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Abstract

Pretrained using large amount of data, autore-
gressive language models are able to gener-
ate high quality sequences. However, these
models do not perform well under hard lex-
ical constraints as they lack fine control
of content generation process. Progressive
insertion-based transformers can overcome the
above limitation and efficiently generate a
sequence in parallel given some input to-
kens as constraint. These transformers how-
ever may fail to support hard lexical con-
straints as their generation process is more
likely to terminate prematurely. The pa-
per analyses such early termination problems
and proposes the ENtity-CONstrained insertion
TransformER (ENCONTER), a new insertion
transformer that addresses the above pitfall
without compromising much generation effi-
ciency. We introduce a new training strat-
egy that considers predefined hard lexical con-
straints (e.g., entities to be included in the gen-
erated sequence). Our experiments show that
ENCONTER outperforms other baseline mod-
els in several performance metrics rendering it
more suitable in practical applications. !

1 Introduction

The field of Natural Language Generation
(NLG) (Gatt and Krahmer, 2018) has seen signifi-
cant improvements in recent years across many ap-
plications such as neural machine translation (Bah-
danau et al., 2015), text summarization (Chopra
et al., 2016), poem generation (Zugarini et al.,
2019) and recipe generation (H. Lee et al., 2020).
Constrained text generation (CTG) is one of the
challenging problems in NLG that is important to
many real world applications but has not been well
addressed. CTG imposes input constraints which
may be in the form of objects expected to exist in
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the generated text or rules over objects in the gener-
ated text (Hokamp and Liu, 2017). The objects here
can be entities, phrases, predefined nouns, verbs,
or sentence fragments. The constraints can be cate-
gorized into two types: (1) Hard-constraints which
require mandatory inclusion of certain objects and
complete compliance of given rules (Post and Vilar,
2018; Hu et al., 2019; Miao et al., 2019; Welleck
et al., 2019; Zhang et al., 2020); and (2) Soft-
constraints which allow the some constraint objects
or rules to be not strictly enforced in the generated
text (Qin et al., 2019; Tang et al., 2019). As autore-
gressive models generate tokens from left to right,
they cannot easily support constraints involving
multiple input objects, hard-constrained text gen-
eration therefore often requires non-autoregressive
models.

Recently, Zhang et al. (2020) proposed a
non-autoregressive hard-constrained text genera-
tion model (POINTER) that generates a text se-
quence in a progressive manner using an insertion-
transformer (Stern et al., 2019). To train an in-
sertion transformer to generate a missing token
between every two tokens in an input sequence,
the training data is prepared by masking “less im-
portant” tokens in the original text sequence in an
alternating manner. The process is then repeated
using the masked input sequence as the new origi-
nal sequence, and further masking alternate tokens
in it. The process ends when the masked sequence
meets some length criteria.

While POINTER shows promising results, it does
not consider hard constraints which involve entities
that must be included in the generated sequence.
Such entity constraint requirements are unfortu-
nately prevalent in many applications. For exam-
ple, we may want to generate a job description with
some given skills, or a food recipe with some given
ingredients.

A naive approach to the problem is to apply con-
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straints on the POINTER’s masking strategy forc-
ing it to keep entity tokens. We call this modified
model POINTER-E. Although this allow entity in-
formation entering POINTER-E, another problem
rises. POINTER-E suffers from cold start problem
which refers to the inability to generate meaningful
tokens at the early stages of inference forcing the
generation to end prematurely. This issue can be
attributed to the POINTER-E’s top-down masking
strategy for training the insertion transformer and
the tokens of input entities not evenly spread out
across the sequence.

To solve the cold start generation problem, we
propose ENCONTER that incorporates bottom-up
masking strategy. ENCONTER supports hard en-
tity constraints, and encourages more meaning-
ful tokens to be generated in the early stages of
generation thus reducing cold start. On top of
that, we further introduce the balanced binary tree
scheme (Stern et al., 2019) to reduce the number of
stages in generation and to improve the efficiency
of generation.

2 Entity Constrained Sequence
Generation

In this section, we first describe the state-of-the-
art POINTER model, its preprocessing of training
data and inference process. We highlight the pit-
falls of the entity constrained variant of POINTER,
POINTER-E. We then present our proposed entity
constrained insertion transformer called ENCON-
TER.

2.1 POINTER

POINTER adopts a progressive masking approach
to train an insertion transformer. Let X =
{x1,x9,..., 27} denote a a sequence where z; €
V', where T is the sequence length and V' is a finite
vocabulary set. Suppose X is a training sequence,
POINTER preprocesses it to obtain the training pairs
S ={(X*Y*)|k € {K,...,0}} using a progres-
sive masking strategy. As shown in Figure 1a, in
each stage X" represents the input sequence for
stage k, and Y'* represents the sequence of masked
tokens to be inferred. XX is identical to the final
training sequence X = X, and there should not
be any additional tokens to infer. X° on the other
hand represents the initial lexical constraints. In
stage k, Y'* are the tokens to be predicted between
adjacent tokens of X*. A special no-insertion to-
ken [NOI] is added to the vocabulary V and used
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Figure 1: POINTER, POINTER-E, and EN-
CONTER  with original sequence X =
{A,B,C,D,E,F,G,H,I,J,K,L,M,N}  where
B,D, and F' are the tokens forming the entity con-
straints. The stopping criteria for POINTER is set to
n=3.

in Y'* to indicate that no token is to be generated
between adjacent tokens. Y ¥ is thus a sequence of
all [NOI]’s indicating the end of generation. Word-
Piece (Wu et al., 2016) tokenization is applied in
POINTER, and tokens split from the same word
share the same score.

Token importance scoring POINTER assigns each
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token x; € X an importance score ay:

TF—-IDF

ar = a +oy P+l )
where atTF ~IDE o POS "and o AKF denote term

frequency-inverse document frequency (TF-IDF),
POS tag scores and YAKE (Campos et al., 2020)
keyword scores, respectively. These scores are
normalized to [0,1]. af OS5 is defined such that the
scores of nouns and verbs are higher than those of
other POS tags. The token importance scores are
used to derive the masking pattern Y*~1 of stage
k — 1 from X%,

POINTER adopts four criteria to derive Y*~1

from X*: (1) Y*~! can only include non-adjacent
tokens in X¥; (2) the number of tokens to be
masked are maximized in each stage to make the
model more efficient; (3) less important tokens
are masked before more important ones and (4) A
stopping criteria n is defined. The algorithm stops
when | X*| = n. Kadane’s algorithm (Gries, 1982)
has been use in POINTER to fulfill the criteria.
Specifically, the algorithm selects as many unim-
portant tokens as possible to be masked while not
masking two adjacent tokens. X is automatically
determined when | X*| = n, it does not necessarily
match the way the initial input sequence is pro-
vided by real world applications or users, including
the entity constraints.
Inference Given X as input sequence, POINTER
starts to infer Y0 and combines the two sequences
mgaXlz{jﬁﬂhﬁjgnwi&wg&%}ﬁ
7Y happens to be [NOI], it will be deleted and
leaving only non-[NOI] tokens in X'. The process
repeats until all the generated tokens in Y* are
[NOI]s.

As shown in Figure 1a, entities may not be pre-
served during the preprocessing steps and the lexi-
cal constraint X is not guaranteed to cover entity
constraint X ¢ even entity tokens are assigned high
importance scores. The trained POINTER therefore
may not be able generate a sequence successfully
when given entity constraints during the inference.
We therefore propose some changes to POINTER
to make it entity-aware.

2.2 Entity Aware POINTER (POINTER-E)

The entity-aware POINTER model, POINTER-E,
adopts a different preprocessing approach. Let
X¢ C X be an ordered sequence of entity tokens
(e.g., the person names in a news document). As

X¢ is likely to be used as the initial generation in-
put (i.e., X° = X¢), POINTER-E’s preprocessing
does not mask these entity tokens over the differ-
ent preprocessing stages. This way, the model is
trained to focus on generating tokens around the
entities. Such tokens form the context around the
entities and context relating one entity to others.
We achieve such goal by ignoring the importance
scores applied on entity tokens. That is, we only
compute o for x; ¢ X¢€.

We then apply the POINTER’s masking strategy
on the sub-sequence between every two entity to-
kens in X. Suppose (x;,z;) C X is a subsequence
spanned by two entity tokens {7} = z;, 27, =
zj} € X¢wherel € {0,...,|X¢ — 1}. Masking
is applied on this subsequence iteratively until only
{xf, 7, } are left:

S={(XK =X YK |

(X° = X, YO)). ?

As shown in Figure 1b, POINTER-E always picks
the optimal masking patterns while preserving the
entities.

Cold Start Problem While POINTER-E is aware
of entities, entities in X° may appear very close
or very far from one another in the full sequence
X, i.e., the gap between entities in the sequence
X can vary a lot. Consider two sub-sequences
(mi = o], 5 = ayy), (T = @5, Ty = T5,4) C
X where w,l € (0,7, — 1) and w # [. Suppose
j — 1> v — u. The tokens between (z,, x,) will
then be masked out long before tokens in (z;, z;)
during preprocessing and training. This results in
POINTER-E trained to generate a lot of [NOI|s
in Y* for small k’s. Figure 1b depicts this cold
start problem as entity tokens B, D and E are near
one another in X. As tokens between them are
masked in early stages, the masked sequences in
stages 0 and 1, Y% and Y!, contain many [NOI]
tokens. POINTER-E trained with such data will
therefore lack the ability to generate meaningful
tokens in-between these entity tokens. In the worst
case, POINTER-E simply generates all [NOI| to-
kens and ends the generation prematurely which is
known as the cold start problem.

To better show the problem, we define:

#[NOI] in Y*

NOI ratio = el ok
#tokensinY

3)

A clear problem of high NOI ratio is that Y is
very similar to Y*+1. When NOI ratio = 1, the
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generation will end, In cases where NOI ratio is
very high for masked sequences in early stages, say
Y, the trained POINTER-E will more likely infer
from X© all [NOI]’s for Y0 and end the generation
process. To address this, we need to re-examine the
top-down masking stratey used in POINTER and
POINTER-E.

2.3 ENCONTER

In this section, we propose ENCONTER which
adopts a bottom-up masking strategy to overcome
the cold start problem. There are two variants:
GREEDY ENCONTER and BBT-ENCONTER.
GREEDY ENCONTER Different from POINTER-
E, we now construct training pairs .S from X by
setting X to be X¢:

S :{(XO = Xe,YO)’(Xl,Yl)’.”’

(X5 =X, Y5)1, @
where Y'* represents the sequence of masked to-
kens to be inserted into X* to form X*+1. Similar
to POINTER, Y contains [NOI]’s only. For ev-
ery two adjacent tokens {z},z},} € X* where
t € {0,...,|X* — 1}, we insert a mask token.
Let {2} = z;,2}, = x;} and (z;,z;) be the
span of (z;,z;) in X. If i + 1 = j, the mask to-
ken is [NOI]. Otherwise, we select a token zy
from (z;, z;) with maximum importance score oy
within (x;, ;) as the mask token. The sequence
Y* is formed after we go through all the t’s. By
inserting Y'* into X, we obtain the next sequence
X*+1 The iterative process stops when all the
tokens to be inserted are [NOI]s. This method
GREEDY ENCONTER greedily selects the token
with maximum importance score in the span to be
generated in a bottom up insertion (or unmasking)
process. By forcing more non-[/NOI| tokens to be
included in Y° and Y'* of small k’s, Greedy Encon-
ter achieves lower NOI ratio in the early stages
of inference. Experimentally, we find that the cold
start problem is eliminated.

Balanced binary tree ENCONTER (BBT-
ENCONTER) To further improve the efficiency of
GREEDY ENCONTER, we incorporate balanced
binary tree (Stern et al., 2019) into ENCONTER to
bias the masking of tokens to be those near the
center of the unobserved subsequence of tokens.
BBT reward is added to the importance score
function as follows. Suppose x; and x; are two
adjacent tokens in X*, and (z;, ;) represents the
corresponding subsequence in X. We define the

distance d,, for token z,, € (x;,x;) as:
dp = min(p —i,j = p)- )

We use a softmax function to compute the reward
for weighted score based on dp,:

_ eapldy/7) )
e i’::imp(dk/ﬂ. ©

The weights in the span are then normalized to
[0, 1]. Then the importance score is defined as:

a}Y;FfIDF_i_QII;’OS_"_a}D/AKE)_ (7)

ap = wp - (
The construction of S is almost the same as
GREEDY ENCONTER. The only difference is the
new importance score function defined by Eq. 7.
This proposed model, known as BBT-ENCONTER,
will predict the center and semantically important
token in X between two adjacent tokens of X*.

2.4 Models with Entity Span Aware
Inference Option (ESAI)

So far, all above-mentioned models assume that
each entity consists of one single token. In real
world use cases, an entity may contain more than
one token. Without any control during the infer-
ence process, it is possible for other tokens to be
generated in-between tokens of the same entity.
For example in Table 5, "Group Consolidation"
may be split into "handling Group s project /
Consolidation". To avoid inserting any tokens in
between any multi-token entity, we introduce the
entity span aware inference option to the inference
process of POINTER-E and ENCONTER to force the
inference of Y* to always generate [NOI] in be-
tween the tokens of the multi-token entities. After
applying ESAI, the multi-token entities will remain
unbroken duing the generation process.

3 Empirical Analysis of POINTER-E and
ENCONTER

In this section, we conduct an analysis of the data
preprocessing step in POINTER-E, GREEDY EN-
CONTER and BBT-ENCONTER. Our objective is to
empirically evaluate the characteristics of training
data generated for the two models. We have left
out POINTER as it is inherently not entity-aware
and POINTER-E is its entity-aware variant. We first
present the two datasets used in this study.
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3.1 Datasets

CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003): We select the English version which con-
tains 1,393 news articles labeled with four named
entity types: persons, locations, organizations and
names of miscellaneous. Training and development
sets are used to train the model. Documents hav-
ing more than 512 tokens by wordpiece tokenizer
used in BERT (Devlin et al., 2019) are discarded
to ensure that the whole document can fit into the
models.

Jobs: This is a job post dataset collected from Sin-
gapore’s Jobsbank 2. The dataset consists of 7,474
job posts under the software developer occupation
(SD) and 7,768 job posts under the sales and mar-
keting manager occupation (SM). We extract the
requirement section of these job posts as the text
sequences to be generated. For each requirement
text sequence (or document), we use a dictionary
of skills to annotate the skill and job related entities
in the sequence.

The detailed information of the datasets can be
found in Table 1. Table 1 reveals that POINTER-E
has much higher NOI ratio than ENCONTER in
all the datasets.

“https://www.mycareersfuture.sg/

CoNLL SM SD
#training docs 1,004 6,715 7,006
#testing docs 231 754 761
Avg length 220.7 99.4 121.1
Avg entities 24.6 24.4 27.7
#training pairs
POINTER-E 6,557 | 43,913 | 41,343
GREEDY ENCONTER 17,694 | 83,587 | 79,467
BBT-ENCONTER 8,492 | 52,609 | 48,625
NOI ratio of Y°
POINTER-E 0.820 0.904 0.936
GREEDY ENCONTER 0.546 0.463 0.519
BBT-ENCONTER 0.546 0.463 0.519

Table 1: Summary of the datasets. #training pairs
refers to the total number of training pairs derive from
each dataset

3.2 Analysis of NOI ratio and Stage Counts

We first analyse the ratio of [NOI] tokens inserted
or masked in every stage of the training data. Fig-
ure 3 shows the mean together with one standard
deviation of the POINTER-E, GREEDY ENCONTER
and BBT-ENCONTER for each dataset. X-axis is
in log scale. Note we add 1 to the stage number
for showing log scale (e.g., the 10° in the figure
indicates the ratio of [NOI] tokens in Y'°). From
Figure 3, we find all datasets share a few similar
characteristics, namely: (1) for POINTER-E, the
[NOI] ratio is quite high in the first few stages, and
drops when the stage is higher. A sudden increase
of the ratio to 1 is due to the ending sequence con-
sists all [NOI]’s; (2) for ENCONTER the [NOI]
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ratio is low in the first few stages, and slowly in-
crease to 1. The result shows ENCONTER can learn
to generate balance proportion of [NOI] and non-
[NOI| tokens in the first few stages, and also learn
not to generate to many non-|NOI] tokens when
approaching the end of the generation process.

Figure 2 shows the number of stages each train-
ing document requires under different models. The
numbers are sorted according to the following prior-
ity: GREEDY ENCONTER, POINTER-E, then BBT-
ENCONTER. Since BBT-ENCONTER incorporates
the binary tree reward scheme, it is able to per-
form insertion in the middle stages more efficiently
compare to GREEDY ENCONTER. This helps to
lower the total number of stages required to derive
training pairs.

4 Experiment

4.1 Models for Comparison

GPT-2 (Radford et al., 2019) GPT-2 can be used
to conduct conditional generation as well (soft-
constraints). For a training sequence X together
with its entities X ¢, we concatenate X ¢ with X
to form a training sequence { X¢, X }. X€ is then
served as a control code sequence to guide GPT-2
in the generation of X. We fine-tune the GPT-2
small pretrained by huggingface * with 107> learn-
ing rate. Warmup and weight decay are applied. 10
epochs are used for fine-tuning.

POINTER-E, GREEDY ENCONTER, and BBT-
ENCONTER: We use BERT (Devlin et al., 2019)
as the underlying insertion transformer for all these
models similar to that of POINTER. Specifically,
we use the bert-based-cased pretrained by hugging-
face. BERT with language model head is fine-tuned
on all the training pairs to obtain the models. Learn-
ing rate is set to 107> with warmup and weight
decay. 10 epochs are used for fine-tuning.

For POINTER-E, GREEDY ENCONTER, and
BBT-ENCONTER, top-k (top-20) sampling method
is used to derive Y*. For GPT-2, we feed in the Xe
and let GPT-2 generate the following tokens until
reaching the end-of-generation token.

4.2 Evaluation Metrics

We evaluate the models using a few criteria,
namely: recall of entities, quality with respect to
human crafted text, diversity, fluency, cold start,
and generation efficiency. We measure recall of

3https://huggingface.co/

entity constraints by the proportion of entity to-
kens found in the generated text. Even without
ESALI, the recall metric will allow to compare the
recall ability of models. Besides recall, we also
consider BLEU (Papineni et al., 2002), METEOR
(MTR) (Lavie and Agarwal, 2007) and NIST (Dod-
dington, 2002), which are common metrics for eval-
uating the quality of generated text against human
craft text. We compute the BLEU-2 (B-2) and
BLEU-4 (B-4) which are n-gram precision-based
metrics. For the BLUE based evaluation metric
NIST, we compute the NIST-2 (N-2) and NIST-
4 (N-4). To measure the diversity of generation,
Entropy (Zhang et al., 2018) and Distinction (Li
et al., 2016) are used. Entropy-4 (E-4) is defined as
the frequency distribution of unique 4-gram terms.
Dist-1 (D-1) and Dist-2 (D-2) are used to derive dis-
tinct n-grams in the generated text. We also utilize
pretrained language model to measure fluency. Per-
plexity (PPL) is calculated using pretrained GPT-
2 (Radford et al., 2019) without fine-tuning. The
lower the perplexity is, the more fluent the genera-
tion is (based on GPT-2). “AvgLen” is the averaged
word counts of the generated sequence. “failure”
indicates the proportion of test sequences that fail
to be generated at the first step (i.e., VO are all
[NOI]’s). Finally, “AvgSteps” shows the average
number of steps for the model to complete the gen-
eration. Note for GPT-2, the AvgSteps is based on
tokens, while the AvgLen is based on words.

4.3 Experiment Results

Tables 2, 3, and 4 show the results of different mod-
els on the different datasets. On recall, GPT-2, due
to its inability to enforce hard lexical constraints,
yields the worst recall. For non-autoregressive
models without ESAI, they still achieve high re-
call. Nevertheless, the high recall of POINTER-
E is “contributed by” relatively high failure ratio
("failure") as recall is 1 even when the model fails
to generate anything in the first stage. In other
words, POINTER-E suffers from cold start problem.
GREEDY ENCONTER and BBT-ENCONTER, in
contrast, enjoy both good recall and zero failure ra-
tio. With ESAI option, all non-autoregressive mod-
els can achieve perfect recall without much addi-
tional generation steps. However, this option does
not reduce the high failure ratio of POINTER-E. On
generation quality compared with human crafted
text, GREEDY ENCONTER and BBT-ENCONTER
outperform all other models by NIST, BLEU, and
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Method Recall NIST BLEU |MTR || Entropy | DIST PPL | Avglen || failure | AvgSteps
N-2 N-4| B-2 B4 E-4| D-1 D-2

Baselines

GPT-2 0.70{] 1.38 1.39(0.13 0.08| 0.19 491(0.16 0.57| 35.7| 201.4| 0.00] 256.84

POINTER-E 0.981(/0.72 0.72(0.08 0.04| 0.19 3.6310.22 0.65|285.7 88.9 0.35 4.18

POINTER-E (+ESAI)| 1.00(/0.63 0.64|0.08 0.04| 0.18 3.5410.23 0.67 |337.1 81.4|| 0.34 3.84

ENCONTER

Greedy 096/ 1.95 1.96(0.19 0.09| 0.25 4.99|0.16 0.58|112.1 192.5 0.00 17.56

Greedy (+ESAI) 1.00 [| 1.99 2.00|0.20 0.10| 0.25 495(0.16 0.59|111.7| 1819 0.00 16.48

BBT 0941/ 1.83 1.84(0.19 0.10| 0.23 4.87(0.18 0.62|1549| 161.1 0.00 8.19

BBT (+ESAI) 1.00 || 1.87 1.87|0.20 0.10| 0.24 4.8410.18 0.62|150.0| 156.7 0.00 8.26

[ Human - - -1 - - - 499]0.20 0.66] 53.0] 202.1] - -]

Table 2: CoNLL-2003 result

Method Recall NIST BLEU |MTR || Entropy | DIST PPL | Avglen || failure | AvgSteps
N-2 N-4| B-2 B4 E-4| D-1 D-2

Baselines

GPT-2 0.63]/1.42 1.4210.13 0.09| 0.20 4.63(10.05 030] 66.3] 1232 0.00 168.44

POINTER-E 0991/ 1.69 1.70(0.20 0.12| 0.28 3.8410.08 0.46 | 901.2 7341 0.38 5.01

POINTER-E (+ESAI)| 1.00(|1.71 1.72]0.21 0.12| 0.28 3.8510.08 0.46 | 966.4 74.1 0.34 491

ENCONTER

Greedy 0.9913.31 3.33(/0.40 0.28| 0.41 4.5310.07 0371243 111.1 0.00 9.80

Greedy (+ESAI) 1.00 | 3.31 3.33|0.40 0.28| 0.40 4.5210.07 0.37]1252] 109.5 0.00 9.79

BBT 0.9913.59 3.62(0.45 0.34| 0.44 4.5310.07 0.38|135.6| 110.6 0.00 5.86

BBT (+ESAI) 1.00 || 3.55 3.57|0.44 0.34| 0.44 4.54|0.07 0.38|137.7| 1115 0.00 5.92

Human - - - - - - 4.66(0.08 041] 90.7| 125.1 - -

Table 3: SD result

Method Recall NIST BLEU |MTR || Entropy [ DIST PPL | AvgLen || failure | AvgSteps
N-2 N-4| B-2 B4 E-4| D-1 D-2

Baselines

GPT-2 0.72{] 1.50 1.51]0.15 0.10| 0.23 4.40(0.05 0.32| 101.0 9641 0.00 127.48

POINTER-E 0981 1.32 1.32]0.17 0.10| 0.26 3.46(0.09 0.48|2447.7 52.7 0.34 4.89

POINTER-E (+ESAI)| 1.00|| 1.26 1.26|0.16 0.09| 0.25 3.42(0.09 0.48|2535.7 533 0.38 5.07

ENCONTER

Greedy 0.991/2.48 2.49|0.31 0.20| 0.36 4.2110.07 0.40| 153.9 8221 0.00 9.75

Greedy (+ESAI) 1.00 || 2.44 245|031 0.20| 0.36 4.1910.07 040| 1474 80.2 (| 0.00 9.62

BBT 0.9812.73 2.74|0.34 0.24| 0.38 4.26|0.07 041]| 161.1 83.8 0.00 6.04

BBT (+ESAI) 1.00 | 2.69 2.70|0.34 0.23| 0.38 425]0.07 041 | 157.5 83.6| 0.00 6.05

Human - - - - - - 4.4510.08 0.43| 104.3| 101.6 - -

Table 4: SM result

MTR. This suggests that ENCONTER models learn
the context of entities better compared to other
models. On generation diversity, POINTER-E again
has the highest diversity largely due to its high
failure ratio. Finally, we discuss the efficiency of
models measured by AvgSteps. The autoregres-
sive nature of GPT-2 makes it the least efficient
model among all. POINTER-E’s ability to optimize
masking patterns makes it the most efficient model.
With balance binary tree reward, BBT-ENCONTER
is able to finish its generation in fewer iterations
than GREEDY ENCONTER.

Case example Table 5 shows a case example from
Jobs SM dataset. The entities of the given con-
straint are underlined. Invalid entities generated
are colored in red, while the remaining ones are
colored in blue. There are three types of invalid
cases. First, the case of entity is not the same as

specified. Second, the entity is not recalled in the
generation. Third, the entity has its tokens sep-
arated by some other token(s). In this example,
POINTER-E and POINTER-E ESAI terminate their
generations prematurely. They fail to perform gen-
eration at the very first stage.

5 Related Work

Recent years have witnessed significant success
using autoregressive (Dai and Le, 2015; Peters
et al., 2018; Radford, 2018) generative mod-
els to conduct conditional generation on various
tasks. CTRL (Keskar et al., 2019) uses con-
trol codes trained together with large amount
of data to control the content to be generated.
RecipeGPT (H. Lee et al., 2020) takes ingredi-
ents as a series of control and trains the genera-
tion of recipe text. PPLM (Dathathri et al., 2020)
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GREEDY ENCONTER:

Degree / ACCA / CIMA / CA /CFA / F & B / Group
Consolidation experience

Degree in General Accounting

Good track record in IFRSRSM, Fixed Assets, IFRS
GREEDY ENCONTER ESAI:

** Degree /| ACCA /CIMA /CA /CFA/CA/CAPA/
Singapore Group Consolidation / Management / General
Accounting experience

* Experience in IFRS or preferred

* Experience in Fixed Assets Management

* Extensive experience in IFRS

BBT-ENCONTER:

Degree or ACCA / CIMA or CFA qualifications
YEARSPAN’experience in handling Group s project /
Consolidation / Good Inteconor / General Accounting
Knowledge of IFRSPAN, Fixed Assets ( IFRS, etc )
BBT-ENCONTER ESAI:

Minimum Degree / ACCA / CIMA, CFA or equivalent
Minimum of YEARSPAN of experience in Marketing and
Group Consolidation and General Accounting
Knowledge of IFRS ) and Fixed Assets ( IFRS )
GPT-2: (missing: IFRS, CFA, Group Consolidation,
Fixed Assets)

Job Requirements :

- Degree in General Accounting / ACCA Qualification
- At least YEARSPAN of applicable working experience
in similar capacity

- Must be able to multi-task and handle different priorities
simultaneously

- General accounting knowledge will be advantageous
Interested applicant, kindly send in your CPA or CIMA
reference number to EMAIL

EA Licence number : LICENSENUM

Registration number : REGNUM

Human:

Professional Qualifications : Bachelors Degree
Qualified with a professional financial body ( ICAEW /
ICPA / ACCA / CIMA / CFA etc )

Specialist Knowledge / Skills : Group Consolidation
General Accounting IFRS Fixed Assets Industry
Experience

Experience : YEARSPAN post qualified with extensive
IFRS experience and industry experience

Table 5: A generated example from SM dataset.
POINTER-E and POINTER-E ESAI are not shown since
they failed to generate at first step.

directly steers the pretrained language by a bag-of-
words model or simple linear discriminator. The
above models in their own ways gain certain level
of control over the content generation process.
However, they do not provide a mechanism to di-
rectly enforce some lexical constraints in the fi-
nal generation. Non-monotonic sequence genera-
tion (Welleck et al., 2019) is designed to perform
hard lexical constrains generation based on binary
tree structure. By leveraging level-order and in-
order traversal of binary tree, the model allows
text to be generated non-monotonically. Although
the results from non-monotonic generation models
seem promising, they do not perform token gener-
ation in parallel and the tree structure governing

the generation process may produce many unused
tokens during the generation.

The emergence of non-autoregressive language
model provides another approach to support hard
lexical constraints. Insertion transformer (Stern
et al., 2019) uses transformer architecture with bal-
anced binary tree loss to perform insertion-based
generation. KERMIT (Chan et al., 2019) is pro-
posed as a structure to unify insertion transformers.
Levenshtein transformer (Gu et al., 2019) further
introduces deletion as an action to take during gen-
eration. Our ENCONTER models differ from these
previous models as they are not designed to support
any lexical constraints, including entity constrains.

6 Conclusions

Constrained text generation is an important task
for many real world applications. In this paper, we
focus on hard entity constraints and the challenges
associated with enforcing them in text generation.
Our analysis of the state-of-the-art insertion trans-
formers reveals issues, namely, cold start problems
and inefficient generation. We therefore propose
two insertion transformer models, GREEDY EN-
CONTER and BBT ENCONTER, that use a bottom-
up preprocessing strategy to prepare training data
so as to eliminate the cold start problem caused
by top-down preprocessing strategy. BBT En-
conter further incorporates a balanced tree reward
scheme to make the generation process more effi-
cient. Through experiments on real world datasets,
we show that the two models outperform the strong
baselines, POINTER-E and GPT2, in recall, qual-
ity and failure rate while not compromising much
generation efficiency. For future research, it will
be interesting to consider more diverse constraints
(e.g., soft constraint, rules, etc.) and user interac-
tion in the generation process to expand the scope
of applications that can benefit from this research.
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