
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3692–3702
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3692

Removing Word-Level Spurious Alignment between Images and
Pseudo-Captions in Unsupervised Image Captioning

Ukyo Honda1,3 Yoshitaka Ushiku2 Atsushi Hashimoto2

Taro Watanabe1 Yuji Matsumoto3

1 Nara Institute of Science and Technology 2 OMRON SINIC X Corp.
3 RIKEN Center for Advanced Intelligence Project
1 {honda.ukyo.hn6, taro}@is.naist.jp

2 {yoshitaka.ushiku, atsushi.hashimoto}@sinicx.com
3 yuji.matsumoto@riken.jp

Abstract

Unsupervised image captioning is a challeng-
ing task that aims at generating captions with-
out the supervision of image–sentence pairs,
but only with images and sentences drawn
from different sources and object labels de-
tected from the images. In previous work,
pseudo-captions, i.e., sentences that contain
the detected object labels, were assigned to
a given image. The focus of the previous
work was on the alignment of input images and
pseudo-captions at the sentence level. How-
ever, pseudo-captions contain many words that
are irrelevant to a given image. In this work,
we investigate the effect of removing mis-
matched words from image–sentence align-
ment to determine how they make this task dif-
ficult. We propose a simple gating mechanism
that is trained to align image features with only
the most reliable words in pseudo-captions:
the detected object labels. The experimental
results show that our proposed method out-
performs the previous methods without intro-
ducing complex sentence-level learning objec-
tives. Combined with the sentence-level align-
ment method of previous work, our method
further improves its performance. These re-
sults confirm the importance of careful align-
ment in word-level details.1

1 Introduction

Image captioning is a task to describe images in
natural languages. This is a fundamental challenge
with regard to automatically retrieving and summa-
rizing the visual information in a human-readable
form. Recently, considerable progress has been
made (Vinyals et al., 2015; Xu et al., 2015; An-
derson et al., 2018b) owing to the development of
neural networks and a large number of annotated

1Code will be available at https://github.com/
ukyh/RemovingSpuriousAlignment

image–sentence pairs (Young et al., 2014; Lin et al.,
2014; Krishna et al., 2017). However, these pairs
are limited in their coverage of scenes2, and scal-
ing them is difficult owing to the cost of manual
annotation.

Unsupervised image captioning (Feng et al.,
2019) aims to describe scenes that have no cor-
responding image–sentence pairs, without requir-
ing additional annotation of the pairs. The only
available resources are images and sentences drawn
from different sources and object labels detected
from the images. Although it is highly challenging,
unsupervised image captioning has the potential to
cover a broad range of scenes by exploiting a large
number of images and sentences that are not paired
by expensive manual annotation.

To train a captioning model in this setting, pre-
vious work (Feng et al., 2019; Laina et al., 2019)
employed sentences that contained the object la-
bels detected from given images. We refer to these
sentences as pseudo-captions. However, pseudo-
captions are problematic in that they are likely to
contain words that are irrelevant to the given im-
ages. Assume that an image contains two objects
cat and girl (Figure 1). This situation could give
rise to various possible pseudo-captions, e.g., “a
girl is holding a cat,” “a cat is sleeping with a girl,”
“a girl is running with a cat.” When the first sen-
tence is the correct caption of the image, the words
sleeping and running of the other sentences are ir-
relevant to the image. As the detected object labels
provide insufficient information to judge which
sentence corresponds to the image, many pseudo-
captions containing such mismatched words can be
produced.

2For example, the standard captioning dataset MS COCO
(Lin et al., 2014) covers only approximately 100 object cat-
egories out of 500 object categories defined in an object de-
tection dataset (Agrawal et al., 2019). In addition to objects,
attributes and relations are also not covered well owing to the
small vocabulary size, 8791 (Karpathy and Fei-Fei, 2015).

https://github.com/ukyh/RemovingSpuriousAlignment
https://github.com/ukyh/RemovingSpuriousAlignment
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Figure 1: Overview of our model. The input is listed on the left-hand side: an image, its detected object labels,
and its pseudo-captions. The model learns to generate the pseudo-captions while considering the correspondence
between the image and each word being generated. The detailed process is shown in the blue box on the right-hand
side. The base encoder–decoder model output ht, a gate value gt, and a pseudo-label ft on the gate are described in
Sections 2.1, 2.2, and 2.3, respectively. The dashed arrows indicate the processes conducted only during training.

Regardless of the problem in pseudo-captions,
previous work (Feng et al., 2019; Laina et al., 2019)
did not explicitly remove word-level mismatches.
They tried aligning the features of images and their
pseudo-captions at the sentence level. Although
this line of approach can potentially align the im-
ages and sentences correctly if there are sentences
that exactly describe each image, it is not likely to
hold for the images and sentences retrieved from
different sources.

To shed light on the problem of word-level spu-
rious alignment in the previous work, we focus on
removing mismatched words from image–sentence
alignment. To this end, we introduce a simple gat-
ing mechanism that is trained to exclude image fea-
tures when generating words other than the most
reliable words in pseudo-captions: the detected
objects. The experimental results show that the pro-
posed method outperforms previous methods with-
out introducing complex sentence-level learning
objectives. Combined with the sentence-level align-
ment method of previous work, our method further
improves its performance. These results confirm
the importance of careful alignment in word-level
details.

2 Method

Our model comprises a sequential encoder–decoder
model, a gating mechanism on the encoder–
decoder model, a pseudo-label on the gating mech-
anism, and a decoding rule to avoid the repetition
of object labels, as presented in Figure 1.

2.1 Base Encoder–Decoder Model

Typical supervised, encoder–decoder captioning
models maximize the following objective function

during training:

θ∗ = arg max
θ

∑
(I,y)

log p(y|I;θ), (1)

where θ are the parameters of the models, I is a
given image, and y = y1, ..., yT is its correspond-
ing caption, the last token yT is a special end-of-
sentence token.

However, in unsupervised image captioning, the
corresponding caption y is not available. Instead,
object labels in given images are provided by pre-
trained object detectors. Previous work utilized
the detected object labels to assign a roughly corre-
sponding caption ŷ, i.e., a pseudo-caption, to the
given image. Following the previous work, we
define pseudo-captions of an image as sentences
containing the object labels detected from the im-
age. Given the pseudo-caption ŷ, our base encoder–
decoder model maximizes the following objective
function:

θ∗ = arg max
θ

∑
(I,ŷ)

log p(ŷ|I;θ). (2)

In encoder–decoder captioning models, the prob-
ability p(y|I)3 is auto-regressively factorized as
p(y|I) =

∏T
t=1 p(yt|y<t, I) and each p(yt|y<t, I)

is computed by a single step of recurrent neural
networks (RNNs). The encoder encodes the given
image I to an image representation v ∈ Rd′ that is
fed to the decoder as an initial input to generate a
sequence of words auto-regressively. The detailed

3Hereafter, we omit the model parameter θ for brevity.
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computation of p(ŷt|ŷ<t, I) is as follows:

p(ŷt|ŷ<t, I) =
exp(h>t WoΠ(ŷt))∑

y′∈Y exp(h>t WoΠ(y′))
, (3)

ht =

{
Dec

(
v
‖v‖2 ,h0

)
, if t = 1;

Dec(et,ht−1), otherwise,
(4)

v = WaEnc(I), (5)

et = WeΠ(ŷt−1), (6)

where Enc(·) is a pre-trained image encoder with
a linear transformation matrix Wa ∈ Rd×d′ on
top of it, Dec(·) is an RNN decoder, Π(·) is the
one-hot encoding function, h0 ∈ Rd is a zero
vector, Y is the whole vocabulary to use, and
We,Wo ∈ Rd×|Y| are the word embedding ma-
trices. Details of the encoder and decoder are pro-
vided in Section 3.2.

2.2 Gating Mechanism to Consider
Word-Level Correspondence

As indicated in Eq. 2, our base encoder–decoder
model decodes all of the words in pseudo-captions
from the images. However, pseudo-captions are
highly likely to contain words that are irrelevant
to the given images. Thus, forcing a model to
decode the pseudo-captions in their entirety from
the images might be more disadvantageous than
beneficial for training precise captioning models.

To enable our model to handle word-level mis-
matches, we introduce a simple gating mechanism.
Our model, which is equipped with this gating
mechanism, takes an image representation at each
t-th time step. The gate is designed to control
the amount of image representation used to gen-
erate the t-th word. In other words, the gate is
expected to determine the extent to which the given
image corresponds to the t-th word. With a slight
modification to Eq. 3, our model with the gating
mechanism is defined as follows:

p(ŷt|ŷ<t, I) =
exp(r>t WoΠ(ŷt))∑

y′∈Y exp(r>t WoΠ(y′))
, (7)

rt = gt
Wvv

‖Wvv‖2
+ (1− gt)ht, (8)

gt = sigmoid(tanh(Wkv)>ht), (9)

whereWk,Wv ∈ Rd×d are the linear transforma-
tion matrices for computing the gate value gt ∈
[0, 1] and the output of the gate rt ∈ Rd. When
gt is close to one, it forces the model to use more

information from the image (v) to generate the t-th
word; when gt is close to zero, it forces the model
to do the opposite.

The fed image representationWvv is kept con-
stant at every time step t. Thus, even when the t-th
word is correctly pictured in the image I , Wvv
itself cannot determine which specific object in the
image should be generated according to the current
context in the output caption. Therefore, we apply
L2 normalization to the image representation in
Eq. 8 to ensure that a relatively greater amount of
the contextual information (ht) is used.

To train our model with the gating mechanism,
we minimize the following cross-entropy loss for
each pair of images and their pseudo-captions:

Lg = − 1

T

T∑
t=1

log p(ŷt|ŷ<t, I). (10)

2.3 Pseudo-Labels on Gate to Remove
Word-Level Spurious Alignment

The above gate is expected to reflect the corre-
spondence between images and words in pseudo-
captions. However, learning to reflect the corre-
spondence correctly is difficult for the gate under
the noisy and weak supervision of pseudo-captions.

In this work, our focus is to remove the spurious
alignment between images and words in pseudo-
captions. Consequently, we apply the following
rule to the gate that largely suppresses image repre-
sentations to use: gt should be close to one if the
t-th word to generate is a detected object label; oth-
erwise, it should be close to zero. This is based on
the assumption that, given an image and its pseudo-
caption, the reliable words in the pseudo-caption
are only the detected object labels, and the others
are likely to be irrelevant to the image.

We assign a pseudo-label f ∈ {0, 1} on the gate:
ft = 1 if the word ŷt corresponds to any of the ob-
ject labels detected from a given image; otherwise,
ft = 0. The gate then learns the correspondence
by minimizing the following loss function:

Lf = − 1

T

T∑
t=1

[
αft log gt + (1− ft) log(1− gt)

]
,

(11)
where α is the weight to emphasize the loss when
ft = 1. A relatively large value is recommended
for α to prevent gt from always being zero because
the number of detected object labels (where ft = 1)
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Training Text Object Detector Image Encoder Text Decoder

A (Feng et al., 2019) SS Faster-RCNN trained on OpneImages-v2 Inception-v4 1-layer LSTM of 512 dimensions
B (Laina et al., 2019) GCC Faster-RCNN trained on OpneImages-v4 ResNet-101 1-layer GRU of 200 dimensions

Table 1: Summary of the difference in the experimental settings.

in pseudo-captions is generally smaller than the
number of the other words (where ft = 0).

Combined with the loss function of Eq. 10, the
final loss function is defined as follows:

L = Lg + Lf . (12)

2.4 Unique-Object Decoding

An evaluation of our model revealed that it tends
to repeat words in object categories. Although
repetition is common in encoder–decoder models,
this repetition was generated owing to a different
cause. As mentioned in Section 2.2, the image
representation v cannot correctly predict the word
ŷt without the context representation ht; if the gate
value gt is exactly one, the model always outputs
the most salient object label in the given image.

To avoid ignoring contextual information, we ap-
plied a simple decoding rule during the evaluation.
Given that the model generates a word yt at t-th
time step, our decoding rule checks whether yt is in
predefined object categories, i.e., object categories
defined for object detectors. If yt is found in the
object categories, the rule forces the probability
of generating yt to be zero in the subsequent time
steps.

3 Experiments

We ran the experiments under two different settings,
Feng et al. (2019) and Laina et al. (2019), for a fair
comparison with each. For brevity, we refer to the
settings in Feng et al. (2019) and Laina et al. (2019)
as setting A and B, respectively. The difference of
the settings is clarified in Table 1.

3.1 Datasets

Evaluation Set. To evaluate our proposed method,
we used the MS COCO dataset (Lin et al., 2014)
with the validation/test split defined by Karpathy
and Fei-Fei (2015). Each split has 5,000 images
and five reference captions for each image.
Training Images. We used the images (without
their captions) in the remaining training split of
MS COCO (113,286 images), and a pre-traind ob-
ject detector (Huang et al., 2017) to retrieve the

object labels found in the images4. The detector
is a publicly available Faster-RCNN model5 (Ren
et al., 2015). The training data of the object detec-
tor differs depending on the previous work; thus,
we used the object detector trained on OpenImages-
v2 (Krasin et al., 2017) to compare with Feng
et al. (2019) and that trained on OpenImages-v4
(Kuznetsova et al., 2020) to compare with Laina
et al. (2019). Note that these object detectors were
not trained on MS COCO images. Following the
previous work, we refrained from using the de-
tected bounding boxes and their features.
Training Text. Following the previous work, we
used the Shutterstock image description corpus
(SS) (Feng et al., 2019) and the training split cap-
tions (without images) of Google’s Conceptual
Captions (GCC) (Sharma et al., 2018) for com-
parison with Feng et al. (2019) and Laina et al.
(2019), respectively. SS consists of 2.3M image
descriptions crawled from Shutterstock, an online
stock photography website; GCC consists of 3.3M
image descriptions crawled from the web. Note
that these sentences are not the descriptions of the
images in MS COCO.

3.2 Implementation Details

Image Encoder. For a fair comparison with
the previous work, we employed different im-
age encoders depending on the compared method:
Inception-v4 (Szegedy et al., 2017) in the settings
of Feng et al. (2019) and ResNet-101 (He et al.,
2016a,b) in the settings of Laina et al. (2019).
Both image encoders were pre-trained on ImageNet
(Russakovsky et al., 2015) and are publicly avail-
able6. The parameters of the image encoder were
fixed during training and prediction.
Text Decoder. Similar to the image encoder, we

4Although this pre-trained object detector requires bound-
ing box and semantic label annotations, it can be replaced
with any multi-label image classifier, which can be trained
on image-tag pairs that are largely and freely available on the
web. To ensure this compatibility, bounding box features are
not used in unsupervised image captioning.

5https://github.com/tensorflow/models/
tree/master/research/object_detection

6https://github.com/tensorflow/models/
tree/master/research/slim

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

A
Feng et al. (2019) 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1
Ours 49.5 ± 0.7 27.3 ± 1.2 13.1 ± 0.8 6.3 ± 0.5 14.0 ± 0.1 34.5 ± 0.3 31.9 ± 1.0 8.6 ± 0.2

B
Laina et al. (2019) 6.5 12.9 35.1 22.7
Ours 50.4 ± 1.5 29.5 ± 0.8 14.4 ± 0.5 7.6 ± 0.4 13.5 ± 0.3 37.3 ± 0.2 31.8 ± 0.7 8.4 ± 0.1

Table 2: Comparison with the state-of-the-art results on the experimental settings A and B. The scores of our model
are the mean ± standard deviation of five runs. The scores obtained for BLEU-1 to 3 and SPICE are not provided
in the original paper of Laina et al. (2019).

used a different RNN as our decoder: LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Cho et al., 2014) to enable us to compare our re-
sults with those of Feng et al. (2019) and Laina
et al. (2019), respectively. Following the previous
work, the number of hidden layers’ dimensions
was set to 512 for LSTM and 200 for GRU. The
number of the RNN layer was set to one. Word
embeddings were randomly initialized and had the
same dimensions as the RNN hidden layer.
Pseudo-Captions. Captions tend to describe
salient objects, not all detected objects. For ex-
ample, the frequent object person often co-occurs
with face and clothing in images, but these three
are not always the salient objects to be described in
a caption. To avoid collecting the pseudo-captions
that only contain these frequent objects, we picked
up each detected object and their pairs to retrieve
pseudo-captions, rather than using all detected ob-
jects. In this retrieval, we converted object labels to
their plural forms using a dictionary used in Feng
et al. (2019) so that the pseudo-captions could also
cover the plural forms of the objects.
Pseudo-Caption Preprocessing. For each pair of
objects, we selected sentences where fewer than
four words existed between the objects. This is to
pick up the sentences likely to describe the relations
of the target objects. We then removed the sen-
tences wherein the target objects were adjacent to
avoid collecting the objects’ compound words. For
each object, we selected sentences wherein fewer
than two words were in between the object and its
dependent adjective to pick up the sentences likely
to describe the object in detail. We used spaCy7

en core web lg model for parsing.
Value of α. As described above, each pseudo-
caption contains only one or two detected objects,
which is very few compared with the average sen-
tence lengths of the text corpora (12.0 in SS and
10.7 in GCC). To balance the label imbalance of ft,

7https://spacy.io

we searched the value for α (Eq. 11) at a power of
2 and found that α = 16, which roughly equals the
quotient of Sentence Length

Detected Objects , worked well across the
settings.
Training Iteration. After collecting the pseudo-
captions, we created a set of the objects and pairs
that were used to collect the pseudo-captions. The
training is iterated over the pairs in this set, rather
than over each image, to avoid overfitting for the
most frequent object labels. On each iteration of the
pairs of objects, we randomly sampled the image
and pseudo-caption, wherein both of the objects
were contained. Likewise, we did the same sam-
pling on each object in the pairs. The number of
the object pairs was 11,607 and 10,612 in the set-
tings A and B, respectively. We set the batch size
to eight and terminated the training when the best
validation score (specifically, the CIDEr score) did
not exceed for 20 epochs. For the optimizer, we
used Adam with the recommended hyperparame-
ters (Kingma and Ba, 2015).
Evaluation. In the evaluation, we set the maxi-
mum decoding length to 20. Our model decoded
captions by using greedy search and unique-object
decoding, described in Section 2.4. The evaluation
metrics we used were BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Denkowski and
Lavie, 2014), CIDEr (Vedantam et al., 2015) and
SPICE (Anderson et al., 2016).

3.3 Comparison with the State-of-the-Art
Results

Table 2 lists the results of our model compared
with the previous state-of-the-art results. To avoid
evaluating cherry-picked scores, we computed the
mean and standard deviation of five results obtained
with different seeds8. Our method outperforms
the previous approaches in terms of all evaluation
metrics. These results confirm the effectiveness of
our simple method.

8In all the experiments, we specified a seed of 0, 1, 2, 3, 4
for each run.

https://spacy.io
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gate pseudoL unique image BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

A

Ours (full) X X X X 49.5 27.3 13.1 6.3 14.0 34.5 31.9 8.6
w/o pseudoL X X X 0.0 0.0 0.0 0.0 0.0 0.5 0.9 0.3
w/o gate X X 40.9 21.5 10.1 4.8 12.7 32.1 17.6 6.0
w/o unique X X X 47.2 26.2 13.0 6.4 14.1 34.9 28.3 8.5
w/o image X X X 43.3 23.3 10.8 5.1 13.1 31.7 25.5 7.8

B

Ours (full) X X X X 50.4 29.5 14.4 7.6 13.5 37.3 31.8 8.4
w/o pseudoL X X X 44.5 25.4 12.2 6.2 12.4 36.7 29.2 7.5
w/o gate X X 44.5 24.2 12.0 6.2 11.6 34.2 19.4 5.8
w/o unique X X X 47.9 27.1 13.0 6.4 12.6 36.3 26.9 7.4
w/o image X X X 47.1 26.0 12.8 6.6 13.1 34.7 29.7 8.0

Table 3: Ablation studies on the experimental settings A and B. The scores of Ours (full) are the mean of five runs;
those of the other ablated models are the results of a single run.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Feng et al. (2019) 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1
Ours 49.5 ± 0.7 27.3 ± 1.2 13.1 ± 0.8 6.3 ± 0.5 14.0 ± 0.1 34.5 ± 0.3 31.9 ± 1.0 8.6 ± 0.2
Ours + Feng et al. (2019) 50.9 ± 0.1 28.0 ± 0.1 14.0 ± 0.1 7.1 ± 0.0 14.1 ± 0.0 35.2 ± 0.1 35.7 ± 0.1 9.2 ± 0.0

Table 4: Results of combining our method with previous methods (Feng et al., 2019). Scores of our model and the
combined model are the mean± standard deviation of five runs. We marked in bold the scores within the standard
deviation of the best scores.

3.4 Ablation Study
Table 3 lists the results of our model obtained in
the ablation studies. We tested the ablation of the
gating mechanism (gate), pseudo-labels on the gat-
ing mechanism (pseudoL), unique-object decoding
(unique), and image features (image). The pseudo-
labels cannot be implemented without the base gat-
ing mechanism. Thus, the model “w/o gate w/
pseudoL” is not applicable. The model w/o image
is the same as Ours (full) except that it only uses the
word embeddings of detected object labels, rather
than image features. It encodes detected object
labels into word embeddings and then takes their
mean9 and replaces the image feature v with it. All
models here were trained in the same manner as
described in Section 3.2.

The results show that the pseudo-labels on the
gating mechanism contribute a lot to the perfor-
mance; the score degrades significantly from Ours
(full) to w/o pseudoL in all metrics. On the other
hand, the base gating mechanism does not function
well by itself; not all scores of w/o gate are lower
than those of w/o pseudoL. These results demon-
strate that explicitly removing the word-level spu-
rious alignment contributes the most to the rela-
tively high performance of our model. Although
it is a relatively low contribution compared with
the pseudo-labels, unique-object decoding also en-

9The number of detected objects was 3.0 in setting A and
4.0 in setting B on average. Thus, taking the mean does not
break the detected information significantly.

hances performance.
The degraded performance of w/o image sug-

gests that object labels themselves are insufficient
to describe images correctly. We observed that this
model was vulnerable to errors propagated through
object detectors. See Section 3.8 for the examples.

3.5 Combining with Previous Methods

Our method focuses on removing word-level
spurious alignment between images and pseudo-
captions, whereas the previous methods focus on
aligning images and pseudo-captions at the sen-
tence level. To utilize the strength of each, we
combined our method with the previous methods
as a model initialization method.

We first trained our model on the setting A and
generated captions for the images in training data.
We then paired the captions with the images as
their pseudo-captions10. With the pairs, the caption
generator of Feng et al. (2019) was initialized by
learning to generate the pseudo-captions from the
images. After the initialization, we trained the pre-
vious model using their publicly available code11.
We used the same hyperparameters as Feng et al.
(2019) except for the learning rate of 10−5 for the

10To avoid assigning obviously incorrect pseudo-captions,
we omitted the captions that contained fewer than one detected
object for the images with more than two detected objects. For
the images with fewer than one detected object, we omitted
the captions that contained no detected objects.

11https://github.com/fengyang0317/
unsupervised_captioning

https://github.com/fengyang0317/unsupervised_captioning
https://github.com/fengyang0317/unsupervised_captioning
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Precision Recall F1

Detected
Feng et al. (2019) 56.6 57.4 55.4
Ours 51.0 56.7 51.6
Ours + Feng et al. (2019) 54.0 61.8 55.4

Others
Feng et al. (2019) 22.3 17.0 18.8
Ours 27.8 21.9 23.4
Ours + Feng et al. (2019) 29.9 21.9 24.2

Table 5: Bag-of-words matching scores with respect to
detected object labels and the other words.

generator and 10−8 for the discriminator.
Table 4 shows the results. The combined model

further improves the performance of our model and
Feng et al. (2019). In particular, the improvement
from Feng et al. (2019) is much larger than that
from our model. These results suggest that remov-
ing the word-level spurious alignment is critical for
the subsequent sentence-level alignment.

3.6 Negative Effect of Spurious Alignment

To further investigate the effect of removing the
spurious alignment, we evaluated our model on
noisier words: words other than the detected object
labels. Our method discourages from aligning them
with images because they are likely to be irrelevant
to given images, while previous methods force the
alignment. We tested the following bag-of-words
matching on the MS COCO test set.

Let S be the bag of words of a caption generated
from an image I and Tm be the m-th reference
caption of I . Given a set of detected object labels
O of I , we took the intersections Sdet = S∩O and
Sother = S∩O for S, as well as for Tm. We define
the precision (P ), recall (R) and F1 score (F ) of S
against Tm as follows: P = |S∩Tm|

|S| , R = |S∩Tm|
|Tm| ,

F = 2 · P ·R
P+R . Based on this, we define the preci-

sion, recall, and F1 score of Sdet against Tm
det by re-

placing S with Sdet and Tm with Tm
det, and likewise

for those of Sother against Tm
other. We calculated

the above scores for each pair of a generated cap-
tions and their reference captions and subsequently
averaged it across the pairs. The pairs with empty
Tm
∗ were excluded from the calculation.
Table 5 shows the results. Overall, the scores

on detected object labels (Detected) are about two
times higher than those on the other words (Others),
indicating the difficulty of learning the alignment of
the latter, noisier words. Our model performs better
in predicting the noisier words, outperforming Feng
et al. (2019) in all metrics. These results indicate
that refraining from the alignment works better

Word Type Frequency

Object
Feng et al. (2019) 205 20013
Ours 306 15052
Ours + Feng et al. (2019) 239 18226

Others
Feng et al. (2019) 827 24865
Ours 169 83693
Ours + Feng et al. (2019) 121 110358

Table 6: Analysis of generated captions with respect to
object labels and the other words. Word Type is the
number of unique words, and Frequency is the mean of
the frequency of the words in the training text corpus.

than forcing it for the noisier words.
On the other hand, our model performs worse in

predicting detected object labels. This is because
our method trusts all detected object labels and
aligns them with images without any constraints
used in previous work. Combined with the previous
method (Ours + Feng et al. (2019)), our model
improves the prediction on detected object labels.

3.7 Positive Effect of Frequency

By assigning the pseudo-label f , our method en-
courages to align detected object labels with the
image representation v and the other words with
the contextual representation h. Thus, our model
is likely to predict the latter words mostly based on
the previous output sequences, as language models
do. If this is the case, then the latter words pre-
dicted tend to be the frequent words in the training
text corpus.

To verify this tendency, we analyzed the fre-
quency of output words in the training text corpus
for object labels and the other words12. Table 6
presents the results. In contrast to object labels, our
outputs’ vocabulary is about five times smaller than
that of Feng et al. (2019), and the words tend to be
highly frequent in the training text corpus.

The results also show that a model performs
better if it has the smaller and more frequent vocab-
ulary of the words other than object labels. This
correlation is convincing considering the coverage
of frequent words. For example, a general caption
such as “a man with a bike” can correctly cover
various scenes in which a man is riding/sitting
on/leaning on/standing near/... a bike. This positive
effect of frequency suggests that firstly aligning the
frequent words and gradually extending them can

12As we analyzed each unique word across all output cap-
tions in the MS COCO test set, we roughly divided the words
into object labels and the others, not into detected object labels
and the others.
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 Objects  bathtub, curtain, sink
 Feng et al.  interior of a modern bathroom with bathtub and toilet
 Ours  white bathtub with white sink and a mirror
   w/o pseudoL  N/A
   w/o gate  white bathtub with tile trim and black trim
   w/o unique  a white bathtub with a white bathtub
   w/o image  bathroom interior with white bathtub and shower
  + Feng et al.  a white bathtub with a sink and a mirror

 Objects  man, footware, uniform
 Feng et al.  portrait of a happy young man in uniform
 Ours  young man in a white uniform holds a baseball bat
   w/o pseudoL  N/A

   w/o gate  cook with serious face in burgundy uniform holds 
 vegetables in wicker basket

   w/o unique  young man in a white uniform and hat with a backpack  
 and a backpack on the background of a mountain

   w/o image  young man in a white uniform is holding a bottle of wine
  + Feng et al.  young man in a white uniform holds a baseball bat

 Objects  person, man, clothing, furniture
 Feng et al.  young couple in love sitting on a bench in the park
 Ours  young man in a white bench with a skateboard
   w/o pseudoL  N/A

   w/o gate  a young man in a black jacket and a black helmet is sitting on
 a bench in a park

   w/o unique  a young man in a white shirt and a hat with a bench in the park

   w/o image  young man in a white shirt and black tie standing with a confident
 smile and smiling

  + Feng et al.  young man in a jeans jacket and a skateboard in the park

 Objects  elephant
 Feng et al.  elephant walking through the river in the savuti , kenya
 Ours  a elephant in a elephants
   w/o pseudoL  N/A
   w/o gate  a young african elephant in a safari park
   w/o unique  a young elephant in a elephant in the zoo
   w/o image  a lone elephant in the nature habitat , europe
  + Feng et al.  a elephant in a elephants

 Objects  cat
 Feng et al.  a cat in a hat and a cat
 Ours  a cat is sitting on a white dog
   w/o pseudoL  N/A

   w/o gate  a cat in a white helmet and a blue jacket is 
 sitting on a wooden floor

   w/o unique  a cat is sitting on a cat
   w/o image  a cute cat is sleeping on a wooden floor
  + Feng et al.  a cat is sitting on a suitcase

 Objects  cat
 Feng et al.  the cat sits on the toilet
 Ours  a cat is sitting on a toilet
   w/o pseudoL  N/A
   w/o gate  a cat is sitting on a wooden bench in the park
   w/o unique  a cat is sitting on a cat
   w/o image  a cute cat is sleeping on a wooden floor
  + Feng et al.  a cat is sitting on a toilet in the bathroom

(b)

(c) (d)

(f)(e)

(a)

Figure 2: Sample captions for six input images taken from the MS COCO validation set. Our model generated
correct captions for the images in the top row and wrong captions for the rest. Best viewed by zooming in.

be a promising approach.

3.8 Qualitative Analysis on Outputs

Figure 2 shows the captions generated by our
model, its ablated models, Feng et al. (2019), and
the combined model trained on the setting A. Our
model generated correct captions for images (a)
and (b). It successfully generated object labels that
were not even detected by the object detector: bat
in (a) and mirror in (b). On the other hand, errors of
the object detector directly propagated to the output
captions of w/o image model: the model generated
an incorrect object a bottle of wine, owing to the
missing object bat in (a).

Captions of the other images are negative re-
sults of our model. We observed that our model
tended to repeat similar objects: cat and dog in
(c), and elephant and elephants in (f). Without
unique-object decoding, this tendency got worse:
w/o unique model repeated cat in (c) and (e), and
elephant in (f). Ours + Feng et al. (2019) model did
not change much of the prediction of our model,
as we set the learning rate low (see Section 3.5).
However, it allowed the partial correction seen in
(c): the combined model modified dog to suitcase.

In our outputs, words other than object labels
tended to be frequent words and composed short
phrases. On the contrary, Feng et al. (2019) tended
to generate less frequent words (savuti and kenya in
(f)) and longer phrases (portrait of a happy young
in (a) and young couple in love in (d)), which were
incorrect predictions in these examples.

Figure 3 shows output captions of our model and

Figure 3: Sample captions with gate values. The plot
represents the values of gt for each predicted word. The
value of gt becomes high when the word is predicted
using mainly image representation.

the gate values for each word. Overall, the gate
values were high for object labels and low for the
other words. Although our model was correct on
the words other than object labels in these exam-
ples, these words were generated mostly by con-
textual features, thus heavily relied on contextual
frequency. This heavy reliance on contexts resulted
in generating the same word after an object label
without considering images: is sitting on followed
cat in both (c) and (e).

4 Related Work

There has been considerable research with differ-
ent settings and approaches to describe scenes that
have no image–sentence pairs. Novel object cap-
tioning (Hendricks et al., 2016; Venugopalan et al.,
2017; Anderson et al., 2018a; Agrawal et al., 2019)
attempted describing unseen objects in captions.
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They incorporated an image classifier or object
detector trained on objects not included in image–
sentence pairs. Lu et al. (2018) tested caption-
ing models on the generation of unseen combi-
nations of objects, and Nikolaus et al. (2019) ex-
tended this to the unseen combinations of objects,
attributes, and relations. In both settings, only the
combinations were unseen, but each word in the
combinations appeared in the training data. Semi-
supervised approaches utilized caption retrieval
models to automatically collect the corresponding
captions for unannotated images to augment image–
sentence pairs (Liu et al., 2018; Kim et al., 2019).

The above work was evaluated on the scenes
where correct descriptions partially overlapped
with those in the training image–sentence pairs.
However, there can be scenes with no such overlap
due to the limited coverage of the currently avail-
able image–sentence pairs. Taking a step further,
unsupervised image captioning (Feng et al., 2019;
Laina et al., 2019) aims to describe scenes that have
no overlap with the image–sentence pairs, without
the annotation of the pairs. To test in that situation,
the task does not allow to use any image–sentence
pairs. The only available resources are images and
sentences drawn from different sources and object
labels detected from the images.

Feng et al. (2019) first trained an encoder–
decoder model that takes object labels in a sen-
tence as its input and outputs the original sentence.
After training, this model took the object labels
detected from each image and outputted a sentence
to pair with the image as its pseudo-caption. These
pairs were then used to initialize a caption genera-
tor for the subsequent image–sentence alignment:
bi-directional (image-to-sentence and sentence-to-
image) feature reconstruction and GAN training
(Goodfellow et al., 2014) to ensure fluency in gen-
erated captions. In the work of Laina et al. (2019),
pseudo-captions were sentences that contained ob-
ject labels detected from a given image. They em-
ployed metric learning and GAN training to min-
imize the difference between images and pseudo-
captions in their latent space, as well as to maxi-
mize the difference between images and sentences
wherein no detected object label was included.

Our approach is different from them in that it
focuses on removing the mismatched words of
pseudo-captions to take reliable supervision only,
rather than forcing the use of the entire pseudo-
captions for image–sentence alignment. Although

the previous work additionally ensured to align de-
tected object labels to images, they did not prevent
the spurious alignment between images and words.

As an eased setting of unsupervised image cap-
tioning, unpaired image captioning has also been
explored (Feng et al., 2019; Laina et al., 2019; Gu
et al., 2019; Liu et al., 2019). The major difference
from unsupervised image captioning is that im-
ages and sentences are drawn from image–sentence
pairs, rather than from different sources. That is,
every image has completely matched captions in
pseudo-captions, which is not the case in unsu-
pervised image captioning. As correct captions
exist for each image, previous approaches focused
on matching images and sentences at the sentence
level. Contrary to these approaches, we focus on
employing unsupervised image captioning and de-
vising a method to remove word-level spurious
alignment in the much noisier pseudo-captions.

Another variation of unpaired image captioning
is the generation of captions in one language that
has no image–sentence pairs, using paired images
and captions in another language (Gu et al., 2018;
Song et al., 2019). However, this line of research is
beyond the scope of our work, as it requires image–
sentence pairs to be at least in one language.

Our gating mechanism borrowed the idea of
adaptive attention (Lu et al., 2017, 2018). Adaptive
attention serves to control when generating words
from image representations. Although these meth-
ods assume that the control is automatically learned
from image–sentence pairs, this is not the case in
an unsupervised setting. Our method is different
from theirs in that we add heuristic pseudo-labels
to train the gate when using image representations.

5 Conclusion

We investigated the importance of removing word-
level spurious alignment between images and
pseudo-captions in the task of unsupervised im-
age captioning. For this purpose, we introduced
a simple gating mechanism trained to align im-
age features with only the most reliable words in
pseudo-captions. The experimental results showed
that our proposed method outperformed the previ-
ous methods without the sentence-level learning
objectives used in the previous methods. Moreover,
our method improved the performance further by
combining with the previous methods. These re-
sults confirmed the importance of careful alignment
in word-level details.
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