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Abstract

A common approach in many machine learn-
ing algorithms involves self-supervised learn-
ing on large unlabeled data before fine-tuning
on downstream tasks to further improve per-
formance. A new approach for language
modelling, called dynamic evaluation, fur-
ther fine-tunes a trained model during infer-
ence using trivially-present ground-truth la-
bels, giving a large improvement in perfor-
mance. However, this approach does not
easily extend to classification tasks, where
ground-truth labels are absent during infer-
ence. We propose to solve this issue by uti-
lizing self-training and back-propagating the
loss from the model’s own class-balanced pre-
dictions (pseudo-labels), adapting the Reptile
algorithm from meta-learning, combined with
an inductive bias towards pre-trained weights
to improve generalization. Our method im-
proves the performance of standard backbones
such as BERT, Electra, and ResNet-50 on a
wide variety of tasks, such as question answer-
ing on SQuAD and NewsQA, benchmark task
SuperGLUE, conversation response selection
on Ubuntu Dialog corpus v2.0, as well as im-
age classification on MNIST and ImageNet
without any changes to the underlying mod-
els. Our proposed method outperforms previ-
ous approaches, enables self-supervised fine-
tuning during inference of any classifier model
to better adapt to target domains, can be easily
adapted to any model, and is also effective in
online and transfer-learning settings.

1 Introduction

It is a common consensus that the performance of
Machine Learning algorithms improves with in-
creasing data. However, due to the difficulty of
obtaining large quantities of labelled data, many
models (particularly in Natural Language Process-
ing domain) such as BERT (Devlin et al., 2019),
GPT (Radford et al., 2018) and UniLM (Dong

et al., 2019) rely on unsupervised pre-training on
unlabelled data to learn useful features which are
then fine-tuned for other downstream tasks. While
this approach leads to large gains in performance,
it leads to a mismatch between a network’s pre-
training and final fine-tuning. Some approaches
such as pseudo-labelling (Lee, 2013) have pro-
posed utilizing data-augmentation of unlabelled
data with the model’s own predictions to better
pre-train a model.

While these methods are limited to the training
phase, Krause et al. (2018) proposed to continue
training a language modeling model (which is the
task of predicting the next token in a sequence of
tokens) during the evaluation stage, achieving sig-
nificant improvements as the model learns to better
adapt to the inference data, without any modifica-
tions to the model architecture or any access to
training data. For language modeling, the ground
truth labels are the next input token, which are
trivially accessible to the model to facilitate this
learning. However, this method does not easily
generalize to standard classification tasks due to
the unavailability of labels during inference. This
is the setting which we further explore in this pa-
per, in which we are provided with a classification
model already trained on training data, but with no
access to the training data, and the aim is to further
improve the performance of the model by utilizing
self-training on the inference data.

To solve the above problem, we propose a
method to train any classifier model during infer-
ence, utilizing methods used in domain adaptation,
noisy-label learning, and multi-task meta-learning.
With ground truth labels being absent, we utilize
the model’s own predictions as the pseudo-labels
for those samples and utilize Class Balanced Self
Training (CBST) (Zou et al., 2018) to filter samples
based on the model’s confidence while retaining
class balance. However, naive online learning or
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re-training on the inference data is not optimal due
to the noise in the labels biasing the network, as
well as the small size of the inference set. We solve
this issue by leveraging the Reptile Meta Learning
Algorithm (Nichol et al., 2018) to improve gener-
alization, supplemented with an explicit inductive
bias towards the model’s pre-trained weights.

Our experimental results and ablation studies
show that our method improves the performance of
standard backbones such as BERT, Electra (Clark
et al., 2020) and ResNet (He et al., 2016) on
a wide variety of tasks, such as question an-
swering on SQuAD (Rajpurkar et al., 2018) and
NewsQA (Trischler et al., 2017), benchmark task
SuperGLUE (Wang et al., 2019), and conversation
re-ranking on Ubuntu Dialog corpus v2.0 (Lowe
et al., 2017) for NLP, as well as object classifica-
tion on MNIST (Deng, 2012) and ImageNet (Deng
et al., 2009) without any changes to the underlying
models, while outperforming previous approaches.
Our method can also be utilized for continual self-
supervised fine-tuning of classifiers on target do-
mains, as well as in transfer-learning settings, with-
out any model-level modifications.

2 Proposed Method

Our proposed technique is the self-supervised train-
ing of a classifier model during inference, consist-
ing of three parts – using confident predictions as
pseudo-labels, utilizing the Reptile algorithm to
improve generalization, and an explicit inductive
bias to minimize the effect of noisy labels.

2.1 Class Balanced Pseudo-labels

We utilize our classifier’s most likely predicted
class during inference as hard ground truth labels
(pseudo-labels). Hendrycks and Gimpel (2017)
show that using a model’s own softmaxed proba-
bility values, maxk{p(y = k|x)}, where k are the
classes, x is the input, and y is the predicted class
is a reasonable proxy for its expected accuracy. To
filter out samples with low maximum probabili-
ties, one can simply threshold the output with some
fixed value pt. As proposed by Zou et al. (2018), a
separate threshold pt(kmax) for each class, where
kmax is the class with the maximum predicted prob-
ability, works better by reducing skewing in favour
of easier classes.

In CBST pt(k) are automatically selected for
each k such that a fixed fraction f of examples
of each predicted-class are filtered out from the

inference set, i.e.,

P k = {p(y = k|x)|Argmaxkp(y = k|x) = k},

pt(k) = max({i | |p > i, p ∈ P k|
|P k|

<= f}),

Xt = {x | maxk{p(y = k|x)} > pt(k)},
Yt = {k | maxk{p(y = k|x)} > pt(k)}

These thresholds pt(k) can be kept fixed based on
the validation set, or can be a running estimate in
an online setting. Unlike the original CBST, we do
not further normalize the class probabilities with
these thresholds, as that led to a drastic reduction
in the accuracy of pseudo-label classification. Xt

inputs with hard pseudo-labels Yt are used as a
training set to further fine-tune the model, using
the Reptile Algorithm below. This approach is also
unaffected by a lack of model calibration, as long
as the model’s accuracy on Xt is acceptably high.

2.2 Reptile Algorithm, but for Single Task
Naively using the confident inferred labels for fine-
tuning the model is not optimal due to small size of
the test set compared to the train set as well as label
noise, lowering generalization, and reducing the
gains that can be achieved using the pseudo-labels.
Since aligned gradients between samples improve
a model’s generalization, as shown in Chatterjee
(2020) and Fort et al. (2019), we leverage the Rep-
tile Meta-Learning Algorithm to this end. The
meta-gradient for the Reptile algorithm contains as
a component the gradient for maximizing the inner
product between different mini-batches from the
same task, as we prove in Section 3.

Algorithm 1: REPTILE + l2sp
Input: Batches B = {b0, b1, . . . , bn}

W = θ0,0 ← Initial network params
Output: Final fine-tuned θ
for i← 0 to bn/kc do

for j ← 0 to k − 1 do
∇inner ← grad from θi,j(bi∗k+j)
∇LR ← LRinner ∗ ∇inner

l2sp← decay ∗ (θi,j −W )
θi,j+1 ← θi,j −∇LR − l2sp

∇outer ← (θi,0 − θi,k)
θi+1,0 ← θi,0 − LRouter ∗ ∇outer

return θbn/kc+1,0

The Reptile Algorithm is a batched First-Order
MAML (FO-MAML) Algorithm, originally in-
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Figure 1: Overview of Reptile with l2sp update for 4 inner steps.

tended for multi-task meta-learning. We use this
algorithm in a single-task setting, as shown in Al-
gorithm 1. The Reptile algorithm consists of k > 1
inner steps of standard SGD updates with learning
rate LRinner. The difference between original net-
work weights θi,0 and the final network weights θi,k
is used as a meta-gradient for SGD for updating the
network parameters with a learning rate LRouter,
where i is the outer step. The SGD optimizer can
be replaced with any other, such as Adam.

The Reptile algorithm for this single task setting
is First Order, requiring little extra compute com-
pared to standard optimization, and can be plugged
in to any model with ease. Some other multi-task al-
gorithms with Experience-Replay, such as Riemer
et al. (2018), may exhibit better learning but are
computationally orders of magnitude more expen-
sive and are hence infeasible for large datasets and
models.

2.3 Explicit Inductive Bias

While all the models we use employ a weight de-
cay towards 0 in their training phase, given the
usually smaller size of the inference set, we regu-
larize the model by biasing the network towards
its pre-trained weights instead. For this, we use
the l2sp decay (Li et al., 2018), slowly decaying
the model weights between updates towards the
initial trained model weights. An example of the
update steps involved for k = 4 is shown in Fig.1.
We conjecture that this will also make the learning

more stable to the noisy pseudo-labels.
Some recent works such as Goldblum et al.

(2020) also show that standard l2 weight decay
towards 0 may not be ideal and recommend biasing
weights towards some model-dependent non-zero
norm value instead. l2sp can be seen as a general-
ization of the same, while simultaneously taking
advantage of the pre-training.

3 Theoretical Analysis

In this section, we provide a theoretical analysis of
the meta update of Reptile+ l2sp. We generalize
the Taylor expansion approach for Reptile as used
in (Nichol et al., 2018) to accommodate l2sp, and
show how our approach maximizes the inner prod-
uct of gradients between different mini-batches.

We consider one set of k inner updates. For
i ∈ [0, k], we define -

θi = network weights before ith step,

bi = input batch for ith step,

Li = loss function corresponding to bi,

W = pre-trained network weights for l2sp,

β = l2sp weight decay rate,

α = LRinner,

gi = L′i(θi), (gradient of ithbatch)

gi = L′i(θ0), (gradient at initial point)

Hi = L′′i (θi), (Hessian of ithbatch)
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Hi = L′′i (θ0), (Hessian at initial point)

Then, our update rule is -

θi = (1− β)θi−1 − αgi−1 + βW (1)

In the following analysis, to keeps the analysis
tractable, we assume both α and β are small and
comparable, and ignore terms involving O(α2),
O(β2) and O(αβ). Using the first order Taylor
expansion of gi, we get -

gi = gi +Hi(θi − θ0) (2)

The following equations can be proved using sim-
ple induction on Eq (1) and (2) -

θi = θ0 + iβ(W − θ0)− α
i−1∑
j=0

gj , (3)

gi = gi + iβHi(W − θ0)− αHi

i−1∑
j=0

gj , (4)

By summing up the displacements from all variable
updates, the expectation of the meta-gradient from
Reptile + l2sp under mini-batch sampling is -

E[−(θk − θ0)] = E[α
k−1∑
i=0

gi −
k−1∑
i=0

β(W − θi)]

When expanding the terms above with Eq (3) and
(4) and simplifying, we get -

E[−(θk − θ0)] = c1E[gi] + c2(θ0 −W )

−c3E[Hjgi]− c4E[Hj(θ0 −W )], (5)

where each ci is a positive constant, dependent on
k, α and β.

The first term in R.H.S. of Eq (5) is the gradi-
ent which takes us to the minimum of the training
problem. For the third term, note that -

E[Hjgi] = E[Higj ] =
1

2
E[Hjgi +Higj ]

=
1

2
E[

∂

∂θ0
(gi · gj)]

Therefore the third term maximizes the dot product
between the gradients of the batches for improved
generalization, as in the original Reptile algorithm.

For the second and fourth terms, note that (θ0 −
W ) is the direction of the gradient of the l2sp, and
hence can be interpreted similar to the first and
third term, but with training gradients replaced by
this l2 gradient.

Hence, we have shown that the Reptile algo-
rithm maximizing product of gradients for improv-
ing generalization holds true in our extension as
well.

Corpus Task |Train| |Dev|
BoolQ QA 9427 3270
CB NLI 250 57
COPA QA 400 100
MultiRC QA 5100 953
ReCoRD QA 101K 10K
RTE NLI 2500 278
WiC WSD 6000 638

Table 1: Description of datasets in SuperGLUE.

Corpus Model |Train| |Test|
MNIST MLP 60K 10K
ImageNet ResNet-50 1.2M 50K
SQuAD v2.0 Electra 130K 12K
Ubuntu Diag. BERT 1M 18K
NewsQA BERT-trans 97K 5.4K

Table 2: Description of NLP and image datasets. For
SQuAD and ImageNet, column 4 refers to validation.
Bert-trans is as described in Section 5.3.

4 Experimental Setup

4.1 Benchmark Datasets
SuperGLUE A popular NLP benchmark, which
attempts to test various capabilities of language
understanding. It itself consists of 8 datasets -
Boolean Questions (Clark et al., 2019), Commit-
ment Bank (De Marneffe et al., 2019), Choice of
Possible Alternative (Gordon et al., 2012), Multi-
Sentence Reading Comprehension (Khashabi et al.,
2018), Reading Comprehension with Common-
sense Reasoning (Zhang et al., 2018), Recogniz-
ing Textual Entailment (a combination of datasets
from Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009; Po-
liak et al., 2018), Word-in-Context (Pilehvar and
Camacho-Collados, 2019) and Winograd Schema
Challenge (Levesque, 2011).

SQuAD v2.0 A popular span-style QA dataset,
consisting of passages from Wikipedia, with ques-
tions and corresponding answer spans and unan-
swerable questions.

Ubuntu Dialog Corpus v2.0 A large-scale cor-
pus of multi-turn conversations mined from Ubuntu
IRC chat logs, and the task is to select the best re-
sponse given a list of possible distractor responses.

NewsQA A span-style QA dataset, consisting
of crowd-sourced questions and answers on CNN
news articles, along with unanswerable questions.
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Model Params Speed
Electra-large-cased 340M 8
BERT-large-cased 340M 8
BERT-base-uncased 110M 36
ResNet-50 23M 146
MLP (128H, 2L) 120K ~1M

Table 3: Models, number of network parameters, and
training speeds in examples/second on a V100 GPU.

MNIST An image classification dataset of 28x28
scans of handwritten digits. While the dataset has
long been solved, it nevertheless serves as a useful
dataset to compare simpler architectures.

ImageNet A large-scale dataset for image classi-
fication, consisting of 1.2M training samples along
with their corresponding class labels.

4.2 Models

BERT BERT is a transformer (Vaswani et al.,
2017) model, and its derivative models are the
backbone of most state-of-the-art models in NLP.
We use the official implementation and pre-trained
models of BERT-large-cased for SuperGLUE tasks,
and BERT-base-uncased for Ubuntu Dialog Corpus,
NewsQA, and for our ablation tests on SQuAD.

Electra Electra is a BERT-derived state-of-the-
art model in many NLP tasks, with a discriminative
pre-training task. We use the official pre-trained
Electra-large model, and we implement our own
classifier for SQuAD v2.0.

ResNet Residual blocks and their variants are the
backbone of most image classification models to-
day. We use Tensorflow Model Garden’s implemen-
tation and pre-trained ResNet-50 for ImageNet.

MLP While models made of only simple Multi
Layer Perceptrons have largely fallen out of favour,
fully connected layers are often a part of larger
architectures. We use an MLP with 2 Layers and
128 Hidden units as the model for MNIST.

4.3 Implementation Details

Fine-tuning on inference data is extremely quick
as our method is first order, taking less than 15
minutes on a V100 for all datasets except ReCoRD
and Ubuntu-Dialog, for which it takes a few hours.
We use the Adam optimizer, and we disable our
model’s l2 weight decay, if any. Batch-norm vari-
ables, if any, are also kept fixed.

Corpus Metric BERT BERT + ours
BoolQ Acc 76.4 76.6 ± 0.01

CB
F1
Acc

88.1
91.1

89.4 ± 0.01
92.9 ± 0.01

COPA Acc 71.0 72.0 ± 0.01

MultiRC
F1a
EM

69.5
26.4

70.0 ± 0.01
26.8 ± 0.01

ReCoRD
F1
EM

72.5
71.8

73.0 ± 0.09
72.4 ± 0.03

RTE Acc 74.0 75.1 ± 0.01
WiC Acc 73.8 74.3 ± 0.02

Table 4: Results on the validation set of SuperGLUE
benchmark dataset, with Bert-large-cased model.

For each dataset, we train one model on the train-
ing set, followed by five runs on the pseudo-labeled
thresholded inference set with varying seeds, and
report the mean and standard deviation of the
scores. As the test set for SuperGLUE and SQuAD
are hidden, we provide results on the development
set instead.

All default/official model hyper-parameters were
used for each model/dataset, which can be found
in their official source codes linked in the supple-
mental material, except we use 1e−5 as LR for
Electra as we observed divergence with standard
LR. We linearly decay LR except in the online case,
where it is kept fixed. The hyper-parameters for
Reptile and l2sp are provided in the supplemental
material. A reasonable set of hyper-params, that
works across a range of datasets and models we
tested, is 0.01 for LRouter, 4 for inner step, and
0.1 for l2sp, while LRinner depends on the origi-
nal model’s LR. RTE, BoolQ, and WiC filter out f
as 70% of data, while all other datasets filter 50%.

5 Results

5.1 Results on SuperGLUE benchmark
As shown in Table 4, our method consistently im-
proves the performance on all the tasks in Super-
GLUE, with very little extra compute, with upto
1.8 increase in accuracy. The gains tend to be larger
on smaller datasets, but we observe significant im-
provement even with the largest task ReCoRD, with
over 100K examples.

5.2 Results on other NLP datasets
Our method achieves gains of 0.68/0.72 F1/EM on
SQuAD v2.0 with BERT-base, as shown in Table 7.
Even when using a state-of-the-art Electra model
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Method F1 EM
BERT 76.14 73.14
BERT + CBST (Zou et al., 2018) 76.22 ± 0.02 73.35 ± 0.02
BERT + Disagreement (Malach and Shalev-Shwartz, 2017) 76.23 ± 0.03 73.27 ± 0.06
BERT + Uncertainty Estimation (Zheng and Yang, 2020) 76.25 ± 0.05 73.29 ± 0.04
BERT + Mutual Mean-Teaching (Ge et al., 2020) 76.28 ± 0.04 73.23 ± 0.05
BERT + Co-teaching (Han et al., 2018) 76.28 ± 0.02 73.29 ± 0.04
BERT + Ours 76.82 ± 0.04 73.86 ± 0.04

Table 5: Comparison of our method to existing method, on SQuAD v2.0 corpus, using BERT-base-uncased.

Corpus Metric Base Base + ours
MNIST Acc 98.11 98.38 ± 0.02
ImageNet Acc 76.53 76.69 ± 0.01

SQuAD v2.0
F1
EM

90.13
87.44

90.25 ± 0.01
87.67 ± 0.01

Ubuntu Diag. R10@1 76.79 76.89 ± 0.01

NewsQA
F1
EM

44.79
32.48

49.36 ± 0.05
38.71 ± 0.11

NewsQA
(online)

F1
EM

44.79
32.48

47.49 ± 0.01
34.11 ± 0.04

Table 6: Results on other NLP and Image datasets.

with SQuAD, we still observe consistent improve-
ments in performance, as shown in Table 6. Even
in the presence of large training-set sizes such as
that of Ubuntu Dialog Corpus v2.0 with 1M train-
ing samples, we still observe consistent increase in
performance with the BERT model.

5.3 Results in a Transfer Learning Setting

We also evaluate our approach in a transfer-learning
setting on NewsQA, using a BERT-base-uncased
model, which was pre-trained on SQuAD v2.0, by
self-training on NewsQA train set, followed by
evaluation on the test set. Our approach is espe-
cially effective in this setting, out-performing the
original model by 4.57/6.23 F1/EM respectively,
as shown in Table 6. This experiment demonstrates
that our approach is effective for unsupervised do-
main adaptation to a target domain even in the
absence of source domain data.

5.4 Results on Image Classification

To demonstrate that our method also works in non-
NLP domains, on ImageNet with ResNet-50, we
report an increase in accuracy of 0.16. On MNIST
dataset, the improvement in accuracy of our simple
MLP model is 0.27.

5.5 Comparison with Existing Methods

We compare our method with several existing
approaches for Self-Training, Zou et al. (2018),
Malach and Shalev-Shwartz (2017), Malach and
Shalev-Shwartz (2017), Ge et al. (2020) and Han
et al. (2018), on SQuAD v2.0 dataset.

As shown in Table 5 our method greatly outper-
forms the existing approaches, giving 4 to 5 times
the relative improvement compared to other meth-
ods, improving performance by 0.68/0.82 F1/EM
compared to 0.14/0.15 F1/EM of the best perform-
ing existing approach.

5.6 Online Variant

Our approach can also be used effectively without
any modifications in an online setting, where the
model keeps learning continuously as inference
data is fed to the model. We use a trained model to
make predictions on the input inference data, and
at the same time, we use the model’s predictions
to finetune the model. For this kind of learning,
we use a constant learning rate, as the total size of
inference data is unavailable. As a baseline, we use
BERT + CBST (trained on SQuAD-v2.0 data) with
a constant learning rate. BERT + CBST + Reptile
+ l2sp (Online) clearly outperforms BERT + CBST
(Online) by 0.38/0.37 F1/EM as shown in Table 7.

We also compare the performance of our method
when running in online mode for a long time on
NewsQA dataset, as shown in Table 6. The perfor-
mance improvement is not as large as with decreas-
ing LR, but still results in significant performance
improvements of 2.70/1.63 F1/EM, respectively.

6 Ablation Studies

We conduct extensive ablation studies to test the
effectiveness of all parts of our approach. We per-
form these ablations on SQuAD v2.0 with BERT-
base model.
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Method F1 EM
BERT 76.14 73.14
BERT + CBST 76.22 ± 0.02 73.35 ± 0.02
BERT + CBST + l2sp 76.24 ± 0.04 73.49 ± 0.04
BERT + CBST + Reptile 76.61 ± 0.02 73.60 ± 0.03
BERT + Reptile + l2sp 76.47 ± 0.07 73.63 ± 0.08
BERT + CBST + Reptile + l2sp 76.82 ± 0.04 73.86 ± 0.04
BERT + CBST (Online) 76.20 ± 0.01 73.28 ± 0.01
BERT + CBST + Reptile + l2sp (Online) 76.58 ± 0.02 73.65 ± 0.01

Table 7: Ablation Study of our method on SQuAD v2.0 corpus, using the BERT-base-uncased model.
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Figure 2: Ablation study of varying the thresholding
percentage on NewsQA. The Y axis is F1 score, the X
axis is the percentage of data left after thresholding.

6.1 Thresholding

In Table 7, we compare using CBST thresholding
of model outputs to fine-tune the model vs. using
all the data. Using CBST + Reptile + l2sp increases
scores by 0.35/0.23 F1/EM respectively compared
to using all the pseudo-labels with Reptile + l2sp.

We further study the effect of the thresholding
fraction f used to select the subset of confident
data. We use the pre-trained Bert-base-uncased
model, self-trained on the training set of NewsQA
data with pseudo-labels, while varying f , and then
evaluate on the dev set. As can be seen in Fig.2,
the optimal value for thresholding is around 50%,
decreasing slowly as more data (but with less con-
fident labels) is used, and decreasing more sharply
as the total filtered data used decreases.

6.2 Reptile Algorithm

Compared to using just CBST, using the Reptile
Algorithm to finetune results in more performance
gains of 0.58/0.37 F1/EM, as we can see in Table 7.
This effect persists irrespective of whether l2sp or
the model’s default weight decay towards 0 is used.
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Figure 3: Effect of varying total size of Inference data
on our method on SQuAD v2.0. The Y axis is F1 score,
the X axis is the total amount of Inference data used.

This demonstrates that the increased generalization
from Reptile’s meta-gradients is indeed effective
in increasing model performance and robustness.

We also conduct an ablation study on the choice
of number of inner steps k on the performance of
our model. As shows in Table 8, the number of
inner updates does not have a major impact on the
results, but we advise it be kept less than or equal
to 4 as higher inner steps reduce the number of
outer updates (as the total number of epochs is kept
constant).

6.3 Inductive Bias towards pre-trained
weights

We can also see in Table 7 that l2sp is indeed effec-
tive, and by simply biasing the model towards the
pre-trained weights, we can achieve better results.
This effect becomes more pronounced when the
Reptile algorithm is used, with 0.21/0.26 F1/EM
improvement of CBST + Reptile + l2sp compared
to CBST + Reptile.

We also conduct an ablation study on the choice
of this bias, by transfer learning on NewsQA
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Num Updates F1 EM
Baseline 76.24 ± 0.04 73.49 ± 0.04
2 76.79 ± 0.02 73.87 ± 0.02
4 76.82 ± 0.01 73.86 ± 0.02
6 76.80 ± 0.01 73.74 ± 0.02
8 76.71 ± 0.01 73.68 ± 0.03

Table 8: Ablation of choice of hyper-parameter num-
ber of inner steps k for our method CBST + Reptile +
l2sp on SQuAD with BERT-base.

l2sp decay F1 EM
Baseline 76.14 73.14
0 76.38 ± 0.00 69.87 ± 0.21
6e-4 76.54 ± 0.02 70.74 ± 0.15
2e-3 76.10 ± 0.01 73.74 ± 0.12

Table 9: Performance of BERT-base on SQuAD, af-
ter self-training on NewsQA with transfer learning with
our method, for varying choices of hyper-parameter de-
cay for l2sp.

dataset using our method with a model trained
on SQuAD, and measuring the performance on
SQuAD thereafter. As shows in Table 9, l2sp pre-
vents the model from forgetting its performance on
SQuAD. However, higher values prevent it from
improving its performance on the original squad by
minimizing learning on NewsQA.

6.4 Effect of Inference Data Size
In Figure 3, we vary the amount of inference data
available for our model to learn from, by training
a BERT-base model on varying sizes of pseudo-
labelled SQuAD v2.0 dev set, while keeping f
fixed at 50%. The largest increase occurs early on
in the training. However, even on using the full dev
set, the performance keeps improving, giving an
improvement in F1 of 0.68.

7 Related Works

7.1 Pseudo-labeling
Lee (2013) proposed a simple and efficient method
of semi-supervised learning for deep neural net-
works, in which the proposed network is trained
in a supervised fashion with labeled and unlabeled
data simultaneously, using pseudo-labels created
by selecting the classes which have the highest pre-
dicted probabilities as ground truth labels for unla-
beled data. CBST (Zou et al., 2018) used different
thresholds for pseudo-labels of different classes.
Mutual Mean-teaching (Ge et al., 2020) used a

moving average of two separate classifiers to re-
fine pseudo-labels. Zheng and Yang (2020) used
KL-divergence between two classifiers as a mea-
sure of classifier variance to filter incorrect pseudo-
labels. Pseudo-labels and similar self-supervised
techniques have grown increasingly popular, partic-
ularly when used in conjunction with extremely
large unlabelled data, and was used by Noisy-
Student (Xie et al., 2019) recently to achieve state-
of-the-art performance on image classification.

7.2 Dynamic Evaluation

Adaptive language modelling has a long history,
such as Kuhn (1988), and caching based models
have resulted in improved performances over state-
of-the-art, such as Merity et al. (2018). Krause et al.
(2018) proposed to use dynamic evaluation adapted
to recent history via a gradient descent based mech-
anism. However, their approach is limited to lan-
guage modelling, where ground-truth labels are
trivially available during inference, and does not
generalize to standard classification setting.

Rahman et al. (2019) also used pseudo-labels
during inference to learn, but differently from our
paper, they primarily focus on a transductive zero-
shot detection, and do not use our proposed meta-
learning and inductive bias. Kim et al. (2019) also
proposed to use pseudo-labels to learn during eval-
uation, but require changes to the model’s training
phase. Su et al. (2016) also used pseudo-labels
on inference data to improve model performance,
but their contributions are primarily focused on
adapting Self-Training to unbalanced classes. Dy-
namic evaluation can be considered a form of Fast-
weights (Ba et al., 2016), which unlike our ap-
proach, requires changes during the training phase.

7.3 Generic Methods for Noisy Labels

Loss correction methods such as Patrini et al.
(2017) model the noise transition matrix. Other
approaches try to directly correct the noisy labels,
such as Veit et al. (2017), but require access to a
clean set. Others directly modify the loss function
to make it more stable to noisy labels, such as Gen-
eralized Cross Entropy (Zhang and Sabuncu, 2018).
Other approaches, most related to our approach, re-
fine the training strategy, such as Co-teaching (Han
et al., 2018) or Mutual Mean-teaching, using two
classifiers to select the data for each other.
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7.4 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation methods often
use Adversarial Methods, such as Jiang et al.
(2020), to distinguish between source and target
domains. Distance based methods, such as Chen
et al. (2019), aim to minimize the distribution dis-
crepancy across different domains. Other methods
such as Courty et al. (2017) rely on optimal trans-
port between source and target domains. These
methods often need access to source domain data,
or modify the original model or training procedure.

7.5 Meta-Learning for Transfer Learning

Algorithms that rely on Fisher/Hessian matrices
have been proposed to improve transfer learning,
such as Kirkpatrick et al. (2016). Nichol et al.
(2018) proposed using batched FO-MAML during
training to learn better weight initialization val-
ues. Often these algorithms also use some form
of Experience Replay, where saved/cached exam-
ples from previous tasks are replayed to prevent
the model from forgetting. Riemer et al. (2018)
proposed Meta-Experience Replay (MER), exploit-
ing a trade-off between transfer and interference by
enforcing gradient alignment across examples.

8 Conclusion

We propose a method for self-supervised learning
for any classifier model during inference using the
model’s own predictions, adapting Reptile algo-
rithm from meta-learning and an inductive bias for
maintaining generalization while improving perfor-
mance. We demonstrate the effectiveness of our
method on a wide range of tasks, including Super-
GLUE benchmark, question answering on SQuAD
v2.0 and NewsQA, response selection on Ubuntu
Dialog Corpus v2.0, and image classification on
ImageNet and MNIST. Our approach consistently
improves the performance of standard backbones
such as BERT, Electra, and ResNet. Our method
is effective for improving the performance of neu-
ral models without any changes to the underlying
models, their training, or access to training data,
requires minimum extra compute, and is also effec-
tive in online and transfer-learning settings.
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A Statistical Significance of Results

For each dataset, we train one model on the training
set, followed by five runs on the pseudo-labeled
thresholded test set with varying seeds, and re-
port the mean and standard deviation of the scores.
Smaller datasets in SuperGLUE are known to have
significant variation between multiple runs when
fine-tuning BERT model, however, most of this
variation comes from random initialization of the
classification layer. In our experiments, as the
model has already been fine-tuned on the train set,
the only variation between runs is the order of input
data. This results in an extremely small variation
in score between different runs, much smaller than
the performance gains observed, making the im-
provements statistically significant.

A.1 Significance tests
We provide below in Table 10 and Table 12 the
P-values for one-sample T-test for the Table 6 and
Table 7, with the null hypothesis that the scores
of our results have the same mean as the baseline.
Our results are significant at 99% confidence in all
settings.

B Improved Generalization

The NewsQA results in Table 6 are scores on the
test set, while the model was self-trained on the
train set. The scores indicate that, the model does
not over-fit while self-training as our approach sig-
nificantly improves the scores on the test set.
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Corpus p− value
SQuAD v2.0 Electra (F1) 3e-5
Ubuntu Dialog v2.0 5e-5
NewsQA (F1) 1e-9
ImageNet 4e-7

Table 10: P-values for one-sample T-test with the null
hypothesis for Table 6.

As a further test of improved generalization, we
split the squad dev set in two equal halves, per-
formed our self-training on one half, and evaluated
on the other half. Scores in Table 11 show, self-
training on one half improved generalization on the
other.

Model/Approach F1 EM

BERT 76.28 73.32
BERT+ours 76.40 73.45

Table 11: Results on one half of the squad-dev set.

C Links to Source code

For SuperGLUE, we use the Official
Implementation for BERT available at
https://github.com/nyu-mll/jiant, along
with the default pre-trained models. For ab-
lation tests on SQuAD, we used the official
implementation and pre-trained models at
https://github.com/google-research/bert.
For Ubuntu Dialog, we used the same pre-trained
models, but we implement our own classifier.
For Electra, we used the pre-trained models
from https://github.com/google-research/

electra. For ResNet-50, we used Tensor-
flow Model Garden’s official implementation
as well as pre-trained model on ImageNet at
https://github.com/tensorflow/models/

tree/r1.13.0/official/resnet. For MNIST,
we implemented our own MLP following
https://www.tensorflow.org/datasets/

keras_example. The Reptile+l2sp Optimizer is
trivial to implement in all of the above models
following the pseudo-code from the main paper, by
modifying the Optimizer class used for each of the
models.

D Links to download data

SuperGLUE can be downloaded from
https://super.gluebenchmark.com/. SQuAD
v2.0 can be downloaded from https:

//rajpurkar.github.io/SQuAD-explorer/.
Ubuntu Dialog Corpus can be gener-
ated using https://github.com/rkadlec/

ubuntu-ranking-dataset-creator. ImageNet
can be downloaded from http://image-net.org.
MNIST can be downloaded from http://yann.

lecun.com/exdb/mnist/. NewsQA can be
downloaded from https://www.microsoft.com/

en-us/research/project/newsqa-dataset/.

E Corresponding Validation set results
for Test Set

Our only reported test scores are on MNIST,
NewsQA, and Ubuntu Dialog Corpus. For MNIST,
there is no official validation set. For Ubuntu Di-
alog Corpus, the validation score of our model
is 76.44 Recall10@1, and for NewsQA, it is
49.44±0.04 F1 and 39.26±0.15 EM, respectively.

F Hyper-parameters of our approach

The hyper-parameter search bounds were chosen
based on heuristic manual estimates, primarily con-
sidering the product of the LRinner and LRouter,
compared to the model’s native LR when the frac-
tion of training steps left equals the ratio of the size
of the training set to the size of the filtered infer-
ence set. Each set of hyper-parameters was run
three times, and the hyper-parameter search was
run in a grid. We list the hyper-parameters of our
Reptile+ l2sp approach in Table 13.

G Dataset descriptions

G.1 SuperGLUE
BoolQ Boolean Questions, a Question Answer-
ing (QA) dataset with short passages and yes/no
questions, with data from Wikipedia and Google
search engine queries.

CB Commitment Bank, consisting of passages
with labels for commitment of speakers of clauses
to said clause, framed as three-class NLI, with data
from WSJ, British National Corpus and Switch-
Board. Evaluated with unweighted average F1 and
accuracy.

COPA Choice of Possible Alternative, a dataset
to classify the cause/effect of a given premise from
two alternatives, with fully handcrafted data.

MultiRC Multi-Sentence Reading Comprehen-
sion, a QA dataset, with a list of multiple-
choice possible answers for each question to a
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Approaches (F1) p− value
CBST+Reptile-vs-CBST 3e-7
CBST+Reptile+l2sp-vs-CBST+Reptile 1e-5
CBST+Reptile+l2sp(online)-vs-CBST(online) 2e-6
CBST+Reptile+l2sp-vs-Baseline(One-sample) 1e-6

Table 12: P-values for one-sample T-test with the null hypothesis for Table 7.

Corpus LRouter LRinner inner steps l2sp

SQuAD v2.0 Bert [1e-2, 3e-3] 1e-5 4 1e-2
SQuAD v2.0 Electra 3e-3 [1e-5, 1e-6] 4 [1e-2, 5e-2]
Ubuntu Dialog v2.0 [1e-2, 3e-3] [1e-5, 1e-6] 4 [5e-2, 1e-1]
NewsQA 1e-2 1e-5 4 [2e-3, 1e-2]
ImageNet [3e-2, 1e-2] 1e-4 4 [1e-1, 5e-1]
MNIST 1e-1 1e-4 4 1e-1
BoolQ 1e-2 1e-6 4 0.4
CB 1e-2 1e-6 4 0.4
COPA 1e-2 1e-6 2 0.4
MultiRC 1e-1 1e-4 2 0.4
ReCoRD 1e-2 1e-6 4 0.4
RTE 1e-2 1e-6 2 0.4
WiC 1e-2 1e-6 2 0.4

Table 13: Hyper-parameters for all Datasets. Best performing parameters are in bold.

paragraph. Evaluated with F1 over all answer-
options(F1a), and exact match of each question’s
set of answers(EM ).

ReCoRD Reading Comprehension with Com-
monsense Reasoning, a QA dataset consisting of
articles and Cloze-style questions with a masked
entity, scored on predicting the masked entity from
the entities in the article, with data from CNN and
Daily Mail. Scored with token-level F1 and EM.

RTE Recognizing Textual Entailment, as binary
classification of entailment or not entailment, with
data from Wikipedia and news.

WiC Word-in-Context, a word sense disambigua-
tion (WSD) dataset, tasked with binary classifica-
tion of sentence pairs based on the sense of a com-
mon polysemous word. Data is from WordNet and
Wiktionary.

WSC Winograd Schema Challenge, a corefer-
ence resolution task on resolving pronouns to a list
of noun phrases. As the models we tested only
predicted the majority class, we omit this dataset.

G.2 SQuAD v2.0
The Stanford Question Answering Dataset v2.0
is a popular span-style QA dataset, consisting of

passages from Wikipedia, labelled by annotators
for questions on the passages and corresponding
answer spans, along with unanswerable questions
as well. This dataset is evaluated with F1 and EM
scores of predicted answer spans.

G.3 Ubuntu Dialog Corpus v2.0

The Ubuntu Dialog Corpus is a large-scale cor-
pus of multi-turn real human conversations mined
from Ubuntu IRC chat logs, with only two par-
ticipants per conversation. Each conversation is
annotated with the next utterance (response) fol-
lowing the conversation, and the task is to select the
best response given a list of possible distractor re-
sponses. The dataset is evaluated with Recall score
of picking the correct response out of 10 possible
responses, Recall10@1.

G.4 NewsQA

NewsQA is a span-style QA dataset, consisting
of crowd-sourced questions on CNN news articles
and their corresponding answer spans, along with
unanswerable questions. This datasets is evaluated
with F1 and EM scores of predicted answer spans.
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G.5 MNIST

MNIST is a popular image classification dataset,
consisting of normalized and anti-aliased 28x28
scans of handwritten numerical digits. While the
dataset has long been solved, it nevertheless serves
as a useful dataset to compare simpler architec-
tures.

G.6 ImageNet

ImageNet is a large-scale dataset for image classifi-
cation, consisting of 1.2M training samples along
with their corresponding class labels. It is often the
de-facto dataset when comparing Image Classifica-
tion models.

H Expected validation performance

0 1 2 3 4 5
Number of Hyperparameter Trials ->

76.6

76.7

76.8

76.9

E
x
p
e
ct
e
d
 v
a
lid

a
ti
o
n
 F
1
 -
>

Figure 4: Expected Validation performance of our
hyper-parameter searches, for SQuAD dataset with
BERT-base model.
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Figure 5: Expected Validation performance of our
hyper-parameter searches, for SQuAD dataset with
Electra-large model.
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Figure 6: Expected Validation performance of our
hyper-parameter searches, for ImageNet dataset with
ResNet-50 model.
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Figure 7: Expected Validation performance of our
hyper-parameter searches, for Ubuntu dialog corpus
with BERT-base model.

We provide the expected validation performance
for all the datasets we ran hyper-parameter searches
on, as described in (Dodge et al., 2019).


