
neither rule-based nor ML-based classifiers work
well on noisy parser output precisely because of
this reliance on structural information. We propose
to use a graph-parser based edge predictor instead
and show that it outperforms pipeline-based mod-
els by a large margin. Our model reaches F1 scores
between 0.75 and 0.78 with a precision of more
than 0.82, a level of performance that may already
be useful in downstream tasks.

Our models could be used for creating high-
quality enhanced-level representations of conjunc-
tions for the remaining English data, and could
thus help in a UD community effort to continu-
ously improve the UD treebanks. Future work
also includes the study of conjunction propaga-
tion methods for further languages. Our in-depth
study on English data provides several insights that
we expect to be transferable cross-linguistically.
First, conjunction propagation can to some extent
be addressed using heuristic rules, but capturing
the full semantic nature of the task requires man-
ual annotation. Second, given appropriate training
data, our machine-learning based approaches are
also applicable to other languages.

In addition, it would be interesting to see if man-
ually annotated data for coordinate constructions
may be useful in natural language understanding
tasks such as natural language inference (NLI).
This is especially true for “stress test” datasets
such as CONJNLI (Saha et al., 2020), which are
designed to specifically test models’ capabilities to
process coordination.

Finally, as morphological features are generally
important for this task, improving their automatic
prediction (see e.g., Ramm et al., 2017; Myers
and Palmer, 2019) as well as UD’s gold standard
seems to be a promising way to go. Our work has
demonstrated the value of a linguistically motivated
corpus study of a syntactic-semantic phenomenon,
and shown that given manually curated data, rules
for conjunction propagation can be learned effec-
tively.
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Appendix

A Detailed converter description

In this section, we describe the algorithm imple-
mented by the converter proposed by Schuster and
Manning (2016).10

For each conj relation, the converter decides
whether links ending or starting at the conjunction
head (gov) should be propagated to the conjunc-
tion dependent (dep):

1. Governors of gov are always propagated to
dep, unless the relation is explicitly treated
as an exception (e.g., vocative, discourse, or
root).

2. Dependents of gov are propagated to dep as
follows:

(a) If the dependent is attached via nsubj or
csubj, it is only propagated if dep does
not already have a subject. If dep has
an aux:pass dependent, the relation is
propagated as nsubj:pass / csubj:pass.

(b) If the dependent is attached via a non-
subject core relation (obj, iobj, ccomp,
or xcomp), it is propagated if and only if
it comes after dep in the linear order of
the sentence.

(c) Non-core dependents (such as obl) are
never propagated.

The algorithm is able to handle many syntac-
tically ambiguous cases, provided the underlying
basic dependencies have resolved the ambiguity
correctly. Consider the sentence “She was reading
or watching a movie.” If “movie” is correctly at-
tached as an object of the conjunction dependent
“watching,” it will not be propagated to “reading”
in the enhanced representation.

B Inter-annotator agreement study

Detailed comparisons between the three annotators
can be found in Table 6, Table 7, and Table 8. In
our study, we consider only links that are part of
the enhanced layer, but not of the basic layer. For
each annotator, we count for each label how often
it occurs as an incoming or outgoing relation of
a conjunct (columns labeled with the annotator’s

10https://github.com/stanfordnlp/
CoreNLP/blob/master/src/edu/stanford/
nlp/trees/ud/UniversalEnhancer.java

ID). Formally, the set El
A is the set of enhanced-

layer edges that are (i) not present in the basic
layer and (ii) involved in conjunctions as incoming
or outgoing links of the conjuncts, with label l
marked by annotator A. We also count the overlap
of links for pairs of annotators. Using these counts,
we then compute precision, recall and F1, treating
one annotator as the system and one as the gold
standard. For instance, when treating A as the gold
standard and B as the system, this leads to:

PrecisionBA =
|El

A ∩ El
B|

El
B

(6)

RecallBA =
|El

A ∩ El
B|

El
A

(7)

Note that when reversing this order, P and R are
simply reversed, F1 stays the same.

The following numbers compare each annotator
to the original gold standard (not in tables). For
modifier clauses (acl, advcl) and adverbials (adv-
mod), B was the most aggressive in propagating
dependencies, adding 55 links in total for these la-
bels, while A and C only added 39 and 32 links,
respectively. While all annotators propagated obl
dependencies roughly to the same extent, agree-
ment was high between A and B but lower (F1
64-68%) between C and the others, indicating that
there are more ambiguities among these depen-
dencies as well. Annotator C is generally more
conservative in propagating dependencies. This is
reflected in the relatively low recall when compar-
ing to the other annotators, as well as the lower
overall number of added links (285 as compared to
309 for A and 312 for B).

https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/trees/ud/UniversalEnhancer.java
https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/trees/ud/UniversalEnhancer.java
https://github.com/stanfordnlp/CoreNLP/blob/master/src/edu/stanford/nlp/trees/ud/UniversalEnhancer.java
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B A A&B P R F1

acl 7 7 7 100.0 100.0 100.0
acl:relcl 12 8 8 66.7 100.0 80.0
advcl 24 17 17 70.8 100.0 82.9
advmod 10 5 4 40.0 80.0 53.3
amod 4 6 4 100.0 66.7 80.0
ccomp 12 13 12 100.0 92.3 96.0
compound 3 3 3 100.0 100.0 100.0
csubj 2 2 2 100.0 100.0 100.0
nmod 8 8 8 100.0 100.0 100.0
nsubj 62 66 62 100.0 93.9 96.9
nsubj:pass 5 5 5 100.0 100.0 100.0
nsubj:xsubj 6 7 6 100.0 85.7 92.3
obj 26 25 25 96.2 100.0 98.0
obl 29 26 25 86.2 96.2 90.9
ref 5 5 5 100.0 100.0 100.0
xcomp 7 7 7 100.0 100.0 100.0

total 222 210 200 90.1 95.2 92.6

Table 6: Agreement of Annotator A vs. Annotator B
on links involved in coordinate constructions in the en-
hanced layer. For P/R computation, A was treated as
the gold standard and B as the system.

C A A&C P R F1

acl 7 7 7 100.0 100.0 100.0
acl:relcl 4 8 4 100.0 50.0 66.7
advcl 11 17 10 90.9 58.8 71.4
advmod 4 5 0 0.0 0.0 0.0
amod 4 6 4 100.0 66.7 80.0
ccomp 11 13 11 100.0 84.6 91.7
compound 3 3 3 100.0 100.0 100.0
csubj 2 2 2 100.0 100.0 100.0
mark 2 0 0 0.0 0.0 0.0
nmod 6 8 6 100.0 75.0 85.7
nsubj 61 66 61 100.0 92.4 96.1
nsubj:pass 5 5 5 100.0 100.0 100.0
nsubj:xsubj 6 7 6 100.0 85.7 92.3
obj 25 25 23 92.0 92.0 92.0
obl 18 26 18 100.0 69.2 81.8
ref 2 5 2 100.0 40.0 57.1
xcomp 7 7 7 100.0 100.0 100.0

total 178 210 169 94.9 80.5 87.1

Table 7: Agreement of Annotator A vs. Annotator C
on links involved in coordinate constructions in the en-
hanced layer. For P/R computation, A was treated as
the gold standard and C as the system.

C B B&C P R F1

acl 7 7 7 100.0 100.0 100.0
acl:relcl 4 12 4 100.0 33.3 50.0
advcl 11 24 11 100.0 45.8 62.9
advmod 4 10 3 75.0 30.0 42.9
amod 4 4 4 100.0 100.0 100.0
ccomp 11 12 10 90.9 83.3 87.0
compound 3 3 3 100.0 100.0 100.0
csubj 2 2 2 100.0 100.0 100.0
mark 2 0 0 0.0 0.0 0.0
nmod 6 8 6 100.0 75.0 85.7
nsubj 61 62 61 100.0 98.4 99.2
nsubj:pass 5 5 5 100.0 100.0 100.0
nsubj:xsubj 6 6 6 100.0 100.0 100.0
obj 25 26 24 96.0 92.3 94.1
obl 18 29 18 100.0 62.1 76.6
ref 2 5 2 100.0 40.0 57.1
xcomp 7 7 7 100.0 100.0 100.0

total 178 222 173 97.2 77.9 86.5

Table 8: Agreement of Annotator B vs. Annotator C
on links involved in coordinate constructions in the en-
hanced layer. For P/R computation, B was treated as
the gold standard and C as the system.
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C Statistics on Treebank Modifications

As mentioned in Sec. 3.3, we made changes to
the original treebank in 1,417 sentences containing
coordinate verb phrases. While we focused on the
dependency links starting or ending at conjuncts,
we also fixed some additional errors that we spotted
during this process. Table 9 gives statistics on these
modifications (compare to Table 3, which includes
only changes related to conjuncts).

label #added #removed #sents #total

acl 18 5 14 749
acl:relcl 15 5 9 5,086
advcl 39 11 36 2,055
advmod 46 4 37 4,426
amod 20 3 15 3,570
case 2 1 2 6,415
ccomp 12 16 13 1,003
det 2 1 2 6,448
nmod 32 2 24 3,279
nmod:poss 12 1 10 7,485
nsubj 194 41 144 7,815
nsubj:pass 9 21 25 1,381
nsubj:xsubj 35 20 31 8,758
nummod 3 0 3 814
obj 10 10 14 4,673
obl 78 5 56 5,478
punct 3 3 3 9,508
ref 21 2 16 348
xcomp 14 6 12 758

all 565 157 466 80049

Table 9: Statistics of modifications made to 1,417 sen-
tences of the EWT, including both basic and enhanced
layer. #sents reports the number of sentences in which
the respective reported changes were made, #total re-
ports the number of occurrences of the label in the orig-
inal treebank.

D ML-based classifiers: features

Table 10 lists the features used in our SVM and NN
models. Token features are extracted for conjunc-
tion head, conjunction dependent, and propagation
target each. In addition to the listed features, we
also experimented with including lemmas and POS
tags, but did not find them to be useful in our abla-
tion experiments.

E Graph-based edge predictor: Training
Setup

Label lexicalization. At training time, we only
use a limited label set of 56 labels where lexi-
cal material is replaced with placeholders, such
as obl:[case]. At prediction time, we retrieve the
missing lexical material from the dependency graph
in a rule-based fashion. In the simplest case, this
means simply substituting the word form of the
dependent of the required type (e.g., a case rela-
tion). In conjunctions, the token in question may
not have its own dependent of the correct type, in-
stead “inheriting” if from its conjunction head. In
that case, we retrieve the lexical material from the
conjunction head’s dependent.

Hyperparameters We perform only a minimal
amount of hyperparameter tuning, mostly sticking
with the values used by Kondratyuk and Straka
(2019). One notable exception is the training
regime, where we found low batch size and the
AdamW optimizer to yield the best results. The
full hyperparameter configuration can be found in
Table 11.

RoBERTa embeddings
Embeddings dimension 1024
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier
Hidden size 1024
Dropout 0.33

AdamW Optimizer
Batch size 5
Learning rate 5e−6

β1, β2 0.9, 0.999
Weight decay 0.0

Table 11: Hyperparameters for our graph-based parser.
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Feature name Description SVM NN

Instance features
dependency label label of candidate link one-hot 50-dim. embedding
incoming/outgoing whether the dependency being propa-

gated is an outgoing or incoming link
at the conjunction head

one-hot 50-dim. embedding

midrule Token features
morphological features values of the Number, Person, VerbForm,

and Voice features
one-hot -

contextualized word embeddings word embeddings as generated by the
RoBERTa-base model

- 768-dim. embedding

Tree features
linear dependency direction whether the linear direction of the candi-

date dependency is the same as for the
dependency being propagated (both-left,
both-right, or differing-directions)

one-hot 50-dim. embedding

existing dependency whether the conjunction dependent al-
ready has a dependency of this type
(only relevant for outgoing links)

one-hot 50-dim. embedding

outgoing dependencies (head) set of outgoing dependencies of the con-
junction head

one-hot one-hot

outgoing dependencies (dep) set of outgoing dependencies of the con-
junction dependent

one-hot one-hot

# coord.-items number of items in the coordination one-hot scalar

Table 10: Description of feature sets used in ML-based conjunction propagation models.


