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Abstract

Social networks face a major challenge in the
form of rumors and fake news, due to their
intrinsic nature of connecting users to mil-
lions of others, and of giving any individual
the power to post anything. Given the rapid,
widespread dissemination of information in so-
cial networks, manually detecting suspicious
news is sub-optimal. Thus, research on auto-
matic rumor detection has become a necessity.
Previous works in the domain have utilized
the reply relations between posts, as well as
the semantic similarity between the main post
and its context, consisting of replies, in order
to obtain state-of-the-art performance. In this
work, we demonstrate that semantic opposite-
ness can improve the performance on the task
of rumor detection. We show that semantic op-
positeness captures elements of discord, which
are not properly covered by previous efforts,
which only utilize semantic similarity or reply
structure. Our proposed model learns both ex-
plicit and implicit relations between the main
tweet and its replies, by utilizing both seman-
tic similarity and semantic oppositeness. Both
of these employ the self-attention mechanism
in neural text modeling, with semantic oppo-
siteness utilizing word-level self-attention, and
with semantic similarity utilizing post-level
self-attention. We show, with extensive ex-
periments on recent data sets for this problem,
that our proposed model achieves state-of-the-
art performance. Further, we show that our
model is more resistant to the variances in per-
formance introduced by randomness.

1 Introduction

Social media changed the ecosystem of the World
Wide Web by making it possible for any individ-
ual, regardless of their level of knowledge of web
technologies, to create and maintain profiles online.
At the same time, various social media provided
these individuals with means to tap into the infor-

mation disseminated by others (e.g., Facebook by
adding friends, Twitter by following). By virtue
of other mechanisms, such as Facebook pages and
Twitter lists, the reach of each individual was then
extended to the range of thousands-to-millions of
users. New content, in the form of posts, is created
on social media sites each passing second.

The rapidity of this post creation is such, that it
is possible to claim that social media reflect a near
real-time view of the events in the real world (Vey-
seh et al., 2019). While it was, indeed, beneficial in
terms of volume of data, to have private individuals
be content creators and propagators of information,
this created significant issues, from the perspective
of veracity of the data. This gave rise to a challenge
of detecting fake news and rumors (which, in this
study, we refer to as the task of rumor detection).
The need for rumor detection has come to the fore-
front, in light of its momentous impacts on political
events (Jin et al., 2017) and social (Jin et al., 2014)
or economic (Domm, 2013) trends.

Manual intervention on this task would require
extensive analysis of and reasoning about various
sources of information, resulting in long response
times, which are intolerable, given the impact of
these rumors, and the rate at which they spread.
Thus, automatic rumor detection, toward which we
contribute in this paper, has become an important
area of contemporary research. Cao et al. (2018)
define any piece of information, of which the verac-
ity status was questionable at the time of posting,
as a rumor. They further claim that a rumor may
later be verified to be true or false by other autho-
rized sources. We follow their definition in this
work; thus, we define the task of rumor detection
as: Given a piece of information from a social net-
work, predict whether the piece of information is a
rumor or not using the conversations which were
induced by the said piece of information. The ini-
tial piece of information could be a tweet or a user
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post, and the induced conversation would be the
replies from other users (which we use as contex-
tual information). Following the conventions in the
literature, in this work, we refer to a main post and
its replies as a thread.

In this paper, we utilize the semantic opposite-
ness proposed by (de Silva and Dou, 2019) to im-
prove the rumor detection task, which has so far
been restricted to only considering semantic simi-
larity. We further prove that semantic oppositeness
is well-suited to be applied to this domain, under
the observation that rumor threads are more discor-
dant than those of non-rumors. We further observe
that, within rumor threads, false rumor threads con-
tinue to be clamorous; while true rumor threads
settle into inevitable acquiescence. We claim that
semantic oppositeness can help in distinguishing
this behavior as well.

We propose word-level self-attention mechanism
for the semantic oppositeness to augment the tweet
level self-attention mechanism for the semantic
similarity. We model the explicit and implicit con-
nections within a thread, using a relevancy matrix.
Unlike a regular adjacency matrix, our relevancy
matrix recognizes the coherence of each sub-tree
of conversation rooted at the main post, while ac-
knowledging that, by definition, for this task, the
main tweet must be directly related all the rest of
the tweets, regardless of the degrees of separation
that may exist between them. We conduct extensive
experiments to compare our proposed model with
the state-of-the-art studies conducted on the same
topic. To the best of our knowledge, this work is
the first to utilize semantic oppositeness in rumor
detection. In summary, our contributions in this
paper include:

• We introduce a novel method for rumor de-
tection, based on both semantic similarity and
semantic oppositeness, utilizing the main post
and the contextual replies.

• We model the explicit and implicit connec-
tions within a thread, using a relevancy ma-
trix, which is then used to balance the impact
semantic similarity and semantic oppositeness
have on the overall prediction.

• We conduct experiments on recent rumor de-
tection data sets and compare with numerous
state-of-the-art baseline models to show that
we achieve superior performance.

The remainder of this paper is organized as fol-
lows: Section 2 presents related work, and then Sec-
tion 3 provides a formal definition of the problem,
along with our proposed solution. It is followed
by Section 4 discussing experiments and results.
Finally the Section 5 concludes the paper.

2 Related Work

Semantic oppositeness is the mathematical coun-
terpart of semantic similarity (de Silva and Dou,
2019). While implementations of semantic simi-
larity (Jiang and Conrath, 1997; Wu and Palmer,
1994) are more widely used than those of seman-
tic oppositeness, there are a number of studies
which work on deriving or using semantic oppo-
siteness (de Silva et al., 2017; Paradis et al., 1982;
Mettinger, 1994; Schimmack, 2001; Rothman and
Parker, 2009; de Silva, 2020). However, it is noted
that almost all of these studies are reducing oppo-
siteness from a scale to either bipolar scales (Schim-
mack, 2001) or simple anonymity (Paradis et al.,
1982; Jones et al., 2012). The study by de Silva
et al. (2017) proves that this reduction is incorrect
and proposes an alternative oppositeness function.
Their follow-up study, de Silva and Dou (2019)
creates a word embedding model for this function.
In this study, we use the oppositeness embeddings
created by them.

Rumor detection task has been approached on
three fronts, according to Cao et al. (2018): feature
engineering, propagation-based, and deep learn-
ing. In the feature engineering approach, posts are
transformed into feature representations by hand-
designed features and sent to a statistical model
to be classified. In addition to textual information,
structural evidences (Castillo et al., 2011; Yang
et al., 2012) and media content (Gupta et al., 2012)
are also utilized. Given that this approach depends
heavily on the quality of the hand-designed fea-
ture sets, it is neither scalable, nor transferable to
other domains. The propagation-based approach
is built on the assumption that the propagation pat-
tern of a rumor is significantly different to that
of a non-rumor. It has been deployed to detect
rumors in social networks (Ma et al., 2017). How-
ever, this method does not pay any heed to the
information in the post content itself. As expected,
deep learning approach, automatically learns effec-
tive features (Ma et al., 2016, 2018; Veyseh et al.,
2019). Ma et al. (2016) claim that these discovered
features capture the underlying representations of
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the posts, and hence, improve the generalization
performance, while making it easy to be adapted
into a new domain or a social medium for the pur-
pose of rumor detection.Yang et al. (2020) propose
a slide window-based system for feature extrac-
tion. None of these state-of-the-art work attempt to
check rumour veracity akin to attempts by Hamid-
ian and Diab (2019a) and Derczynski et al. (2017).
Instead, they attempt to do classification on the al-
ready established baseline. Thus, our work also
follow the approach of the former rather than the
latter. The work by Hamidian and Diab (2019b)
does focus on rumor detection and classification.
However, they are not using the data sets common
to the state-of-the-art work mentioned above to
evaluate their approach.

Our work is most related to the rumor detection
model on Twitter by means of deep learning to cap-
ture contextual information (Veyseh et al., 2019).
However, we also derive inspiration from earlier
work on the same topic (Ma et al., 2018), which
utilized the tree-like structures of the posts, and
the work by de Silva and Dou (2019), which in-
troduced the oppositeness embedding model. The
early work by Ma et al. (2018) uses Recursive Neu-
ral Networks (RvNN) for the construction of the
aforementioned tree-like structures of the posts,
based on their tf-idf representations.

The following work by Veyseh et al. (2019) ac-
knowledges the usefulness of considering the in-
nate similarities between replies, but further claims
that only considering the replies along the tree-
like structure only exploits the explicit relations
between the main posts and their replies, and thus
ignores the implicit relations among the posts from
different branches based on their semantics. Under
this claim, they disregard the tree-like structure en-
tirely. In our work, we preserve the idea of consid-
ering semantic similarities to discover the implicit
relationships among posts, as proposed by (Veyseh
et al., 2019).

However, we augment the model and re-
introduce the explicit relationships proposed by Ma
et al. (2018) in a balancing of information between
implicit and explicit. Further, we note that all these
prior works have been solely focused on the simi-
larity between the posts and have ignored the oppo-
siteness metric. To the best of our knowledge, we
are the first to utilize oppositeness information in
the rumor detection task.

3 Methodology

We use a recent work (Veyseh et al., 2019) on ru-
mor detection as our baseline. Their work, in turn,
was heavily influenced by the earlier work on ru-
mor detection in Twitter (Ma et al., 2018). A tweet
set I is defined as shown in Equation 1, where R0

is the initial tweet and R1, R2, . . . , RT are replies,
such that T is the count of replies. Each tweet Ri

is a sequence of words W1,W2, ...,Wn, such that
n is the count of words. We tokenize the tweets;
and in this work, tokens and words are used inter-
changeably. We also define the relevance matrix
M , which carries the information of the tree struc-
ture of the tweet tree in Equation 2, where A ? B
denotes that A and B belong to the same tree in
the forest obtained by eliminating the initial tweet.
We show the process in Fig 1 as well. Our input is
the pair P = (I,M), which differs from (Veyseh
et al., 2019), where only I was used as the input.
The entire data set is represented by D.

Following the convention of (Veyseh et al., 2019)
which is our baseline, we classify each pair (I,M)
into four labels: 1) Not a rumor (NR); 2) False
Rumor (FR); 3) True Rumor (TR); and 4) Unrec-
ognizable (UR), It should be noted that the distinc-
tion between “False Rumor” and “True Rumor” is
drawn from the truthfulness of R0.

I = (R0, R1, R2, . . . , RT ) (1)

mi,j =


1 if Ri = R0 ∨Rj = R0

1 if Ri ? Rj

0 otherwise

(2)

In simpler terms, we can represent Veyseh et al.
(2019) as a trivial relevance matrix where all el-
ements are set at 1. The success of Veyseh et al.
(2019) over previous state-of-the-art methods at-
test to the success of using a relevance matrix over
vanilla adjacency matrix. In this work what we do
with the above described relevance matrix M is
to augment the implicit relationship consideration
using the high level structure of the explicit relation-
ships, hence bringing in the best-of-both-worlds. In
summary, the set of edges in the relevancy matrix
is a super-set of the set of edges in the adjacency
matrix. In addition to the edges that were in the
adjacency matrix, the relevancy matrix also has
edges that carry implicit connection information.
Thus, by definition, the relevancy matrix is more
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Figure 1: Relevance matrix building: 1) Original tweet reply tree; 2) Obtain the forest by temporarily removing
the root (main tweet); 3) Consider each tree in the forest to be fully connected graphs, and obtain the relevance ma-
trices; 4) Obtain the full Relevance matrix by putting together the matrices from the previous step and considering
the main tweet to be connected to all the other tweets.
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Figure 2: The Proposed Model: Red vectors and node represent the main (root) tweet, and green vectors and
nodes represent replies. Pooling operations are shown in boxes with dashed lines.

descriptive of the thread compared to the adjacency
matrix.

3.1 Formal Definition of Tweet
Representation

Each tweet will have different number of words n;
thus, we pad the short tweets with a special token,
until all the tweets have the same word length N
as defined by 3.

N = argmax
Pi∈D

(ni) (3)

We build the representative oppositeness list
O using the oppositeness embeddings created
by (de Silva and Dou, 2019) such that, for the i-th
tweet Ri, with words Wi1,Wi2, ...,WiN , the oppo-

siteness embeddingOi is created as oi1, oi2, ..., oim
where oij is the embedding of Wij . Note that
m ≤ N where all tokens might not have corre-
sponding oppositeness embeddings.

Each word in each tweet is then converted to
a representative vector by means of a set of pre-
trained word embeddings, such that for the i-th
tweet Ri, with words Wi1,Wi2, ...,WiN is con-
verted ei1, ei2, ..., eiN . We then apply max-pooling
operation over the word embeddings along each
dimension, resulting in a representative vector hi
coupled to Ri, as shown in Equation 4. At this
point, note that the tweet set I of each pair P ,
which used to be I = (R0, R1, R2, . . . , RT ), has
been replaced by I = (h0, h1, h2, . . . , hT ). It is
this new representation which is passed to the fol-
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lowing steps.

hi = Elementwise Max(ei1, ei2, ..., eiN ) (4)

3.2 Similarity-Based Contextualization

As discussed earlier, the Twitter data is organized as
a tree rooted at the main tweet R0 in each instance.
The earlier work by Ma et al. (2018) proved that,
in rumor detection, it is helpful to capture these re-
lations among the main tweet and the replies. The
subsequent work by Veyseh et al. (2019) noted that
only considering explicit reply relation between the
main tweet and other tweets neglects the implicit
relations among the tweets, arising from their se-
mantic similarities (i.e., by the virtue of discussing
the same topic, tweets in two separate branches
may carry mutually useful information). Follow-
ing this hypothesis, they exploited such implicit
semantic relations for the purpose of improving
the performance of the rumor detection task. How-
ever, in doing so, they abandoned the information
garnered from the tree structure. In this work we
propose to continue to use the implicit information,
but to augment it with the information derived from
the tree structure.

We follow the self-attention mechanism of (Vey-
seh et al., 2019), which was inspired by the trans-
former architecture in (Vaswani et al., 2017), to
learn the pairwise similarities among tweets for
capturing the semantic relations between the tweets.
The process starts with calculating the key (ki) and
query (qi) vectors for each tweet, based on its rep-
resentation hi, as shown in Equation 5. (W and b
follow the traditional notation of weights and bias).

ki = Wk ∗ hi + bk qi = Wq ∗ hi + bq (5)

With the key and query vectors, we calculate the
similarity aij between i-th and j-th tweets, using
the dot product as shown in Equation 6, where γ is
a normalization factor.

ai,j = ki · qj/γ (6)

3.3 Oppositeness-Based Contextualization

Unlike in the case of similarity vectors, which were
reduced to a single dimension at this point, the
oppositeness representations are still at two dimen-
sions. Thus the self-attention of oppositeness be-
tween tweets is handled at a word level, rather than

at the sentence level. We build key (k
′
i) and query

(q
′
i) vectors for each word based on its representa-

tion oi, as shown in Equation 7. (W and b follow
the traditional notation of weights and bias).

k
′
i = Wk ∗ oi + bk q

′
i = Wq ∗ oi + bq (7)

Since the oppositeness embedding of (de Silva
and Dou, 2019) is based on Euclidean distance,
with the key and query vectors, we calculate the op-
positeness opix,jy between x-th word of i-th tweet
and y-th word of j-th tweet using the Euclidean
distance, as shown in Equation 8 where k

′
ix

is the
key vector for x-th word of i-th tweet, q

′
jy

is the
query vector for y-th word of j-th tweet, and Eu-
clidean distance d(, ) is calculated across the size
of the oppositeness embedding.

opix,jy = d(k
′
ix , q

′
jy) (8)

To obtain the abstract tweet-level oppositeness,
we apply element-wise average-pooling on the
OPi,j matrix, as shown in Equation 9, to cre-
ate the oppositeness matrix O”, where EA is
Elementwise Average operation, δ is the oppo-
siteness embedding count of the i-th tweet, and
% is the oppositeness embedding count of the j-th
tweet. Note that the dimensions of the oppositeness
matrix O” is the same as the relevance matrix M .

o”i,j = EA

(
opi0,j0 opi1,j0 . . . opiδ,j0
opi0,j1 opi1,j1 . . . opiδ,j1
. . . . . . . . . . . .
opi0,j% opi1,j% . . . opiδ,j%


)

(9)
Next we create the oppositeness mask Ω by

average-pooling O” along rows and columns, as
shown in Equation 10, where the definition of EA,
is the same as Equation 9 and similar to Equation 3,
ni and nj are natural lengths of the i-th and j-th
tweets respectively.

ωi,j = 1− EA(o”i,0, o
”
i,1, ..., o

”
i,nj )

−EA(o”0,j , o
”
1,j , ..., o

”
ni,j)

(10)

3.4 Deriving Overall Thread Representations
Similar to the oppositeness mask Ω, we create the
relevance mask Ψ by sum-pooling M along rows
and columns, as shown in Equation 11, where ES,
is Elementwise Sum operation, and similar to
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Equation 3, ni and nj are natural lengths of the i-th
and j-th tweets respectively.

ψi,j = ES(mi,0,mi,1, ...,mi,nj )

+ES(m0,j ,m1,j , ...,mni,j)
(11)

At this point we diverge from (Veyseh et al.,
2019) in two ways and utilize the related relevance
mask M as a weighting mechanism, with propor-
tion constant α (where 0 < α < 1), as well as the
oppositeness mask Ω, to obtain augmented atten-
tion a

′
i,j as shown in Equation 12.

a
′
i,j = ai,jωi,j

[
(ψi,j − α)2 + αψi,j

]
(12)

We utilize the augmented similarity values a
′
i,j

for each tweet pair in the thread to compute ab-
stract representations for the tweets based on the
weighted sums, as shown in Equation 13.

h′i = Σja
′
i,j ∗ hj (13)

Next, we apply the max-pooling operation over
the processed tweet representation vectors h′i to
obtain the overall representation vector h′ for the
input pair P .

h′ = Elementwise Max(h′0, h
′
1, h
′
2, ..., h

′
T )
(14)

Finally, the result is sent through a 2-layer feed-
forward neural network capped with a softmax
layer, with the objective of producing the probabil-
ity distribution P (y|R0, R1, R2, . . . , RT ; θ) over
the four possible labels, where θ is the model pa-
rameter. On this, we optimize the negative log-
likelihood function, in order to train the model, as
shown in Equation 15, where y∗ is the expected
(correct) label for I .

Llabel = − logP (y∗|R0, R1, R2, . . . , RT ; θ)
(15)

3.5 Main Tweet Information Preservation
The Veyseh et al. (2019) study noted that the model
by Ma et al. (2018) treats all tweets equally. This
was deemed undesirable, given that the main tweet
of each thread incites the conversation, and thus,
arguably, carries the most important content in the
conversation, which should be emphasized, to pro-
duce good performance. To achieve this end, it was

proposed to bring forward the information in the
main tweet independently of and separately from
that of the collective twitter thread, in order to pro-
vide a check. We, in this work, also provide this
sanctity check, to enhance the obtained results.

The basic idea is that, by virtue of definition, if
a main tweet is a rumor (or not), unique trait and
information pertaining to that class should be in the
main tweet itself. Thus, the latent label (Lthread)
obtained by processing the thread representation h′

above should be the same as a potential latent label
(Lmain) obtained by processing the representation
of the main tweet h0. To calculate Lmain, we use a
2-layer feed-forward neural network with a softmax
layer in the end, where it assigns the latent labels
drawn from K possible latent labels. Next, we use
another 2-layer feed-forward neural network with
a softmax layer in the end, assigning the same K
number of possible latent labels as shown in the
negative log-likelihood function to match it with
the thread.

Lmain = argmaxLP (L|R0) (16)

Lthread = − logP ′(Lmain|R0, . . . , RT ) (17)

Finally, the loss function to train the entire model
is defined as in Equation 18, where the Llabel

is obtained from Equation 15, and β is a hyper-
parameter which controls the contribution of the
main tweet information preservation loss to final
loss.

Loss = Llabel + βLthread (18)

4 Experiments

We use the Twitter 15 and Twitter 16 data sets in-
troduced by Ma et al. (2017) for the task of rumor
detection. Some statistics of the data sets as given
by Ma et al. (2017) are shown in Table 1. We
use Glove (Pennington et al., 2014) embedding to
initialize the word vectors and oppositeness em-
bedding (de Silva and Dou, 2019) to initialize the
oppositeness embeddings. Both embedding vectors
are of size 300. Key and query vectors in Equa-
tions 5 and Equations 7 employ 300 hidden units.
The rumor classifier feed-forward network has two
layers of 200 hidden units. The feed-forward layer
in the main tweet information preservation compo-
nent has two layers, each with 100 hidden units,
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and it maps to three latent labels. The proportion
constant α, which balances the explicit and implicit
information, is set at 0.1. The loss function uses a
trade-off parameter of β = 1, with an initial learn-
ing rate of 0.3 on the Adagrad optimizer. For the
purpose of fair results comparison, we follow the
convention of using 5-fold cross validation proce-
dure to tune the parameters (such as node and layer
counts) set by Ma et al. (2018).

Statistic Twitter15 Twitter16
Number of NR 374 205
Number of FR 370 205
Number of TR 372 205
Number of UR 374 203
Avg. Num. of Posts/Tree 223 251
Max Num. of Posts/Tree 1,768 2,765
Min Num. of Posts/Tree 55 81

Table 1: Statistics of the Data Sets.

4.1 Comparison to the State-of-the-Art
Models

We compare the proposed model against the state-
of-the-art models on the same data sets. The per-
formance is compared by means of overall accu-
racy and F1 score per class. We observe that there
are two types of models against which we com-
pare. The first type are the feature-based models,
which used feature engineering to extract features
for Decision Trees (Zhao et al., 2015; Castillo et al.,
2011), Random Forest (Kwon et al., 2013), and
SVM (Ma et al., 2015; Wu et al., 2015; Ma et al.,
2017). The second type of models are deep learn-
ing models, which used Recurrent Neural Networks
or Recursive Neural Networks to learn features for
rumor detection. We compare our model to GRU-
RNN proposed by Ma et al. (2016), BU-RvNN
and TD-RvNN proposed by Ma et al. (2018), and
Semantic Graph proposed by Veyseh et al. (2019).
Results for Twitter 15 and Twitter 16 are shown in
Tables 2 and 3, respectively.

It is evident from these tables that, in the ru-
mor detection task, the deep learning models out-
perform feature-based models, proving that auto-
matically learning effective features from data is
superior to hand-crafting features. We also note
that the Semantic Oppositeness Graph, along with
the Semantic Graph, and other RvNN models with
GRU-RNN, generally do well, which attests to the
utility of structural information, be it in the form

of reply structure or be it in the form of semantic
relations, in helping to improve performance. We
further notice that Veyseh et al. (2019) which uses
implicit information, outperforms TD-RvNN (Ma
et al., 2018), which only uses explicit information.
Semantic Oppositeness Graph, which uses explicit
information, implicit information, and semantic op-
positeness outperforms all the other models in ac-
curacy, while outperforming all the other models in
three out of four classes, in terms of F1 Score. The
one class in which Semantic Oppositeness Graph
loses out to Veyseh et al. (2019) is in the case of
the Unrecognizable (UR) class. We argue that this
is not an issue, given that the unrecognizable class
consists of tweets which were too ambiguous for
human annotators to tag as one of: not a rumor
(NR), false rumor (FR), or true rumor (TR). We
assert that Tables 2 and 3 clearly demonstrate the ef-
fectiveness of the proposed Semantic Oppositeness
Graph method in the task of rumor detection.

4.2 Model Stability Analysis

While comparing our system with Veyseh et al.
(2019), which we use as our main baseline, we
noticed that their system has a high variance in
results, depending on the random weight initial-
ization. This was impactful in such a way that in
some random weight initializations, the accuracy
of their system could fall as low as 24% from the
reported high 70% results in their paper. Given
that we use their system as our baseline and the
basis for our model, we decided to do a stability
analysis between their system and ours. For this
purpose, we created 100 random seeds and trained
four models with each seed, resulting in a total
of 400 models. The models were: 1) Veyseh et al.
(2019) on twitter 15, 2) Veyseh et al. (2019) on twit-
ter 16, 3) Semantic Oppositeness Graph on twitter
15, 4) Semantic Oppositeness Graph on twitter 16.
Then we normalized the results of the Veyseh et al.
(2019) models to the values reported in their paper
(also shown in the relevant row on Tables 2 and 3).
Each result is reported in the format of (µ, σ) for
the 5 fold cross-validation to explore how random
weight initialization affects the two models.

From the results in Tables 4 and 5, it is evident
that our Semantic Oppositeness Graph has higher
mean values for accuracy, not a rumor (NR), false
rumor (FR), and true rumor (TR), while having
comparably reasonable values for Unrecognizable
(UR) class. But more interesting are the standard
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Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR (Zhao et al., 2015) 0.409 0.501 0.311 0.364 0.473
DTC (Castillo et al., 2011) 0.454 0.733 0.355 0.317 0.415
RFC (Kwon et al., 2013) 0.565 0.810 0.422 0.401 0.543
SVM-TS (Ma et al., 2015) 0.544 0.796 0.472 0.404 0.483
SVM-BOW (Ma et al., 2018) 0.548 0.564 0.524 0.582 0.512
SVM-HK (Wu et al., 2015) 0.493 0.650 0.439 0.342 0.336
SVM-TK (Ma et al., 2017) 0.667 0.619 0.669 0.772 0.645
GRU-RNN (Ma et al., 2016) 0.641 0.684 0.634 0.688 0.571
BU-RvNN (Ma et al., 2018) 0.708 0.695 0.728 0.759 0.653
TD-RvNN (Ma et al., 2018) 0.723 0.682 0.758 0.821 0.654
Semantic Graph (Veyseh et al., 2019) 0.770 0.814 0.764 0.775 0.743
Semantic Oppositeness Graph (SOG) 0.796 0.825 0.820 0.814 0.742

Table 2: Model Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR (Zhao et al., 2015) 0.414 0.394 0.273 0.630 0.344
DTC (Castillo et al., 2011) 0.465 0.643 0.393 0.419 0.403
RFC (Kwon et al., 2013) 0.585 0.752 0.415 0.547 0.563
SVM-TS (Ma et al., 2015) 0.574 0.755 0.420 0.571 0.526
SVM-BOW (Ma et al., 2018) 0.585 0.553 0.655 0.582 0.578
SVM-HK (Wu et al., 2015) 0.511 0.648 0.434 0.473 0.451
SVM-TK (Ma et al., 2017) 0.662 0.643 0.623 0.783 0.655
GRU-RNN (Ma et al., 2016) 0.633 0.617 0.715 0.577 0.527
BU-RvNN (Ma et al., 2018) 0.718 0.723 0.712 0.779 0.659
TD-RvNN (Ma et al., 2018) 0.737 0.662 0.743 0.835 0.708
Semantic Graph (Veyseh et al., 2019) 0.768 0.825 0.751 0.768 0.789
Semantic Oppositeness Graph (SOG) 0.826 0.843 0.843 0.878 0.774

Table 3: Model Performance on Twitter 16.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Veyseh et al. (2019) (0.770,0.138) (0.814,0.133) (0.764,0.198) (0.775,0.118) (0.743,0.129)
SOG (This work) (0.796,0.089) (0.825,0.080) (0.820,0.109) (0.814,0.093) (0.742,0.100)

Table 4: Model Variance Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Veyseh et al. (2019) (0.768,0.103) (0.825,0.226) (0.751,0.103) (0.768,0.096) (0.789,0.184)
SOG (This work) (0.826,0.082) (0.843,0.153) (0.843,0.091) (0.878,0.074) (0.774,0.114)

Table 5: Model Variance Performance on Twitter 16.

deviation values. It is evident that in all cases,
our model has smaller standard deviation values
than that of Veyseh et al. (2019). This is proof
that our system is comparatively more stable in
the face of random weight initialization. We argue
that this stability comes from the introduction of
the oppositeness component, which augments the
decision-making process with the oppositeness in-

formation, as a counterpart for the already existing
similarity information, preventing the predictions
from having a swinging bias.

For a demonstration, consider the subset of three
words increase, decrease, and expand from the ex-
ample given by de Silva and Dou (2019). If the
main tweet (R0) were to say “A will increase B”,
R1 replied with “A will decrease B”, andR2 replied
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(a) Without the Oppositeness Component (b) With the Oppositeness Component

Figure 3: t-SNE diagrams for thread representations.

with “A will expand B”, then the purely semantic
similarity based model will position R0 and R1

closer than R0 and R2, given that the word con-
texts in which increase and decrease are found are
more similar than the word contexts in which in-
crease and expand are found. This would result
in the neural network having to learn the oppo-
site semantics between increase and expand by
itself, during the training, making it more vulnera-
ble to issues of bad initial weight selection. This,
in turn, will result in greater variance among the
trained models as is the case of Veyseh et al. (2019).
However, a system with an oppositeness compo-
nent will already have the opposite semantics be-
tween increase and decrease, as well as increase
and expand already calculated. Thus, such a sys-
tem would have pre-knowledge that the word pair
increase and decrease, despite being used in more
common contexts, is more semantically opposite
than the word pair increase and expand, which is
used in less common contexts. Hence the neural
network does not have to learn that information
from scratch during the training, resulting in it be-
ing less vulnerable to issues of bad initial weight
selection. Analogously, this, in turn, will result in
lesser variance among the trained models; hence,
explaining the better stability demonstrated by Se-
mantic Oppositeness Graph in comparison to Vey-
seh et al. (2019) in Tables 4 and 5.

4.3 Impact of the Oppositeness Component

Finally, to emphasize the effect the oppositeness
component has on the model, we draw the t-SNE
diagrams for the final representations of the threads.
Figure 3a shows the data points clustering when the

model is trained without the oppositeness compo-
nent, and Fig. 3b shows the data points clustering
when the model is trained with the oppositeness
component. Note that all other variables, including
the seed for the weight initializer, are the same in
the two models. These diagrams prove that the op-
positeness component helps improve the separabil-
ity of the classes. Specially note how the False Ru-
mor and True Rumor classes are now more clearly
separated. We postulate that this derives from the
fact that the oppositeness component would help in
distinguishing the continuous discord happening in
a False Rumor thread from the subsequent general
agreement in a True Rumor thread.

5 Conclusion

Rumors and fake news are a significant problem
in social networks, due to their intrinsic nature of
connecting users to millions of others and giving
any individual the power to post anything. We in-
troduced a novel method for rumor detection, based
on semantic oppositeness, in this paper. We demon-
strated the effectiveness of our method using data
sets from Twitter. Compared to previous work,
which only used explicit structures in the reply rela-
tions or semantic similarity, our model learns both
explicit and implicit relations between a main tweet
and its replies, by utilizing both semantic similarity
and semantic oppositeness. We proved, with exten-
sive experiments, that our proposed model achieves
state-of-the-art performance, while being more re-
sistant to the variances in performance introduced
by randomness.
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