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Abstract
A sufficient amount of annotated data is usu-
ally required to fine-tune pre-trained language
models for downstream tasks. Unfortunately,
attaining labeled data can be costly, especially
for multiple language varieties and dialects.
We propose to self-train pre-trained language
models in zero- and few-shot scenarios to im-
prove performance on data-scarce varieties us-
ing only resources from data-rich ones. We
demonstrate the utility of our approach in the
context of Arabic sequence labeling by using
a language model fine-tuned on Modern Stan-
dard Arabic (MSA) only to predict named en-
tities (NE) and part-of-speech (POS) tags on
several dialectal Arabic (DA) varieties. We
show that self-training is indeed powerful, im-
proving zero-shot MSA-to-DA transfer by as
large as ~10% F1 (NER) and 2% accuracy
(POS tagging). We acquire even better per-
formance in few-shot scenarios with limited
amounts of labeled data. We conduct an ab-
lation study and show that the performance
boost observed directly results from training
data augmentation possible with DA examples
via self-training. This opens up opportuni-
ties for developing DA models exploiting only
MSA resources. Our approach can also be ex-
tended to other languages and tasks.1

1 Introduction

Neural language models (Xu and Rudnicky, 2000;
Bengio et al., 2003) with vectorized word represen-
tations (Mikolov et al., 2013) are currently core to
a very wide variety of NLP tasks. In specific, using
representations from transformer-based (Vaswani
et al., 2017) language models (Devlin et al., 2018;
Liu et al., 2019), pre-trained on large amounts of
unlabeled data and then fine-tuned on labeled task-
specific data, has become a popular approach for

1Our code and fine-tuned models can be accessed
at: https://github.com/mohammadKhalifa/
zero-shot-arabic-dialects

improving downstream task performance. This
pre-training then fine-tuning scheme has been suc-
cessfully applied to several tasks, including ques-
tion answering (Yang et al., 2019), social meaning
detection (Abdul-Mageed et al., 2020d), text classi-
fication (Liu et al., 2019), named entity recognition
(NER), and part-of-speech (POS) tagging (Tsai
et al., 2019; Conneau et al., 2019). The same setup
also works well for cross-lingual learning (Lample
and Conneau, 2019; Conneau et al., 2019).

Given that it is very expensive to glean labeled
resources for all language varieties and dialects, a
question arises: “How can we leverage resource-
rich dialects to develop models nuanced to down-
stream tasks for resource-scarce ones?”. In this
work, we aim to answer this particular question by
applying self-training to unlabeled target dialect
data. We empirically show that self-training is in-
deed an effective strategy in zero-shot (where no
gold dialectal data are included in training set, Sec-
tion 4.2) and few-shot (where a given number of
gold dialectal data points is included in training
split, Section 4.4).

Our few-shot experiments reveal that self-
training is always a useful strategy that consistently
improves over mere fine-tuning, even when all
dialect-specific gold data are used for fine-tuning.
In order to understand why this is the case (i.e., why
combining self-training with fine-tuning yields bet-
ter results than mere fine-tuning), we perform an
extensive error analysis based on our NER data.
We discover that self-training helps the model most
(% = 59.7) with improving false positives. This in-
cludes DA tokens whose MSA orthographic coun-
terparts (Shaalan, 2014) are either named entities or
trigger words that frequently co-occur with named
entities in MSA. Interestingly, such out-of-MSA
tokens occur in highly dialectal contexts (e.g., in-
terjections and idiomatic expressions employed in
interpersonal social media communication) or ones

https://github.com/mohammadKhalifa/zero-shot-arabic-dialects
https://github.com/mohammadKhalifa/zero-shot-arabic-dialects
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where the social media context in which the lan-
guage (DA) is employed affords more freedom of
speech (Alshehri et al., 2020) and a platform for
political satire. We present our error analysis in
Section 5.

Context: Language use in social media tends
to diverge from ‘standard’, offline norms (Danet
and Herring, 2007; Herring et al., 2015). For ex-
ample, users employ slang, emojis, abbreviations,
letter repetitions, and other types of playful prac-
tices. This poses a challenge for processing so-
cial media data in general. However, there are
other challenges specific to Arabic that motivate
our work. More specifically, we choose Arabic to
apply our approach since it affords a rich context
of linguistic variation: In addition to the standard
variety, MSA, Arabic also has several spoken di-
alects (Abdul-Mageed et al., 2018; Bouamor et al.,
2019; Abdul-Mageed et al., 2020b,c), which differ
significantly from the written MSA (Zaidan and
Callison-Burch, 2014) thus offering an excellent
context for studying our problem. Arabic dialects
differ among themselves and from MSA at various
linguistic levels: lexical, phonological, morpho-
logical, and syntactic. This makes our case much
more challenging than that of standard vs. social
media English, for example. For a good zero-shot
performance in our case, a model is required to ac-
commodate not only lexical distance between MSA
and DA, but also differences in word formation and
syntax (related to POS tags, for example) and lex-
ical ambiguity (as the meaning of the same token
can vary cross-dialectically). This makes the zero-
shot setting even harder, where the performance
drops 20% F1 points (See section 4.2).

From a geopolitical perspective, Arabic also has
a strategic significance. This is a function of Ara-
bic being the native tongue of 400 million speak-
ers in 22 countries, spanning across two continents
(Africa and Asia)2. In addition, the three dialects of
our choice, namely Egyptian (EGY), Gulf (GLF),
and Levantine (LEV), are popular dialects that are
widely used online. This makes our resulting mod-
els highly useful in practical situations at scale.
Pragmatically, ability to develop NLP systems on
dialectal tasks with no-to-small labeled dialect data
immediately eases a serious bottleneck. Arabic di-
alects differ among themselves and from MSA at
all linguistic levels, posing challenges to traditional
NLP approaches. We also note that our method is

2https://www.internetworldstats.com/stats19.htm

language-independent, and we hypothesize it can
be directly applied to other varieties of Arabic or
in other linguistic contexts for other languages and
varieties.

Tasks: We apply our methods on two sequence
labeling tasks, where we have access to both MSA
and DA gold data. In particular, as mentioned
above, we perform experiments on POS tagging
and NER. Each of these tasks has become an inte-
gral part of various other NLP applications, includ-
ing question answering, aspect-based sentiment
analysis, machine translation, and summarization,
and hence our developed models should have wide
practical use. Again, we note that our approach
itself is task-independent. The same approach can
thus be applied to other tasks involving DA. We
leave testing our approach on other languages, va-
rieties, and tasks for future research.

Contributions: Our work offers the following
contributions:

1. We study the problem of MSA-to-DA transfer
in the context of sequence labeling and show
that when training on MSA data only, a wide
performance gap exists between testing on
MSA and DA. That is, models fine-tuned on
MSA generalize poorly to DA in zero-shot
settings.

2. We propose self-training to improve zero- and
few-shot MSA-to-DA transfer. Our approach
requires little-to-no labeled DA data. We eval-
uate extensively on 3 different dialects, and
show that our method indeed narrows the per-
formance gap between MSA and DA by a
margin as wide as ~10% F1 points.

3. We develop state-of-the-art models for the two
sequence labeling tasks (NER and POS).

We now introduce our method.

2 Method

While the majority of labeled Arabic datasets are
in MSA, most daily communication in the Arab
world is carried out in DA. In this work, we show
that models trained on MSA for NER and POS
tagging generalize poorly to dialect inputs when
used in zero-shot-settings (i.e., no dialect data used
during training). Across the two tasks, we test how
self-training would fare as an approach to lever-
age unlabeled DA data to improve performance
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Figure 1: MSA-to-DA Self-training transfer.

on DA. As for self-training, it involves training a
model using its own predictions on a set of unla-
beled data identical from its original training split.
Our proposed self-training procedure is given two
sets of examples: a labeled set L and an unla-
beled set U . To perform zero-shot MSA-to-DA
transfer, MSA examples are used as the labeled
set, while unlabeled DA examples are the unla-
beled set. As shown in Figure 1, each iteration
of the self-training algorithm consists mainly of
three steps. First, a pre-trained language model is
fine-tuned on the labeled MSA examples L. Sec-
ond, for every unlabeled DA example ui, we use
the model to tag each of its tokens to obtain a set
of predictions and confidence scores for each token
pui = (l

(i)
1 , c

(i)
1 ), (l

(i)
2 , c

(i)
2 ), ...(l

(i)
|ui|, c

(i)
|ui|), where

(l
(i)
j , c

(i)
j ) are the label and confidence score (soft-

max probability) for the j-th token in ui. Third, we
employ a selection mechanism to identify exam-
ples from U that are going to be added to L for the
next iteration.

For a selection mechanism, we experiment
with both a thresholding approach and a fixed-
size (Dong and de Melo, 2019) approach. In the
thresholding method, a threshold τ is applied on
the minimum confidence per example. That is, we
only add an example ui toL if min

(l
(i)
j ,c

(i)
j )∈pui

c
(i)
j ≥ τ .

See Algorithm 1. The fixed-size approach involves,
at each iteration, the selection of the top S exam-
ples with respect to the minimum confidence score

min
(l
(i)
j ,c

(i)
j )∈pui

c
(i)
j , where S is a hyper-parameter. We

experiment with both approaches and report results
in Section 4.

For our language model, we use XLM-
RoBERTa (Conneau et al., 2019), XML-R for short.

Algorithm 1: MSA-to-DA Self-Training
1 Given set L of labeled MSA examples, set U of

unlabeled DA examples, τ parameter for probability
threshold selection.

2 repeat
3 Fine-tune model M for K epochs on labeled

MSA examples L;
4 for ui ∈ U do
5 Obtain prediction pui on unlabeled DA

example ui using model M ;
6 if min

(l
(i)
j ,c

(i)
j )∈pui

c
(i)
j ≥ τ then

7 remove ui from U and add it to L;
8 end
9 until stopping criterion satisfied

XLM-R is a cross-lingual model, and we choose it
since it is reported to perform better than the mul-
tilingual mBERT (Devlin et al., 2018). XLM-R
also uses Common Crawl for training, which is
more likely to have dialectal data than the Arabic
Wikipedia (used in mBERT), making it more suited
to our work. We now introduce our experiments.

3 Experiments

We begin our experiments with evaluating the stan-
dard fine-tuning performance of XLM-R models
on both NER and POS tagging against strong base-
lines. We then use our best models from this
first round to investigate the MSA-to-DA zero-
shot transfer, showing a significant performance
drop even when using pre-trained XLM-R. Con-
sequently, we employ self-training for both NER
and POS tagging in zero- and few-shot settings,
showing substantial performance improvements in
both cases. We now introduce our datasets.

3.1 Datasets

NER: For our work on NER, we use 4 datasets:
ANERCorp (Benajiba et al., 2007), ~150K tokens;
ACE 2003 (Mitchell et al., 2003) BNews (BN-
2003), ~15K tokens; ACE 2003 Newswire (NW-
2003), ~27K tokens; and Twitter (Darwish, 2013),
~81K tokens. Named entity types in all datasets are
location (LOC), organization (ORG), and person
(PER).

POS Tagging: There are a number of Arabic
POS tagging datasets, mostly on MSA (Maamouri
et al., 2004) but also on dialects such as
EGY (Maamouri et al., 2014). To show that the
proposed approach is able to work across multi-
ple dialects, we ideally needed data from more
than one dialect. Hence, we use the multi-dialectal
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dataset from (Darwish et al., 2018), comprising
350 tweets from each of the 4 varieties MSA, EGY,
GLF and LEV. This dataset has 21 POS tags, some
of which are suited to social media (since it is de-
rived from Twitter). We show the POS tag set from
(Darwish et al., 2018) in Table 10 in Appendix A.
We now introduce our baselines.

3.2 Baselines
For the NER task, we use the following baselines:

• NERA (Abdallah et al., 2012): A hybrid sys-
tem of rule-based features and a decision tree
classifier.

• WC-BiLSTM (Gridach, 2016): A character-
and a word-level Bi-LSTM with a conditional
random fields (CRF) layer.

• WC-CNN (Khalifa and Shaalan, 2019): A
character- and a word-level CNN with a CRF
layer.

• mBERT (Devlin et al., 2018): A fine-tuned
multilingual BERT-Base-Cased (110M param-
eters), pre-trained with a masked language
modeling objective on the Wikipedia corpus
of 104 languages (including Arabic). For fine-
tuning, we find that (based on experiments
on our development set) a learning rate of
6× 10−5 works best with a dropout of 0.1.

In addition, we compare to the published results
in (Shaalan and Oudah, 2014), AraBERT (Antoun
et al., 2020), and CAMel (Obeid et al., 2020) for
the ANERCorp dataset. We also compare to the
published results in (Khalifa and Shaalan, 2019)
for the 4 datasets.

For the POS tagging task, we compare to our
own implementation of WC-BiLSTM (since there
is no published research that uses this method on
the task, as far as we know) and run mBERT on our
data. We also compare to the CRF results published
by (Darwish et al., 2018). In addition, for the Gulf
dialect, we compare to the BiLSTM with composi-
tional character representation and word represen-
tations (CC2W+W) published results in (Alharbi
et al., 2018).

3.3 Experimental Setup
Our main models are XLM-RoBERTa base ar-
chitecture XLM-RB (L = 12, H = 768, A =
12, 270M params) and XLM-RoBERTa large ar-
chitecture XLM-RL (L = 24, H = 1024, A =

16, 550M params), where L is number of layers,
H is the hidden size, A is the number of self-
attention heads. For XLM-R experiments, we use
Adam optimizer with 1e−5 learning rate, batch size
of 16. We typically fine-tune for 20 epochs, keep-
ing the best model on the development set for test-
ing. We report results on the test split for each
dataset, across the two tasks. For all BiLSTM
experiments, we use the same hyper-parameters
as (Khalifa and Shaalan, 2019).

For the standard fine-tuning experiments, we use
the same train/development/test split as in (Khalifa
and Shaalan, 2019) for NER, and the same split
provided by (Darwish et al., 2018) for POS tagging.
For all the self-training experiments, we use the
dialect subset of the Arabic online news commen-
tary (AOC) dataset (Zaidan and Callison-Burch,
2011), comprising the EGY, GLF, and LEV vari-
eties limiting to equal sizes of 9K examples per di-
alect (total =27K) 3. We use the split from (Elaraby
and Abdul-Mageed, 2018) of AOC, removing the
dialect labels and just using the comments them-
selves for our self-training. Each iteration involved
fine-tuning the model for K = 5 epochs. As a
stopping criterion, we use early stopping with pa-
tience of 10 epochs. Other hyper-parameters are set
as listed before. For selecting confident samples,
we experiment with a fixed number of top samples
S = [50, 100, 200] and selection based on a prob-
ability threshold τ = [0.80, 0.90, 0.95] (softmax
values) 4. For all evaluations, we use the seqeval
toolkit.5

4 Results

4.1 Fine-tuning XLM-R
Here, We show the resuts of standard fine-tuning
of XLM-R for the two tasks in question. We start
by showing the result of fine-tuning XLM-R on the
named entity task, on each of the 4 Arabic NER
(ANER) datasets listed in Section 3.1. Table 1
shows the test set macro F1 score on each of the
4 ANER datasets. Clearly, the fine-tuned XLM-R
models outperform other baselines on all datasets,

3We note that our approach could be scaled with an even
bigger unlabeled dataset, given the performance gains we
report with self-training in this work.

4It is worth noting that our S values are similar to those
used in (Dong and de Melo, 2019). We also experimented
with other values for τ and S, but found them sub-optimal
and hence we report performance only for the listed values of
these two hyper-parameters here.

5https://github.com/chakki-works/
seqeval.

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
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except on the NW-2003 where WC-CNN (Khalifa
and Shaalan, 2019) performs slightly better than
XLM-RL.

For POS Tagging, Table 2 shows test set word
accuracy of the XLM-R models compared to base-
lines. Again, XLM-R models (both base and large)
outperform all other models. A question arises
why XLM-R models outperform both mBERT
and AraBERT. As noted before, for XLM-R vs.
mBERT, XLM-R was trained on much larger data:
CommonCrawl for XLM-R vs. Wikipedia for
mBERT. Hence, the larger dataset of XLM-R is
giving it an advantage over mBERT. For compari-
son with AraBERT, although the pre-training data
for XLM-R and AraBERT may be comparable,
even the smaller XLM-R model (XLM-RB) has
more than twice the number of parameters of the
BERTBASE architecture on which AraBERT and
mBERT are built (270M v. 110M). Hence, XLM-R
model capacity gives it another advantage. We now
report our experiments with zero-shot transfer from
MSA to DA.

4.2 MSA-DA Zero-Shot Transfer

We start by the discussion of NER experiments.
Since there is no publicly available purely dialectal
NER dataset on which we can study MSA-to-DA
transfer, we needed to find DA data to evaluate on.
We observed that the dataset from (Darwish, 2013)
contains both MSA and DA examples (tweets).
Hence, we train a binary classifier6 to distinguish
DA data from MSA. We then extract examples
that are labeled with probability p > 0.90 as ei-
ther DA or MSA. We obtain 2,027 MSA examples
(henceforth, Twitter-MSA) and 1,695 DA ex-
amples (henceforth, Twitter-DA), respectively.
We split these into development and test sets with
30% and 70% ratios. As for POS Tagging, we
already have the three previously used DA datasets,
namely EGY, GLF and LEV. We use those for the
zero-shot setting by omitting their training sets and
using only the development and test sets.

We first study how well models trained for NER
and POS tagging on MSA data only will generalize
to DA inputs during test time. We evaluate this
zero-shot performance on both the XLM-RB and
XLM-RL models. For NER, we train on ANER-

6The model we use is XLM-RB fine-tuned on the AOC
using (Elaraby and Abdul-Mageed, 2018) split. We achieve
development and test accuracies of 90.3% and 89.4 %, re-
spectively, outperforming the best results in (Elaraby and
Abdul-Mageed, 2018).

Corp (which is pure MSA) and evaluate on both
Twitter-MSA and Twitter-DA. While for POS tag-
ging, we train on the MSA subset (Darwish et al.,
2018) and evaluate on the corresponding test set
for each dialect. As shown in Table 3, for NER, a
significant generalization gap of around 20 % F1

points exists between evaluation on MSA and DA
using both models. While for POS tagging, the
gap is as large as 18.13 % accuracy for the LEV
dialect with XLM-RB. The smallest generalization
gap is on the GLF variety, which is perhaps due
to the high overlap between GLF and MSA (Al-
harbi et al., 2018). In the next section, we evaluate
the ability of self-training to close this MSA-DA
performance gap.

4.3 Zero-shot Self-Training

Here, for NER, similar to Section 4.2, we train on
ANERCorp (pure MSA) and evaluate on Twitter-
MSA and Twitter-DA. Table 4 shows self-training
NER results employing the selection mechanisms
listed in Section 2, and with different values for S
and τ . The best improvement is achieved with the
thresholding selection mechanism with a τ = 0.90,
where we have an F1 gain of 10.03 points. More
generally, self-training improves zero-shot perfor-
mance in all cases albeit with different F1 gains.
It is noteworthy, however, that the much higher-
capacity large model deteriorates on MSA if self-
trained (dropping from 68.32% to 67.21%). This
shows the ability of the large model to learn repre-
sentations very specific to DA when self-trained. It
is also interesting to see that the best self-trained
base model achieved 50.10% F1, outperforming the
large model before the latter is self-trained (47.35%
in the zero-shot setting). As such, we conclude
that a base self-trained model, with less compu-
tational capacity, can (and in our case does) im-
prove over a large (not-self-trained) model that
needs significant computation. The fact that, when
self-trained, the large model improves 15.35%
points over the base model in the zero-shot setting
(55.42 vs. 40.07) is remarkable.

As for POS tagging, we similarly observe con-
sistent improvements in zero-shot transfer with self-
training (Table 5). The best model achieves accu-
racy gains of 2.41% (EGY), 1.41% (GLF), and
1.74% (LEV). Again, this demonstrates the util-
ity of self-training pre-trained language models on
the POS tagging task even in absence of labeled
dialectal POS data (zero-shot).
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Model ANERCorp BN-2003 NW-2003 Twitter
NERA (Abdallah et al., 2012) 88.77 – – –
CAMeL (Obeid et al., 2020) 85.00 – – –
Hybrid (Shaalan and Oudah, 2014) 90.66 – – –
WC-BiLSTM (Gridach, 2016) 88.56 94.92 90.32 64.93
WC-CNN (Khalifa and Shaalan, 2019) 88.77 94.12 91.20 65.34
mBERT (ours) 85.86 89.52 87.19 58.92
AraBERT (Antoun et al., 2020) 84.2 – – –
XLM-RB (ours) 87.75 95.35 85.25 60.39
XLM-RL (ours) 91.43 97.33 91.10 68.91

Table 1: Test set macro F1 scores for NER.

Model MSA EGY GLF LEV
BiLSTM (CC2W + W) (Alharbi et al., 2018) – – 89.7 –
CRF (Darwish et al., 2018) 93.6 92.9 87.8 87.9
WC-BiLSTM (ours) 94.63 93.41 88.79 86.13
mBERT (ours) 90.57 92.88 87.85 72.30
XLM-RB (ours) 96.30 94.70 92.18 89.98
XLM-RL (ours) 98.21 97.00 94.41 93.19

Table 2: Test set accuracy for POS Tagging.

4.4 Few-Shot Self-Training

We also investigate whether self-training would be
helpful in scenarios where we have access to some
gold-labeled DA data (as is the case with POS tag-
ging). Here, we evaluate the few-shot performance
of self-training as increasing amounts of predicted
DA data are added to the gold training set. This it-
eration of experiments focuses exclusively on POS
tagging, using a fixed-size S = 100 of predicted
cases for self-training and the XLM-R base model.
Figure 2 shows how POS tagging test accuracy
improves as the percentage of gold DA examples
added to the MSA training data increases from
0% to 100% on the three dialects (EGY, GLF, and
LEV). Comparing these results to those acquired
via the standard fine-tuning settings without self-
training, we find that self-training does consistently
improve over fine-tuning. This improvement mar-
gin is largest with only 20% of the gold examples.

4.5 Ablation Study

Here, we conduct an ablation study with the NER
task as our playground in order to verify our hypoth-
esis that the performance boost primarily comes
from using unlabeled DA data for self-training. By
using a MSA dataset with the same size as our un-
labeled DA one7, we can compare the performance
of the self-trained model in both settings: MSA and
DA unlabeled data. We run 3 different self-training

7We use a set of MSA tweets from the AOC dataset men-
tioned before.

experiments using 3 different values for τ using
each type of unlabeled data. Results are shown in
table 6. While we find slight performance boost
due to self-training even with MSA unlabeled data,
the average F1 score with unlabeled DA is better
by 2.67 points, showing that using unlabeled DA
data for self-training has helped the model adapt to
DA data during testing.

5 Error analysis

To understand why self-training the pre-trained lan-
guage model, when combined with fine-tuning,
improves over mere fine-tuning, we perform an
error analysis. For the error analysis, we focus
on the NER task where we observe a huge self-
training gain. We use the development set of
Twitter-DA (See section 4.3) for the error anal-
ysis. We compare predictions of the standard fine-
tuned XLM-RB model (FT) and the best perform-
ing self-training (τ = 0.9) model (ST) on the data,
and provide the confusion matrices of both mod-
els with gold labels in Table 11 (in Appendix B).
The error analysis leads to an interesting discov-
ery: The greatest benefit from the ST model comes
mostly from reducing false positives (see Table 7).
In other words, self-training helps regularize the
model predictions such that tokens misclassified by
the original FT model as a named entities are now
correctly tagged as unnamed entity “O”.

To understand why the ST model improves false
positive rate, we manually inspect the cases it cor-
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Model NER POS
MSA DA MSA EGY GLF LEV

XLM-RB 60.42 40.07 96.30 78.38 83.72 78.17
XLM-RL 68.32 47.35 98.21 82.28 85.95 81.24

Table 3: Zero-shot transfer results on DA For NER (macro F1) and POS Tagging (accuracy). Models are trained
on MSA only and evaluated on DA. Datasets used are: Twitter-MSA and Twitter-DA (Darwish, 2013) for NER,
and Multi-dialectal (Darwish et al., 2018) for POS tagging.
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Figure 2: Development accuracy as labeled DA data is added to the training MSA data. Left: Results on EGY.
Middle: Results on GLF. Right: Results on LEV. We use fixed-size selection with S = 100 for self-training
models.

Model MSA DA
XLM-RB 61.88 40.07
XLM-RB, ST, S=50 60.98 43.88
XLM-RB, ST, S=100 61.13 42.01
XLM-RB, ST, S=200 61.46 43.49
XLM-RB, ST, τ = 0.80 63.36 46.97
XLM-RB, ST, τ = 0.90 61.02 50.10
XLM-RB, ST, τ = 0.95 62.25 47.91
XLM-RL 68.32 47.35
XLM-RL + ST, τ = 0.90 67.21 55.42

Table 4: Zero-short self-training (ST) NER results.
Models trained on ANERCorp (pure MSA) and eval-
uated on Twitter-MSA and Twitter-DA we extract
from (Darwish et al., 2018). Self-training boosts the
performance on DA data by 10% macro F1 points with
XLM-RB and τ = 0.90.

rectly identifies that were misclassified by the FT
model. We show examples of these cases in Ta-
ble 8. As the table shows, the ST model is able
to identify dialectal tokens whose equivalent MSA
forms can act as trigger words (usually followed by
a PER named entity). We refer to this category as
false trigger words. An example is the word ú



æ
.

	
K

“prophet” (row 1 in Table 8). A similar example
that falls within this category is in row (2), where
the model is confused by the token úÍ@ ( “who” in
EGY, but “to” in MSA and hence the wrong pre-
diction as LOC). A second category of errors is
caused by non-standard social media language,
such as use of letter repetition in interjections (e.g.,

Model MSA EGY GLF LEV
XLM-RB 96.30 78.38 83.72 78.17
XLM-RB, ST, S=50 – 80.79 85.13 79.91
XLM-RB, ST, S=100 – 80.43 84.74 79.16
XLM-RB, ST, S=200 – 78.75 84.21 79.40
XLM-RB, ST, τ=0.90 – 79.52 83.97 79.21
XLM-RB, ST, τ=0.85 – 78.97 83.53 79.06
XLM-RB, ST, τ=0.80 – 78.88 83.72 78.50
XLM-RL 98.21 82.28 85.95 81.24
XLM-RL, ST, S=50 – 82.65 87.76 83.70

Table 5: Zero-shot POS tagging transfer accuracy
when training on MSA only. ST: self-training.

in row (3) in Table 8). In these cases, the FT model
also assigns the class PER, but the ST model cor-
rectly identifies the tag as “O”. A third class of
errors arises as a result of out-of-MSA vocabulary.
For example, the words in rows (4-6) are all out-
of-MSA where the FT model, not knowing these,
assigns the most frequent named entity label in
train (PER). A fourth category of errors occurs as
a result of a token that is usually part of a named
entity in MSA, that otherwise functions as part of
an idiomatic expression in DA. Row (7) in Table 8
illustrates this case. Table 12 in Appendix B
provides more examples.

We also investigate errors shared by both the FT
and ST models (errors which the ST model also
could not fix). Some of these errors result from
the fact that often times both MSA and DA use
the same word for both person and location names.
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Setting Unlabeled MSA Unlabeled DA
ST, τ = 0.80 43.88 44.46
ST, τ = 0.90 44.69 47.83
ST, τ = 0.95 43.43 46.87
Avg 43.67 46.34

Table 6: Ablation experiment with MSA unlabeled
data for zero-shot NER. Development set macro F1 is
shown when using both unlabeled MSA and DA data
with the same size. Average performance with DA un-
labeled data is higher showing the effect of unlabeled
DA on model final performance.

Measure FT ST % improvement
True Positives 155 165 6.5 %
False Positive 159 64 59.7 %
False Negative 162 168 -3.7 %
True Negative 5,940 6,035 1.5 %

Table 7: Comparison of error categories in percent-
age between the fine-tuned model (FT) and the model
combining fine-tuned+self-trained (ST) model, based
on the dialectal part of the dev set of the NER task.

Row (1) in Table 13 (in Appendix B) is an ex-
ample where the word “Mubarak”, name of the
ex-Egypt President, is used as LOC. Other errors
include out-of-MSA tokens mistaken as named en-
tities. An example is in row (3) in Table 13, where
�
èPAÓ


AK. ,(“proof” or “basis” in EGY) is confused for

�
èPAÓA


K. (“emirate”, which is a location). False trig-

ger words, mentioned before, also play a role here.
An example is in row (7) where É¢�. AK
 is confused

for PER due to the trigger word AK
 “Hey!” that is
usually followed by a person name. Spelling mis-
takes cause the third source of errors, as in row
(4). We also note that even with self-training, de-
tecting ORG entities is more challenging than PER
or LOC. The problem becomes harder when such
organizations are not seen in training such as in
rows (8) 	á�
ÒÊ�ÖÏ @

	
à@ñ

	
kB@, (9) �

éJ
K. QªË@
�
èA

	
J
�
¯ and (10)

ø



Qº�ªË@ �Êj. ÖÏ @, all of which do not occur in the
training set (ANERCorp).

False negatives. The “regularizing” effect
caused by self-training we discussed thus far can
sometimes produce false negatives as shown in
Table 9. We see a number of named entities
that were misclassified by the self-trained model
as unnamed ones. As an example, we take the
last name ø



Pð

	Q 	
�m.
Ì'@ which was classified both cor-

rectly and incorrectly in different contexts by the
self-trained model. Context of correct classifi-

cation is “ø



Pð
	Q 	
�m.
Ì'@ ÈAÒºË h. A

�
K

�
�Aë ”, while it is

“½�AÓ ø



Pð
	Q 	
�m.
Ì'@ B@ ø



X ú



æ� AêÊ¿ �A

	
JË @ úÎ« ½�AÓ

ú


G
.
ñÊ

	
¯ éJ
Ê«” for the incorrect classification. First,

we note that ø



Pð
	Q 	
�m.
Ì'@ is not a common name (zero

occurrences in the MSA training set). Second, we
observe that in the correct case, the word was pre-
ceded by the first name ÈAÒ» which was correctly
classified as PER, making it easier for the model to
assign PER to the word afterwards as a surname.

6 Related Work

Sequence Labeling. Recent work on sequence la-
beling usually involves using a word- or character-
level neural network with a CRF layer (Lample
et al., 2016; Ma and Hovy, 2016). These architec-
tures have also been applied to Arabic sequence tag-
ging (Gridach, 2016; Alharbi et al., 2018; Khalifa
and Shaalan, 2019; Al-Smadi et al., 2020; El Bazi
and Laachfoubi, 2019), producing better or com-
parable results to classical rule-based approaches
(Shaalan and Oudah, 2014). We refer the interested
reader to (Shoufan and Alameri, 2015) and (Al-
Ayyoub et al., 2018) for surveys on Arabic NLP.

Pre-trained Language Models. Language
models, based on Transformers (Vaswani et al.,
2017), and pre-trained with the masked language
modeling (MLM) objective have seen wide use in
various NLP tasks. Examples include BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019),
MASS (Song et al., 2019), and ELECTRA (Clark
et al., 2020). While they have been applied to
several tasks, including text classification, ques-
tion answering, named entity recognition (Conneau
et al., 2019), and POS tagging (Tsai et al., 2019),
a sufficiently large amount of labeled data is re-
quired for good performance. Concurrent with our
work, Abdul-Mageed et al. (2020a) released MAR-
BERT, a language model trained on a large amount
of dialectal Arabic data. However, the extent to
which dialect-specific models such as MARBERT
can alleviate lack of labeled data remains untested.

Cross-lingual Learning. Cross-lingual learn-
ing is of particular importance due to the scarcity of
labeled resources in many of the world’s languages.
The goal is to leverage existing labeled resources
in high-resource languages (such as English) to
optimize learning for low-resource ones. In our
case, we leverage MSA resources for building DA
models. With proximity to our work, Kim et al.
(2017) trained a POS tagger for different languages
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no. Token Eng. MSA Context/Explanation FT Pred.
(1) ú



æ
.

	
K we want YK
Q

	
K . . . 	áÓ

	
¬Qª

	
K ú



æ
.

	
K (we want to know who) PER

(2) @ñ
	
KA¿ AÓ wasn’t @ñ

	
KñºK
 ÕË

	á�

�
¯Y�Ó @ñ

	
KA¿ AÓ ú



Í@ I. Ê

	
«


@ (most of those who wasn’t believing) LOC

(3) ÈðððñË LOL ½m�
	
� . . . ÈðððñË (interjection) PER

(4) 	
àA

�
�« for ú



¾Ë I. ªÊ

�
K

	
àA

�
�«

�
HAK
PA¢�. ú



æ
.

�
K (she wants batteries to play) LOC

(5) ú



�
æ

�
¯ñËX now 	

à
�
B@ ú




�
æ

�
¯ñËX È

	Q 	
�K
 èñª

	
J
�
¯@. . . (convince him to move now) PER

(6) �
��
@ what @

	
XAÓ ½K



@P

�
��
@ (what do you think?) PER

(7) PXA
�
¯ capable PXA

�
¯ . . . PXA

�
¯

�
èPY

�
®K. ð (magically; idiomatic expression) PER

Table 8: Sample false positives mitigated by self-training. These were correctly predicted as the unnamed entity
“O” by the self-trained model.

no. Word Gold FT ST
(1) 	

à@ñ
	

kB@ ORG ORG O

(2) ú


«X@Q�. ÊË PER PER O

(3) XCm.
Ì'@ ø



Ym.

× PER PER O

(4) È 	QK
X
	
àA

	
¯ PER PER O

(5) ø



Pð
	Q 	
�m.
Ì'@ PER PER O

(6) 	
àñ��


	áK

	P PER PER O

Table 9: NER task. Sample false negatives produced
by self-training.

using English-resources only using two BiLSTM
networks to learn common and language-specific
features. Xie et al. (2018) made use of bilingual
word embeddings with self-attention to learn cross-
lingual NER for low-resource languages.

Multilingual extensions of LMs have emerged
through joint pre-training on multiple languages.
Examples include mBERT (Devlin et al., 2018),
XLM (Lample and Conneau, 2019) and XLM-
RoBERTa (Conneau et al., 2019). Such multilin-
gual models have become useful for few-shot and
zero-shot cross-lingual settings, where there is lit-
tle or no access to labeled data in the target lan-
guage. For instance Conneau et al. (2019) evalu-
ated a cross-lingual version of RoBERTa (Liu et al.,
2019), namely XLM-R, on cross-lingual learning
across different tasks such as question answering,
text classification, and named entity recognition.

Self-Training. Self-Training is a semi-
supervised technique to improve learning using
unlabeled data. Self-training has been successfully
applied to NER (Kozareva et al., 2005), POS tag-
ging (Wang et al., 2007), parsing (Sagae, 2010) and
text classification (Van Asch and Daelemans, 2016).
Self-training has also been applied in cross-lingual

settings when gold labels are rare in the target lan-
guage. Hajmohammadi et al. (2015) proposed a
combination of active learning and self-training for
cross-lingual sentiment classification. Pan et al.
(2017) made use of self-training for named entity
tagging and linking across 282 different languages.
Lastly, Dong and de Melo (2019) employed self-
training to improve zero-shot cross-lingual classifi-
cation with mBERT (Devlin et al., 2018).

7 Conclusion

Even though pre-trained language models have im-
proved many NLP tasks, they still need labeled
data for fine-tuning. We show how self-training
can boost the performance of pre-trained language
models in zero- and few-shot settings on various
Arabic varieties. We apply our approach to two
sequence labeling tasks (NER and POS), establish-
ing new state-of-the-art results on both. Through
in-depth error analysis and an ablation study, we
uncover why our models work and where they can
fail. Our method is language- and task-agnostic,
and we believe it can be applied to other tasks and
language settings. We intend to test this claim in fu-
ture research. Our research also has bearings to on-
going work on language models and self-training,
and interactions between these two areas can be the
basis of future work. All our models and code are
publicly available.
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Appendices

A POS Tag Set

Table 10 lists all the part-of-speech (POS) tags
used in our experiments.

Tag Description Tag Description
ADV adverb ADJ adjective
CONJ conjunction DET determiner
NOUN noun NSUFF noun suffix
NUM number PART particle
PUNC punctuation PRON pronoun
PREP preposition V verb
ABBREV abbreviation VSUFF verb suffix
FOREIGN non-Arabic FUT PART future particle
PROG PART progressive particle EMOT Emoticon/Emoji
MENTION twitter mention HASH Hashtag
URL URL – –

Table 10: The POS tag set in (Darwish et al., 2018).

B Error Analysis
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Predicted
PER LOC ORG O

PER 117 2 2 66
Gold LOC 11 33 1 39

ORG 5 5 5 57
O 130 14 15 5,940

Predicted
PER LOC ORG O

PER 120 3 2 62
Gold LOC 10 34 0 40

ORG 5 6 11 66
O 54 8 2 6,035

Table 11: NER confusion matrices for fine-tuning (left) and self-training (right) on the development set of the DA
NER data.

no. Token Eng. MSA Context/Explanation FT Pred.
(1) ú



æ
.

	
K we want YK
Q

	
K . . . 	áÓ

	
¬Qª

	
K ú



æ
.

	
K (we want to know who) PER

(2) @ñ
	
KA¿ AÓ wasn’t @ñ

	
KñºK
 ÕË

	á�

�
¯Y�Ó @ñ

	
KA¿ AÓ ú



Í@ I. Ê

	
«


@ (most of those who wasn’t believing) LOC

(3) ÈðððñË LOL ½m�
	
� . . . ÈðððñË (interjection) PER

(4) 	
àA

�
�« for ú



¾Ë I. ªÊ

�
K

	
àA

�
�«

�
HAK
PA¢�. ú



æ
.

�
K (she wants batteries to play) LOC

(5) ú



�
æ

�
¯ñËX now 	

à
�
B@ ú




�
æ

�
¯ñËX È

	Q 	
�K
 èñª

	
J
�
¯@. . . (convince him to move now) PER

(6) �
��
@ what @

	
XAÓ ½K



@P

�
��
@ (what do you think?) PER

(7) PXA
�
¯ capable PXA

�
¯ . . . PXA

�
¯

�
èPY

�
®K. ð (magically; idiomatic expression) PER

(8) 	á�

�

�ÖÏ @ shameful 	á�

�

�ÖÏ @ ø



ðA¢
	
J£

	á�

�

�ÖÏ @ (shameful Tantawy; Playful for General Tant.) PER

(9) @ñºK
YK
@ your hands ÕºK
YK



@ . . . èñª

	
J
�
¯@ @ñºK
YK
@ �ñK. @ (I entreat you to convince him) PER

(10) ½ËA�@ I ask you ½Ë

A�


@ ú



æî

	
D

�
� ½ËA�@ ø



Xð (I ask you what) ORG

(11) 	á�
Ó who 	á�
Ó ø



ðYJ. Ë @
	á�
Ó ©Ó ½

�
Kñ� (who do you vote for, Badawi) PER

(12) ½��
X ú


G
.
ñÊ

	
¯ floppy disk 	

àQÓ �Q
�
¯ ½��
X ú



G
.
ñÊ

	
¯ éJ
Ê« ½�AÓ (holds a floppy disk against him) PER

(13) I. K
AJ. m
Ì loved ones ZAJ.k


B@ I. K
AJ. m

Ì 	
K
 ÕÎ« ÈAª

�
K (come teach your loved ones) LOC

(14) ø



AÓ water ZAÓ ø



AÓ ÑêË
�

IJ.k. (brought them water) PER

(15) �
IK
ñ

�
JK
P retweet YK
Q

	
ª

�
K

�
èXA«@


�

IK
ñ
�
JK
P �ðX

	
àA

	
Q̄

�
¯ ñË (if depressed click retweet) PER

Table 12: NER task. Bigger sample false positives mitigated by self-training. These were correctly predicted as
the unnamed entity “O” by the self-trained model.

no. Token(s) Context/Explanation Gold FT ST
(1) ¼PAJ. ÖÏ AK. A

	
Jk@ XA« ¼PAJ. ÖÏ AK. (We are still in Mubarak) LOC PER O

(2) �
�

�
�m×

�
èQå

	
�AjÖÏ @ É

	
gX

�
�

�
�m× (a drunk entered the lecture) O PER PER

(3) �
èPAÓ


AK.

	á�

	
¯ð éK
 @

�
èPAÓ


AK. (what is the evidence/sign and where?) O LOC LOC

(4) ú


æ
�
�

	
®

�
J�ÖÏ èPAK. ðYË@ Qå�

�
¯ ú



æ
�
�

	
®
�
J�ÖÏ (to Qasr AlDobara Hospital) LOC O O

(5) ú


» A

�
J
	
J» ú



» A

�
J
	
J» Y

	
J« (by Kentucky [resturant]) LOC O O

(6) 	
àðA

�
K

	
àð@X A¢

	
J¢�.

	
àðA

�
K

	
àð@X ¨ðQå

�
�Ó (a down town Tanta project) LOC O O

(7) É¢�. AK
 É¢�. AK
 ¼ðQ�.Ó (Congratulations, hero!) O PER PER

(8) 	
à@ñ

	
kB@

	
à@ñ

	
kB@ ©Ó

	
Ê

�
J
	
m�

	
' (we disagree with the Muslim brotherhood) ORG O O

(9) �
éJ
K. QªË@

�
èA

	
J
�
¯

�
éJ
K. QªË@

�
èA

	
J
�
¯

�
I

	
®

�
� (watched Al Arabya Channel) ORG O O

(10) ø



Qº�ªË@ �Êj. ÖÏ @ ø



Qº�ªË@ �Êj. ÖÏ @ éÊÔ« ú


ÎË @ (what the military council did) ORG O O

Table 13: NER task. Sample errors that are not fixed by self-training (shared with the mere fine-tuned model)


