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Abstract
Major scandals in corporate history have urged
the need for regulatory compliance, where or-
ganizations need to ensure that their controls
(processes) comply with relevant laws, regula-
tions, and policies. However, keeping track of
the constantly changing legislation is difficult,
thus organizations are increasingly adopting
Regulatory Technology (RegTech) to facilitate
the process. To this end, we introduce regula-
tory information retrieval (REG-IR), an appli-
cation of document-to-document information
retrieval (DOC2DOC IR), where the query is
an entire document making the task more chal-
lenging than traditional IR where the queries
are short. Furthermore, we compile and re-
lease two datasets based on the relationships
between EU directives and UK legislation. We
experiment on these datasets using a typical
two-step pipeline approach comprising a pre-
fetcher and a neural re-ranker. Experimenting
with various pre-fetchers from BM25 to k near-
est neighbors over representations from sev-
eral BERT models, we show that fine-tuning
a BERT model on an in-domain classification
task produces the best representations for IR.
We also show that neural re-rankers under-
perform due to contradicting supervision, i.e.,
similar query-document pairs with opposite la-
bels. Thus, they are biased towards the pre-
fetcher’s score. Interestingly, applying a date
filter further improves the performance, show-
casing the importance of the time dimension.

∗ The contribution of Ms. Eva Katakalou was restricted
to the creation and the validation of the datasets as well as to
the authoring of the corresponding parts of the manuscript.

Figure 1: Number of legislative acts issued by the EU
per year. The gold color of the bars indicates how many
of the published acts are amendments to older ones.

1 Introduction

Major scandals in corporate history, from Enron to
Tyco International, Olympus, and Tesco,1 have led
to the emergence of stricter regulatory mandates
and highlighted the need for regulatory compliance
where organizations need to ensure that they com-
ply with relevant laws, regulations, and policies
(Lin, 2016). However, keeping track of the con-
stantly changing legislation (Figure 1) is hard, thus
organizations are increasingly adopting Regulatory
Technology (RegTech) to facilitate the process.

Typically, a compliance regimen includes three
distinct but related types of measures, corrective,
detective, and preventive (Sadiq and Governatori,

1www.theguardian.com/business/2015/ju
l/21/the-worlds-biggest-accounting-scan
dals-toshiba-enron-olympus

www.theguardian.com/business/2015/jul/21/the-worlds-biggest-accounting-scandals-toshiba-enron-olympus
www.theguardian.com/business/2015/jul/21/the-worlds-biggest-accounting-scandals-toshiba-enron-olympus
www.theguardian.com/business/2015/jul/21/the-worlds-biggest-accounting-scandals-toshiba-enron-olympus
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2015). Corrective measures are usually undertaken
when new regulations are introduced to update ex-
isting controls. Detective measures, ensure “after-
the-fact” compliance, i.e., following a procedure, a
manual or automated check is carried out, to ensure
that every step of the procedure complied with the
corresponding regulations. Finally, preventive mea-
sures ensure compliance “by design”, i.e., during
the creation of new controls. All types of mea-
sures include an underlying information retrieval
(IR) task, where laws need to be retrieved given a
control or vice versa. We identify two use cases:

1. Given a new law retrieve all the controls of
the organization affected by this law. The or-
ganization can then apply corrective measures
to ensure compliance for these controls.

2. Given a control retrieve all relevant laws the
control should comply with. This is useful
for ensuring compliance after a procedure has
been carried out (detective measures) or when
creating new controls (preventive measures).

Regulatory information retrieval (REG-IR), sim-
ilarly to other applications of document-to-
document (DOC2DOC) IR, is much more challeng-
ing than traditional IR where the query typically
contains a few informative words and the docu-
ments are relatively small (Table 1). In DOC2DOC

IR the query is a long document (e.g., a regulation)
containing thousands of words, most of which are
uninformative. Consequently, matching the query
with other long documents where the informative
words are also sparse, becomes extremely difficult.

Although legislation is available, organizations’
controls are strictly private and very hard to obtain.
Fortunately, the European Union (EU) has a legis-
lation scheme analogous to regulatory compliance
for organizations. According to the Treaty on the
Functioning of the European Union (TFEU),2 all
published EU directives must take effect at the na-
tional level. Thus, all EU member states must adopt
a law to transpose a newly issued directive within
the period set by the directive (typically 2 years).
Notably, the United Kingdom (UK) having a high
compliance level with the EU (Figure 2),3 is a good
test-bed for REG-IR. Thus we compile and release
two datasets for REG-IR, EU2UK and UK2EU, con-
taining EU directives and UK regulations, which

2Articles 291 (1) and 288 paragraph 3.
3Data for Figures 1 and 2 obtained from ec.europa.eu

/internal market/scoreboard/performance b
y governance tool/eu pilot.

Figure 2: The percentage of EU directives transposed
by UK legislation per year. Over 98% of the published
EU directives have been transposed.

can serve both as queries and documents under the
ground truth assumption that a UK law is relevant
to the EU directives it transposes and vice versa.

Dataset Domain q̃ d̃
IR datasets in the literature

TREC ROBUST (Voorhees, 2005) News 3 / 14 254
BIOASQ (Tsatsaronis et al., 2015) Biomedical 9 197

IR datasets with verbose queries
GOV2 (Clarke et al., 2004) Web 11 / 57 682
WT10G (Chiang et al., 2005) Web 11 / 35 457

Regulatory Compliance datasets
EU2UK (ours) Law 2,642 1,849
UK2EU (ours) Law 1,849 2,642

Table 1: Statistics for query and document length for
IR datasets used in literature.

Since REG-IR is a new task, our starting point is
the two-step pipeline approach followed by most
modern neural information retrieval systems (Guo
et al., 2016; Hui et al., 2017; McDonald et al.,
2018). First, a conventional IR system (pre-fetcher)
retrieves the k most prominent documents. Then a
neural model attempts to rank relevant documents
higher than irrelevant ones. In most approaches,
the pre-fetcher is based on Okapi BM25 (Robertson
et al., 1995), a bag-of-words scoring function that
does not consider possible synonyms or contex-
tual information. To overcome the first limitation,
we follow Brokos et al. (2016) who employed k
nearest neighbors over tf-idf weighted centroids of
word embeddings, without however improving the
results, probably because the centroids are noisy
considering many uninformative words. Further-
more, we employ BERT (Devlin et al., 2019) to
extract contextualized representations for queries
and documents but again the results are worse than
BM25. We also experiment with S-BERT (Reimers

ec.europa.eu/internal_market/scoreboard/performance_by_governance_tool/eu_pilot
ec.europa.eu/internal_market/scoreboard/performance_by_governance_tool/eu_pilot
ec.europa.eu/internal_market/scoreboard/performance_by_governance_tool/eu_pilot
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Query: DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 September 2006 on batteries
and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC
BM25 rank Relevant Document title

1 No The Batteries and Accumulators (Placing on the Market) (Amendment) Regulations 2012
2 No The Batteries and Accumulators (Containing Dangerous Substances) (Amendment) Regulations 2000
3 No The Batteries and Accumulators (Placing on the Market) (Amendment) Regulations 2015
4 No The Batteries and Accumulators (Containing Dangerous Substances) Regulations 1994
5 No The Waste Batteries and Accumulators (Amendment) Regulations 2015
6 Yes The Waste Batteries and Accumulators Regulations 2009
12 Yes The Batteries and Accumulators (Placing on the Market) Regulations 2008

Table 2: Example from the EU2UK dataset where the retrieved UK laws are ranked by BM25. The top-5 documents
seem similar to the query but are not relevant. Documents ranked 1st, 3rd, and 5th are amendments of the relevant
documents, i.e., UK laws that transpose the query.

and Gurevych, 2019) and LEGAL-BERT (Chalkidis
et al., 2020), a model specialized in the legal do-
main. Both models perform better than BERT but
are still worse than or comparable to BM25. The
inability of BERT-based models motivated us to
find an auxiliary task that will result in better rep-
resentations for REG-IR. Following Chalkidis et al.
(2019), we fine-tune BERT to predict EUROVOC

concepts that describe the core subjects of each
text. As expected this model (C-BERT) is the best
pre-fetcher by a large margin in EU2UK, while be-
ing comparable to BM25 in UK2EU. To summarize,
our contributions are:

(a) We introduce REG-IR, an application of
DOC2DOC IR, which is a new family of IR

tasks, where both queries and documents are
long typically containing thousands of words.

(b) We compile and release the two first publicly
available datasets, EU2UK and UK2EU, suit-
able for REG-IR and DOC2DOC IR in general.4

(c) We show that fine-tuning BERT on an in-
domain classification task produces the best
document representations with respect to IR

and improves pre-fetching results.

2 Datasets curation

2.1 Data sources

EU/UK Legislation: We have downloaded approx.
56K pieces of EU legislation (approx. 3.9K direc-
tives), from the EURLEX portal.5 EU laws are 2,642
words long on average and are structured in three
major parts: the title (Table 2, query), the recitals
consisting of references in the legal background of

4The datasets are available at https://archive.or
g/details/eacl2021 regir datasets.

5eur-lex.europa.eu

the act, and the main body. We have also down-
loaded approx. 52K UK laws, publicly available
from the official UK legislation portal.6 UK laws
are 1,849 words long on average and contain the
title (Table 2, document title) and the main body.

Transpositions: We have retrieved all transposi-
tion relations (approx. 3.7K) between EU directives
and UK laws from the CELLAR database. CELLAR

only provides the mapping between the CELLAR

ids of EU directives and the title of each UK law.
Therefore we aligned the CELLAR ids with the of-
ficial UK ids based on the law title.7 One or more
UK laws may transpose one or more EU directives.

2.2 Datasets compilation

Let E , U be the sets of EU directives and UK laws,
respectively. We define REG-IR as the task where
the query q is a document, e.g, an EU directive,
and the objective is to retrieve a set of relevant
documents,Rq, from the pool of all available doc-
uments, e.g., all UK laws. We create two datasets:

EU2UK: q ∈ E ,Rq = {ri : ri ∈ U , ri
transposes−−−−−→q}.

UK2EU: q ∈ U ,Rq = {ri : ri ∈ E , q
transposes−−−−−→ri}.

Table 3 shows the statistics for the two datasets,
which are split in three parts, train, development,
and test, retaining a chronological order for the
queries. EU2UK has a much larger pool of available
documents than UK2EU (52.5K vs. 3.9K) which
may impose an extra difficulty during retrieval.
More importantly, the average number of relevant
documents per query is small (at most 2) for both
datasets, as our ground truth assumption is strict,
i.e., relevant documents are those linked to the
query with a transposition relation. Also, EU legis-
lation is frequently amended (Figure 1) which also

6legislation.gov.uk
7See Appendix A for details on the dataset curation.

https://archive.org/details/eacl2021_regir_datasets
https://archive.org/details/eacl2021_regir_datasets
eur-lex.europa.eu
legislation.gov.uk
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Dataset Documents Train Development Test
in pool Queries Avg. relevant Queries Avg. relevant Queries Avg. relevant

EU2UK 52,515 1,400 1.79 300 2.09 300 1.74
UK2EU 3,930 1,500 1.90 300 1.46 300 1.29

Table 3: Detailed statistics for EU2UK and UK2EU. Both datasets have relatively small number of relevant docu-
ments while EU2UK has also large pool which may impose extra difficulties in the retrieval.

imposes difficulty in the retrieval task. Let d1 ∈ E
be a directive transposed by u1 ∈ U and d2 ∈ E be
a directive amending d1. The UK must adopt a law,
u2, to transpose d2. Both d2 and u2 cover similar
concepts to those of d1 (d2 is an amendment and u2

must comply with d2), but, strictly speaking u2 is
relevant only to d2. Table 2 shows an example from
EU2UK, where the top-5 documents seem very sim-
ilar to the query but are not considered relevant.
Note that the documents ranked 1st, 3rd and 5th,
are amendments of the relevant documents.

3 IR pipelines

Modern neural IR systems usually follow a two-
step pipeline approach. First, a conventional IR

system (pre-fetcher) retrieves the top-k most promi-
nent documents aiming to maximize its recall.
Then a neural model attempts to re-rank the doc-
uments by scoring relevant higher than irrelevant
ones. While this configuration is widely adopted
in literature, the re-ranking step could be omitted
provided an effective pre-fetching mechanism, i.e.,
the pre-fetcher will act as an end-to-end IR system.

3.1 Document pre-fetching

Okapi BM25 (Robertson et al., 1995) is a bag-of-
words scoring function estimating the relevance of
a document d to a query q, based on the query terms
appearing in d, regardless their proximity within d:

n∑
i=1

idf(qi) ·
tf(qi, d) · (k1 + 1)

tf(qi, d) + k1 ·
(

1− b+ b · L
L̄

) (1)

where qi is the i-th query term, with idf(qi) inverse
document frequency and tf(qi, d) term frequency.
L is the length of d in words, L̄ is the average
length of the documents in the collection, k1 is
a parameter that favors high tf scores and b is a
parameter penalizing long documents.8

W2V-CENT: Following Brokos et al. (2016), we
represent query/document terms with pre-trained

8We use elastic, a widely used IR engine with the BM25

scoring function. See www.elastic.co/.

embeddings. For each query/document we calcu-
late the tf-idf weighted centroid of its embeddings:

cent(t) =

∑l
i=1 xi · tf(xi, t) · idf(xi)∑l

i=1 tf(xi, t) · idf(xi)
(2)

where t is a text (query or document) and xi is the
i-th text term with embedding xi. The documents
are ranked, with respect to the query, by a k nearest
neighbours (kNN) algorithm with cosine distance:

cosd(q, d) = 1− cent(q) · cent(d)

‖cent(q)‖ · ‖cent(d)‖
(3)

BERT, similarly to W2V-CENT, relies in pre-trained
representations which now are extracted from
BERT, thus being context-aware. A text can be rep-
resented by its [cls] token or by the centroid of
its token embeddings. In the latter case the embed-
dings can be extracted from any of the 12 layers of
BERT.9 Note that the texts in our datasets do not en-
tirely fit in BERT. We thus split them into c chunks
(2 to 3 per text) and pass each chunk through BERT

to obtain a list of token embeddings per layer (i.e,
the concatenation of c token embeddings lists) or
c [cls] tokens. The final representation is ei-
ther the centroid of the token embeddings or the
centroid of the [cls] tokens.

S-BERT (Reimers and Gurevych, 2019) is a BERT

model fine-tuned for NLI. According to the authors,
training S-BERT for NLI results in better represen-
tations than BERT for tasks involving text compari-
son, like IR. We use the same setting as in BERT.

LEGAL-BERT: Our datasets come from the legal
domain which has distinct characteristics compared
to generic corpora, such as specialized vocabulary,
particularly formal syntax, semantics based on ex-
tensive domain-specific knowledge, etc., to the ex-
tent that legal language is often classified as a ‘sub-
language’ (Tiersma, 1999; Williams, 2007; Haigh,
2018). BERT and S-BERT were trained on generic
corpora and may fail to capture the nuances of legal
language. Thus we used a BERT model further pre-
trained on EU legislation (Chalkidis et al., 2020),
dubbed here LEGAL-BERT, in a similar fashion.

9BERT is not fine-tuned during this process.

www.elastic.co/
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C-BERT: EU laws are annotated with EUROVOC

concepts covering the core subjects of EU legisla-
tion (e.g., environment, trade, etc.). Our intuition is
that a UK law transposing an EU directive will most
probably cover the same subjects. Thus we expect
that a BERT model, fine-tuned to predict EUROVOC

concepts, will learn rich representations describ-
ing these concepts which may be useful for pre-
fetching. We fine-tune BERT following Chalkidis
et al. (2019)10 and use the resulting model to ex-
tract query and document representations similarly
to the previous BERT-based methods.

ENSEMBLE is simply a combination of our best
two pre-fetchers, C-BERT and BM25:

ENS(q, d) = α·CB(q, d)+(1−α)·BM25(q, d) (4)

where CB is the score of C-BERT and α is tuned on
development data and the scores of the pre-fetchers
are normalized in [0, 1].

3.2 Document re-ranking
Modern neural re-rankers operate on pairs of the
form (q, d) to produce a relevance score, rel(q, d),
for a document d with respect to a query q. Note,
however, that the main objective is to rank relevant
documents higher than irrelevant. Thus, during
training the loss is calculated as:

L = max(0, 1− rel(q, d+) + rel(q, d−)) (5)

where d+ is a relevant document and d− is an ir-
relevant document. We have experimented with
several neural re-ranking methods each having a
function that produces a relevance score sr for each
of the top-k documents returned by the best pre-
fetcher. The final relevance score of a document is
calculated as: rel(q, d) = wr · sr + wp · sp, where
sp is the normalized score of the pre-fetcher and
ws, wp are learned during training.

Given the concerns on the strictness of the
ground truth assumption raised in Section 2.2, we
hypothesize that re-rankers will eventually over-
utilize the pre-fetcher score, sp, when calculating
document relevance, rel(q, d). As shown in Ta-
ble 2, in many cases both relevant and irrelevant
documents may have high similarity with the query.
This in turn may confuse and therefore degener-
ate the re-ranker’s term matching mechanism, i.e.,
MLPs or CNNs over term similarity matrices.

10We use all EU laws excluding EU directives that exist in
our development and test sets.

DRMM (Guo et al., 2016) uses pre-trained word
embeddings to represent query and document terms.
A histogram captures the cosine similarities of a
query term, qi, with all the terms of a particular
document. Then an MLP consumes the histograms
to produce a document-aware score for each qi,
which is weighted by a gating mechanism assessing
the importance of qi. The sum of the weighted
scores is the relevance score of the document. A
caveat of DRMM is that it completely ignores the
context of the terms which could be of particular
importance in our datasets where texts are long.

PACRR (Hui et al., 2017) represents query and doc-
ument terms with pre-trained embeddings and cal-
culates a matrix S containing the cosine similari-
ties of all query-document term pairs. A row-wise
k-max pooling operation on S keeps the highest
similarities per query term (matrix Sk). Then, wide
convolutions of different kernel (filter) sizes (n×n)
with multiple filters per size are applied on S. Each
filter of size n × n attempts to capture n-gram
similarities between queries and documents. A
max-pooling operation keeps the strongest signals
across filters and a row-wise k-max pooling keeps
the strongest signals per query n-gram, resulting in
the matrix Sn,k. Subsequently, a row-wise concate-
nation of Sk with all Sn,k matrices (for different
values of n) is performed and a column contain-
ing the softmax-normalized idf scores of the query
terms is concatenated to the resulting matrix (Ssim).
In effect, each row of the matrix contains different
n-gram based similarity views of the correspond-
ing query term, qi, along with an idf-based impor-
tance score. The relevance score is produced as
the last hidden state of an LSTM with one hidden
unit, which consumes the rows of Ssim. PACRR

tries to take into account the context of the query
and document terms using n-grams but this con-
text sensitivity is weak and we do not expect much
benefits in our datasets which contain long texts.

BERT-based re-rankers: Recent work tries to
exploit BERT to improve re-ranking. Following
MacAvaney et al. (2019), we use DRMM and PACRR

on top of contextualized BERT embeddings derived
from BERT. Based on the results of Figure 4, we
use C-BERT as the most promising BERT model.
We call these two models C-BERT-DRMM and C-
BERT-PACRR. We also experiment with two set-
tings depending on whether C-BERT weights are
updated (tuned) or not (frozen) during training.
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Figure 3: Heatmaps showing R@100 for different values of k1 and b on EU2UK (left) and UK2EU (right). The
selected optimal values (green boxes) are outside the proposed ranges in the literature (blue boxes).

4 Experimental setup

4.1 Pre-trained resources

As several methods rely on word embeddings, we
trained a new WORD2VEC model (Mikolov et al.,
2013) in both corpora (EU and UK legislation) to
better accommodate legal language. Preliminary
experiments showed that domain-specific embed-
dings perform better than generic 200-dimensional
GloVe embeddings (Pennington et al., 2014) in de-
velopment data (EU2UK: 66.5 vs. 59.3 at R@100
and UK2EU: 72.6 vs. 69.8 at R@100).11

All BERT (pre-fetching) encoders and BERT-
based re-rankers use the -BASE version, i.e., 12
layers, 768 hidden units and 12 attention heads,
similar to the one of Devlin et al. (2019).12

4.2 Pre-processing - document denoising

One of the major challenges in DOC2DOC IR, as op-
posed to traditional IR, is the length of the queries
and the documents which may induce noise (many
uninformative words) during retrieval. Thus we
applied several filters (stop-word, punctuation and
digits elimination) on both queries and documents
and reduced their length by approx. 55% (778
words for UK laws and 1,222 words for EU di-
rectives on average). Further on, we filtered both
queries and documents by eliminating words with
idf score less than the average idf score of the stop-
words. Our intuition is that words (e.g., regulation,
EU, law, etc.) with such a small idf score are un-
informative. Still, the texts are much longer (387
words for UK laws and 631 words for EU directives
on average) than the queries used in traditional IR

11See also the discussion for legal language in Section 3.1.
12See Appendix B for more details.

(Table 1). As an alternative to drastically decrease
the query size, we experimented with using only
the title of a legislative act as a query but the results
were worse, i.e., approx. 5-20% lower R@100 on
average across datasets, indicating that the full-text
is more informative, although the information is
sparse. Hence, we only consider the full-text, in-
cluding the title, for the rest of the experiments.

4.3 Evaluation measures

Pre-fetching aims to bring all the relevant docu-
ments in the top-k, thus we report R@k. We ob-
serve that for k > 100 the best pre-fetchers have
not significant gains in performance in develop-
ment data, thus we select k = 100, as a reason-
able threshold.13 For re-ranking we report R@20,
nDCG@20 and R-Precision (RP) following the
literature (Manning et al., 2009). We report the
average and standard deviation across three runs
considering the best set of hyper-parameters on
development data for neural re-rankers.

4.4 Tuning BM25: The case of DOC2DOC IR

The effectiveness of BM25 is highly dependant on
properly selecting the values of k1 and b. In tra-
ditional (ad-hoc) IR, k1 is typically evaluated in
the range[0, 3] (usually k1 ∈ [0.5, 2.0]); b needs to
be in [0, 1] (usually b ∈ [0.3, 0.9]) (Taylor et al.,
2006; Trotman et al., 2014; Lipani et al., 2015).
As a general rule of thumb BM25 with k1=1.2 and
b=0.75 seems to give good results in most cases
(Trotman et al., 2014). We observe that in the case
of DOC2DOC IR where the queries are much longer,
the optimal values are outside the proposed ranges

13See Appendix A.3 for an extended (k ∈ [0, 2000]) perfor-
mance evaluation on pre-fetching.
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Figure 4: Heatbars showing R@100 (on development data) for text representations extracted from different layers
of the various BERT-based pre-fetchers we experimented with.

(Figure 3). In both datasets the optimal values for
k1 and b are relatively high, favoring terms with
high tf , while penalizing long documents. In effect
BM25 uses k1 and b as a denoising regularizer to
over-utilize highly frequent query terms normal-
ized by document length.

4.5 Extracting representations from BERT

Recently there has been a lot of research on un-
derstanding the effectiveness of BERT’s different
layers (Liu et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019; Goldberg, 2019; Kovaleva
et al., 2019; Lin et al., 2019). Figure 4 shows
heatbars comparing representations extracted from
different layers of the various BERT-based pre-
fetchers we experimented with.14 LEGAL-BERT

and C-BERT which have been adapted in the le-
gal domain perform much better than BERT and
S-BERT which were trained on generic corpora. An
interesting observation is that the [cls] token is
a powerful representation only in C-BERT where it
was trained to predict EUROVOC concepts. Also,
in UK2EU the embedding layer produces the best
representations in all BERT variants except C-BERT,
where the embedding layer achieves comparable
results to the top-2 representations ([cls], Layer-
12). This is an indication that the context in this
dataset is not as important as in EU2UK.

4.6 Implementation details

All neural models were implemented using the
Tensorflow 2 framework. Hyper-parameters were
tuned on development data, using early stopping
and the Adam optimizer (Kingma and Ba, 2015).

14Recall that a text can be represented by its [cls] to-
ken or by the centroid of its token embeddings which can be
extracted from any of the 12 layers of BERT.

Method
EU2UK UK2EU

R@100 R@100

BM25 (Robertson et al., 1995) 57.5 93.7
W2V-CENT (Brokos et al., 2016) 50.6 88.2
BERT (Devlin et al., 2019) 54.0 85.1
S-BERT (Reimers and Gurevych, 2019) 57.7 84.8
LEGAL-BERT (Chalkidis et al., 2020) 57.6 90.1
C-BERT (ours) 83.8 92.9
ENSEMBLE (BM25 + C-BERT) 86.5 95.0

Table 4: Pre-fetching results across test datasets.

5 Experimental results

Pre-fetching: Table 4 shows R@100 on the test
datasets for the various pre-fetchers considered.
On EU2UK, C-BERT is the best method by a large
margin, followed by S-BERT and LEGAL-BERT,
verifying our assumption that the concept classi-
fication task is a good proxy for obtaining rich
representations with respect to IR. Both S-BERT

and LEGAL-BERT are better than BERT for differ-
ent reasons. LEGAL-BERT was adapted to the legal
domain and is, therefore, able to capture the nu-
ances of the legal language. S-BERT was trained
to produce representations suitable for comparing
texts with cosine similarity, a task highly related
to IR. Nonetheless, having been trained on generic
corpora with small texts, it performs much worse
than C-BERT. Interestingly, BM25 is comparable to
both S-BERT and LEGAL-BERT despite its simplic-
ity. As expected, combining C-BERT with BM25

further improves the results. In UK2EU R@100
is much higher compared to EU2UK probably be-
cause of the shortest queries. Also, as discussed
in Section 4.5, the contextual information is not
so critical in this dataset, thus we expect the con-
text unaware BM25 and W2V-CENT to perform well.
Indeed, BM25 achieves the best results followed
closely by C-BERT and LEGAL-BERT, while W2V-
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Method
EU2UK UK2EU

wp ws R@20 nDCG@20 RP wp ws R@20 nDCG@20 RP

BM25 - - 45.8 34.4 25.5 - - 87.5 66.8 49.4
C-BERT (ours) - - 55.7 37.9 21.8 - - 79.7 53.0 33.1
ENSEMBLE (BM25 + C-BERT) - - 54.1 43.1 29.6 - - 88.0 67.7 49.3
+ DRMM +1.1 -0.8 59.9 (± 3.2) 41.7 (± 2.4) 24.3 (± 2.9) +1.3 -0.8 86.3 (± 1.1) 61.6 (± 1.1) 40.1 (± 1.5)
+ PACRR +4.2 +0.6 54.3 (± 0.2) 43.3 (± 0.2) 30.1 (± 0.4) +4.0 +0.1 88.0 (± 0.0) 67.7 (± 0.0) 49.3 (± 0.0)
+ C-BERT-DRMM (frozen) +3.3 -1.6 57.9 (± 3.4) 43.1 (± 0.3) 27.3 (± 2.2) +3.5 -1.0 88.3 (± 0.4) 67.3 (± 0.6) 48.5 (± 1.3)
+ C-BERT-PACRR (frozen) +4.6 +0.9 54.1 (± 0.0) 43.1 (± 0.0) 29.6 (± 0.0) +2.9 -0.9 89.6 (± 0.4) 66.5 (± 0.5) 46.0 (± 0.9)
+ C-BERT-DRMM (tuned) +1.9 -0.5 54.1 (± 0.0) 43.1 (± 0.0) 29.6 (± 0.0) +1.2 +0.5 88.0 (± 0.0) 67.7 (± 0.0) 49.3 (± 0.0)
+ C-BERT-PACRR (tuned) +1.8 -0.6 54.1 (± 0.0) 43.1 (± 0.0) 29.6 (± 0.0) +2.0 +2.1 88.0 (± 0.0) 67.7 (± 0.0) 49.3 (± 0.0)
+ ORACLE - - 86.5 87.7 86.5 - - 95.0 95.3 95.0

Applying date filtering on top of predictions
Year range ±5 years ±15 years
ENSEMBLE (BM25 + C-BERT) - - 76.6 54.6 37.1 - - 86.2 68.2 50.0
+ DRMM (pre-filtering) +1.1 -0.8 81.4 56.5 35.4 +1.3 -0.8 85.3 62.6 42.3
+ DRMM (post-filtering) +1.1 -0.8 75.7 49.2 31.1 +1.3 -0.8 83.6 63.5 44.2
+ PACRR (pre-filtering) +4.2 +0.6 76.6 54.8 37.6 +4.0 +0.1 86.2 68.2 50.0
+ PACRR (post-filtering) +4.2 +0.6 74.2 52.9 36.5 +4.0 +0.1 85.5 67.6 49.6

Table 5: Re-ranking results across test datasets. The upper zone shows the results of neural re-rankers on top of
the best pre-fetchers with respect to (ws, wp). It also reports re-ranking results of the best pre-fetchers. The lower
zone reports the re-ranking results after applying temporal filtering.

CENT outperforms S-BERT and BERT. Again the
ENSEMBLE improves the results.

Re-ranking: Table 5 shows the ranking results on
test data for EU2UK and UK2EU. We also report
results for BM25, C-BERT, ENSEMBLE and an ORA-
CLE, which re-ranks the top-k documents returned
by the pre-fetcher placing all relevant documents
at the top. On EU2UK ENSEMBLE performs better
than the other two pre-fetchers. Interestingly, neu-
ral re-rankers fall short on improving performance
and are comparable (or even identical) with EN-
SEMBLE in most cases, possibly because very simi-
lar documents may be relevant or not (Section 2.2,
Table 2), leading to contradicting supervision.15

As we hypothesized (Section 3.2), re-rankers over-
utilize the pre-fetcher score when calculating doc-
ument relevance, as a defense mechanism (bias)
against contradicting supervision, which eventu-
ally leads to the degeneration of the re-ranker’s
term matching mechanism. Inspecting the corre-
sponding weights of the models, we observe that
indeed wp >> ws across all methods. This effect
seems more intense in BERT-based re-rankers (C-
BERT + DRMM or PACRR), especially those that
fine-tune C-BERT, possibly because these models
perform term matching considering sub-word units,
instead of full words. In other words, relying on
the neural relevance score (sr) is catastrophic. Sim-
ilar observations can be made for UK2EU. In both
datasets all methods have a large performance gap
compared to the ORACLE, indicating that there is

15By contradicting supervision we mean similar training
query-document pairs with opposite labels.

still large room for improvement, possibly utilizing
information beyond text.

Figure 5: Relevant documents according to their
chronological difference with the query on EU2UK de-
velopment data.

Filtering by year: We have already highlighted
the difficulties imposed to our datasets by the fre-
quently amended EU directives (Section 2.2, Ta-
ble 2). Also, recall that each EU directive defines
a deadline (typically 2 years) for the transposition
to take place. On the other hand, as we observe
in Figure 5, EU directives may already be trans-
posed by earlier legislative acts of member states
(the member states act in a proactive manner), or
they may delay the transposition for political rea-
sons. In effect, the relevance of a document to a
query depends both on the textual content and the
time the laws were published. Thus, we filter out
documents that are outside a predefined distance
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(in years) from the query in two ways, pre-filtering
and post-filtering. Pre-filtering is applied to the
pre-fetcher, i.e., prior to re-ranking, while post-
filtering is applied after the re-ranking. Note that
our main goal is to improve re-ranking. We thus ap-
ply the filtering scheme to the ENSEMBLE, DRMM

and PACRR. The lower zone of Table 5 shows the
results of the whole process. In EU2UK, the hard-
est out of the two datasets, the time filtering has a
positive impact, improving the results by a large
margin. On the other hand, filtering seems to have
a minor effect in UK2EU.

5.1 EU2UK 6= UK2EU

Across experiments, we observe that best prac-
tices vary between the EU2UK and UK2EU datasets.
EU2UK benefits from C-BERT representations,
while in UK2EU context-unaware and domain-
agnostic BM25 has comparable or better perfor-
mance than C-BERT. Similarly, we observe that
time filtering further improves the performance in
EU2UK, while we have a contradicting effect in
UK2EU. Given the overall results, we conclude
the two datasets have quite different characteristics.
Thus, it is important to consider both EU2UK and
UK2EU independently, although one may initially
consider them to be symmetric.

6 Related work

IR in the legal domain is widely connected with
the Competition on Legal Information Extrac-
tion/Entailment (COLIEE). From 2015 to 2017
(Kim et al., 2015, 2016; Kano et al., 2017), the
task was to retrieve Japanese Civil Code articles
given a question, while in COLIEE 2018 and 2019
(Kano et al., 2018; Rabelo et al., 2019), the task
was to retrieve supporting cases given a short de-
scription of an unseen case. However, the texts
of these competitions are small compared to our
datasets. Also, most submitted systems do not con-
sider recent advances in IR, i.e, neural ranking mod-
els (Guo et al., 2016; Hui et al., 2017; McDonald
et al., 2018; MacAvaney et al., 2019), which have
recently managed to improve rankings of conven-
tional IR, or end-to-end neural models which have
recently been proposed (Fan et al., 2018; Khattab
and Zaharia, 2020). Again, these end-to-end meth-
ods were applied on small texts. On the other hand,
there has been some work trying to cope with larger
queries, i.e., verbose or expanded queries, (Paik
and Oard, 2014; Gupta and Bendersky, 2015; Cum-

mins, 2016). Nonetheless, the considered queries
are at most 60 tokens long, contrary to our datasets
where, depending on the setting, the average query
length is 1.8K or 2.6K tokens (Table 1). Neural
methods greatly rely on text representations, thus
Reimers and Gurevych (2019) proposed S-BERT

which is trained to compare texts for an NLI task
and could thus be used to extract representations
suitable for IR. Towards the same direction, Chang
et al. (2020) experimented with several auxiliary
tasks to extract better representations. However, the
latter two methods have been evaluated on datasets
with much smaller texts than the ones we consider.

7 Conclusions and future work

We proposed DOC2DOC IR, a new family of IR

tasks, where the query is an entire document, thus
being more challenging than traditional IR. This
family of tasks is particularly useful in regulatory
compliance, where organizations need to ensure
that their controls comply with the existing legisla-
tion. In the absence of publicly available DOC2DOC

datasets, we compile and release two datasets, con-
taining EU directives and UK laws transposing
these directives. Experimenting with conventional
(BM25) and neural pre-fetchers we showed that a
BERT model fine-tuned on an in-domain classifi-
cation task, i.e., predict EUROVOC concepts, is by
far the best pre-fetcher in our datasets. We also
showed that neural re-rankers fail to improve the
performance, as their term matching mechanisms
degenerates, and over-utilize the pre-fetcher score.
In the future, we would like to investigate alterna-
tives in exploiting additional information that may
be critical in the newly introduced tasks (EU2UK,
UK2EU). In this direction naively utilizing chrono-
logical information leads to vast performance im-
provement in EU2UK dataset. One possible direc-
tion is to model the cross-document relations (e.g.,
amendments) using Graph Convolutional Networks
(Kipf and Welling, 2016), while better modeling
the dimension of time (i.e., chronological differ-
ence between a query and a document) is also cru-
cial. Further on, to better deal with long documents,
we plan to investigate text summarization by em-
ploying a state-of-the-art neural summarizer, e.g.,
BART of Lewis et al. (2020), or sentence selec-
tion techniques, e.g., rationale extraction (Lei et al.,
2016; Chang et al., 2019), to find the most impor-
tant sections or sentences and create shorter and
more informative versions of queries/documents.
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A Dataset Compilation: Technical
Details

In this section, we present the technical details
associated with the compilation of both datasets
described in the main paper. More specifically
we present the procedure of creating both corpora
as well as modelling the transposition relations
between EU and UK entries.

A.1 EU corpus
The compilation of the EU corpus is more straight-
forward than its UK counterpart but involves some
in-domain knowledge to filter unwanted legislation.

• We initially download the core metadata as-
sociated with each document in the EU cor-
pus by utilizing the SPARQL endpoint of the

EU Publications Office (http://publicat
ions.europa.eu/webapi/rdf/sparql)
and the EURLEX platform (https://eur-
lex.europa.eu), as a REST-ful API.

• Following the metadata collection, we pro-
ceed to filter out documents based on their
type in order to retain only EU directives and
regulations. This involves excluding corrigen-
dums. Corrigendums introduce corrections to
prior EU legislation. Usually these corrections
are minimal and change single phrases such
as (”In Regulation X, for: ‘. . . 4 July 2019
. . . ’, read: ‘. . . 4 July 2015 . . . ’.”). Thus these
documents lack the context to be both classi-
fied and correlated with other documents. 16

and decisions, both of which are irrelevant to
our use case. The final EU corpus contains
approximately 60k entries.

A.2 UK corpus
Compiling the UK corpus is not as trivial, since the
legislation.gov.uk API is not as evolved and
we therefore have to manually crawl large parts of
the database to build our corpus.

• The collected UK laws from the legislatio

n.gov.uk portal form the initial corpus which
includes approximately 100k documents.

• Similarly to our processing of the EU corpus,
we only retain documents in specific legisla-
tion types (UK Public General Acts, UK Local
Acts, UK Statutory Instruments and UK Min-
isterial Acts). We then eliminate laws that
aim to align English legislation with the rest
of the United Kingdom’s, more specifically
Scotland, Northern Ireland and Wales. The
final UK corpus includes 52K UK entries.

A.3 EU2UK Transpositions
Transpositions are relations between entries in the
EU and UK corpora which we use to define rele-
vance for our retrieval tasks. Processing these rela-
tions is the most challenging aspect of compiling
our datasets and involves several steps.

• We use the aforementioned SPARQL endpoint,
to retrieve the transpositions between EU di-
rectives and the corresponding UK regulations

16See https://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1593684165879&uri=C
ELEX:32004L0038R(02) as an example.

https://doi.org/10.1007/978-3-642-45103-4_11
https://doi.org/10.1007/978-3-642-45103-4_11
https://doi.org/10.1145/1183614.1183698
https://doi.org/10.1145/1183614.1183698
https://doi.org/10.1145/1183614.1183698
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6
https://doi.org/10.1145/1067268.1067272
https://doi.org/10.1145/1067268.1067272
http://publications.europa.eu/webapi/rdf/sparql
http://publications.europa.eu/webapi/rdf/sparql
https://eur-lex.europa.eu
https://eur-lex.europa.eu
legislation.gov.uk
legislation.gov.uk
legislation.gov.uk
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593684165879&uri=CELEX:32004L0038R(02)
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593684165879&uri=CELEX:32004L0038R(02)
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593684165879&uri=CELEX:32004L0038R(02)
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Figure 6: Recall@k, where k ∈ [0, 2000], across the three best pre-fetchers (i.e., BM25, C-BERT and ENSEMBLE)
on the development dataset.

that implement them. We initially collect ap-
proximately 10k EU2UK pairs. In these pairs
the transposed EU law is referred to by its
unique portal ID but the transposing UK law is
referred to by its title. This is the primary chal-
lenge in modelling the transposition relations,
since mapping legislation titles to unique en-
tries in our UK corpus is not trivial. We hy-
pothesize that these relations are manually in-
serted in the database and therefore human
errors make performing exact matches often
impossible. Apart from the matching difficul-
ties, some of the pairs in the pool are inserted
mistakenly and hence need to be filtered.

• We first filter the noisy pairs. Pairs are consid-
ered noisy either because they are duplicates
or because the do not meet some manually set
criteria. In turn, duplication can occur either
because identical pairs are inserted more than
once or because pairs in which the UK title
is mildly paraphrased are erroneously consid-
ered different. Our pool is reduced to 8k pairs
after resolving the former and to 7k pairs after
also resolving the latter. We further reduce the
pool size by filtering pairs in which the UK

title refers to non-English legislation (Scot-
land, Northern Ireland, Wales or Gibraltar)
Non-English legislation usually has an almost
identical counterpart within the pure english
corpus. 17. or in which the title does not con-
tain certain keywords (e.g., Act, Regulation,
Order, Rule). Documents that do not contain

17See https://www.legislation.gov.uk/uks
i/2017/407/contents and https://www.legisl
ation.gov.uk/nisr/2017/81/contents

any of these keywords are not officially pub-
lished in the legislation.gov.uk portal.
Most of these are official releases from na-
tional governmental bodies, e.g. Ministries.
For instance the First Annual Report of the
Inter-Departmental Ministerial Group on Hu-
man Trafficking is not part of the UK’s national
legislation..

• To resolve the matching challenge, we employ
a complex matching scheme where for each
pair we gradually normalize the UK title un-
til we find either a singular match or multiple
ones. In the latter case, we resolve the matches
with heuristics. Our normalizations include
lower-casing, leading and trailing phrase re-
moval, punctuation elimination, date removal
and manually inserted substitutions.

• After reducing our pair pool and then imple-
menting our matching scheme we can with
high confidence present 4k transposition pairs
which we use in our datasets.

B BERT models

All BERT variants (BERT, S-BERT, LEGAL-BERT)
are publicly available from Hugging Face:

• BERT: The original BERT pre-trained for
Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) in English
Wikipedia and Books corpus. Available at
https://huggingface.co/nlpaueb/bert-

base-uncased-eurlex.

• S-BERT: This is the original BERT fine-tuned
in STS-B NLI dataset. Available at https://

https://www.legislation.gov.uk/uksi/2017/407/contents
https://www.legislation.gov.uk/uksi/2017/407/contents
https://www.legislation.gov.uk/nisr/2017/81/contents
https://www.legislation.gov.uk/nisr/2017/81/contents
legislation.gov.uk
https://huggingface.co/nlpaueb/bert-base-uncased-eurlex
https://huggingface.co/nlpaueb/bert-base-uncased-eurlex
https://huggingface.co/deepset/sentence_bert
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huggingface.co/deepset/sentence bert.

• LEGAL-BERT (EURLEX): This is the origi-
nal BERT further pre-trained in EU legislaiton.
Available at https://huggingface.co/nlp
aueb/bert-base-uncased-eurlex.

C Selecting k for pre-fetching

In Section 4.1, we stated that we report R@k with
k = 100 in order to evaluate and compare pre-
fetching methods. In Figure 6, we present the per-
formance of the best pre-fetching methods (i.e.,
BM25, C-BERT and ENSEMBLE) for different val-
ues of k ∈ [0, 2000] on the development set. We
observe that after k = 100, the ENSEMBLE pre-
fetcher has not significant gains in performance,
thus we select k = 100, as a reasonable threshold.

https://huggingface.co/deepset/sentence_bert
https://huggingface.co/nlpaueb/bert-base-uncased-eurlex
https://huggingface.co/nlpaueb/bert-base-uncased-eurlex
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