
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3440–3453
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3440

Recipes for Adapting Pre-trained Monolingual and Multilingual Models
to Machine Translation

Asa Cooper Stickland♣ Xian Li♠

♣ University of Edinburgh, ♠ Facebook AI
a.cooper.stickland@ed.ac.uk, {xianl,ghazvini}@fb.com

Marjan Ghazvininejad♠

Abstract

There has been recent success in pre-training
on monolingual data and fine-tuning on Ma-
chine Translation (MT), but it remains unclear
how to best leverage a pre-trained model for
a given MT task. This paper investigates the
benefits and drawbacks of freezing parame-
ters, and adding new ones, when fine-tuning
a pre-trained model on MT. We focus on 1)
Fine-tuning a model trained only on English
monolingual data, BART. 2) Fine-tuning a
model trained on monolingual data from 25
languages, mBART. For BART we get the best
performance by freezing most of the model pa-
rameters, and adding extra positional embed-
dings. For mBART we match or outperform
the performance of naive fine-tuning for most
language pairs with the encoder, and most of
the decoder, frozen. The encoder-decoder at-
tention parameters are most important to fine-
tune. When constraining ourselves to an out-
of-domain training set for Vietnamese to En-
glish we see the largest improvements over the
fine-tuning baseline.

1 Introduction

Machine Translation (MT) has recently seen sig-
nificant advances, with improvements in model-
ing, especially since the advent of neural models
(Sutskever et al., 2014; Bahdanau et al., 2015), and
the availability of large parallel corpora for train-
ing such systems (Smith et al., 2013; Kocmi and
Bojar, 2017; Tiedemann, 2012). However, often
standard neural systems do not perform well on
low-resource language pairs (Koehn and Knowles,
2017), especially when the language pairs are only
distantly related. Since these languages are spoken
by a large fraction of the world’s population, re-
ducing the gap in performance between high and
low-resource MT could have a large impact.

An explosion of interest in large-scale pre-
training in Natural Language Processing has led

BART	Encoder
(pre-trained)

New	Encoder
(randomly
initialized)

� � � �

BART	Decoder
(pre-trained)

</s> A B C

A B C D

Adapter
Adapter

Adapter
Adapter

Adapters
(randomly
initialized)

Figure 1: Schematic diagram showing the components
of our system for adapting BART to MT. We learn a
new encoder that takes as input the source language,
with a potentially different vocabulary to the origi-
nal BART system. We freeze most BART parameters
(frozen model components are shown in blue).

to increased performance on smaller datasets, by
simple fine-tuning of large pre-trained models on
downstream tasks. The typical approach is to train
a large model on text from the web (for example
English Wikipedia), with a common objective pre-
dicting masked out tokens using the unmasked con-
text. For Natural Language Generation (for exam-
ple summarization of text), performance can be
improved by pre-training a sequence-to-sequence
model (Song et al., 2019; Lewis et al., 2019).

However previous work has shown that on NLP
tasks such as Natural Language Inference, the rela-
tive performance of fine-tuning vs. keeping the pre-
trained model frozen depends on the similarity of
the pre-training and downstream tasks (Peters et al.,
2019). We observe empirically that simple fine-
tuning of a monolingual model for MT can result
in worse performance than training from scratch
(e.g. Table 1). For MT the more common mono-



3441

mBART	Encoder
(pre-trained)

mBART	Decoder
(pre-trained)

</s> A B C

A B C D

Adapter
Adapter

Adapter
Adapter

Adapters
(randomly
initialized)

Unfreeze
Encoder-
Decoder
attention

Figure 2: Schematic diagram showing one method of
adapting mBART to MT, unfreezing the encoder and
encoder-decoder attention, and adding adapters in the
decoder. Model components colored blue are not up-
dated during fine-tuning.

lingual (usually only English) pre-training (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019; Yang et al., 2019b; Liu et al., 2019) may be
inadequate since the input or output domain for the
downstream task will be a non-English language.

Multilingual pre-training offers a solution, by
modifying the pre-training objective to include
many languages. Using a multilingual pre-trained
model for MT gives good performance, especially
on lower-resource language directions (Liu et al.,
2020). However it is challenging to balance the
training data so that higher-resource languages do
not overwhelm lower-resource ones (Arivazhagan
et al., 2019; Conneau et al., 2019). For a particu-
lar language it may be hard to source monolingual
data, or it may be simply not included in training.

We also consider multilingual MT (training on
many language pairs and sharing all or most model
parameters) as a downstream task. Sharing ’knowl-
edge’ across language directions can improve per-
formance on low-resource language pairs by trans-
fer from other pairs included in training. Previous
work observed problems of performance degrada-
tion, often on high-resource languages, due to in-
terference and constrained capacity (Johnson et al.,
2017; Tan et al., 2019). And when initialising from
a pre-trained model, we want to avoid ‘catastrophic
forgetting’, where by fine-tuning on a particular
language pair we lose the knowledge about another
language pair that is stored in the model weights.

Previous work has explored how to improve on
simple fine-tuning, by freezing pre-trained model
parameters (Peters et al., 2019; Houlsby et al.,
2019) and using lightweight ‘adapter modules’
(Houlsby et al., 2019; Stickland and Murray, 2019)
which are inserted between the layers of the pre-
trained network. We aim to explore and improve

on these approaches for both bilingual and multi-
lingual MT (in contrast to previous work largely fo-
cusing on text classification). We explore freezing
different subsections of the pre-trained model.We
expect freezing to be particularly useful when the
parallel data is of low quality, in which case naive
fine-tuning may, for example, over-specify the pre-
trained model to a particular domain.

Our main contributions are:

• A novel fine-tuning approach, similiar to
Lewis et al. (2019) but with adapter modules
in the encoder of the pre-trained sequence-to-
sequence model and combining both learn-
able, and fixed sinusoidal, positional embed-
dings in the input module (see sections 3.1
and 3.2) that feeds into the pre-trained en-
coder.

• Extensive experiments with fine-tuning a mul-
tilingual pre-trained model for MT, showing
the benefits and drawbacks of freezing var-
ious parameters. We find we should freeze
the decoder but unfreeze the encoder-decoder
attention when fine-tuning on Xx→ En data,
and in the other direction we should freeze
the encoder but unfreeze the entire decoder
(section 5.3). We find monolingual models
benefit more from freezing parameters than
multilingual models (section 5.2).

• Results on fine-tuning a multilingual pre-
trained model for multilingual MT show-
ing that freezing parameters improves perfor-
mance on some, mostly distantly related, lan-
guage directions (section 5.5).

2 Background and Related Work

BART and mBART We briefly describe the
pre-trained models we focus on in this work. In
order to perform machine translation with the min-
imum of modifications to the pre-trained model,
we prefer models that can perform conditional se-
quence generation. We concentrate on the BART
(Bidirectional and Auto-Regressive Transformer)
model (Lewis et al., 2019) and the multilingual
BART (mBART; Liu et al., 2020) model. BART
and mBART are sequence-to-sequence models
with the standard transformer-based neural ma-
chine translation architecture, i.e. an encoder and
autoregressive decoder. The pre-training task they
are trained on is reconstructing a document from



3442

a noisy version of that document (so called ‘de-
noising autoencoder’). Examples of noise added
to the training data include randomly shuffling the
order of the original sentences, randomly chang-
ing the start position of the document, and using
a masking scheme where arbitrary length spans of
text are replaced with a single mask token. BART
and mBART are trained entirely on monolingual
data from the web, with English data for BART and
data from 25 different languages for mBART.

BART and mBART have almost identical archi-
tectures, with 12 encoder layers and 12 decoder lay-
ers with model dimension of 1024 and 16 attention
heads. BART has a vocabulary of approximately
40k and ∼ 406M parameters, whereas mBART has
a larger vocabulary of size 250k and ∼ 610M pa-
rameters.

Pre-trained Models for MT There has been
much recent progress in pre-training for NLP ap-
plications (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019; Yang et al., 2019b; Liu et al.,
2019), with the most relevant for our work fo-
cusing on text generation (Radford et al., 2019;
Song et al., 2019; Dong et al., 2019; Raffel et al.,
2019; Lewis et al., 2019) Specifically for MT, Ra-
machandran et al. (2017) proposed pre-training the
encoder-decoder modules as two separate language
models, and Yang et al. (2019a); Zhu et al. (2020)
explored approaches incorporating BERT model
weights into the usual seq-to-seq architecture.

Multilingual MT Multilingual translation (Fi-
rat et al., 2016; Viégas et al., 2016; Aharoni et al.,
2019; Arivazhagan et al., 2019) aims to jointly train
one translation model that translates multiple lan-
guage directions, and shares representations to im-
prove the translation performance on low-resource
languages (Gu et al., 2018). Our freezing approach
is similar in spirit to Sachan and Neubig (2018)
who investigate which parameters are most useful
to share for multilingual MT with transformer mod-
els. We start from a multilingual pre-trained model,
and decide between sharing or freezing parameters.

Transfer Learning for MT Transfer learning
hopes to leverage a related task to perform well
on a target task, for example by initialising the
model weights from those resulting from training
on a related task. For MT various approaches have
been explored, with a common method training
on high-resource language(s) and fine-tuning on a
low-resource language (Neubig and Hu, 2018).

Closely related to our work is that of Bapna and
Firat (2019), who introduce freezing and adapters
(extra parameters inserted within the transformer)
for domain adaption in MT. They take an MT
model trained on a large parallel corpus, and fine-
tune in a different domain (e.g. legal text). We
differ in that we start from a pre-trained model
that has not been trained on parallel text, and study
adapting it to MT. Approaches based on freezing
various model components have also been proposed
(Thompson et al., 2018; Zoph et al., 2016), but have
focused on RNN models pre-trained with parallel
data, not transformer models pre-trained on mono-
lingual data.

3 Methods

Because BART has been trained on only English
input, we need to use different techniques when
fine-tuning BART and mBART for MT, with a
schematic overview shown in Figure 1 and Fig-
ure 2. BART and mBART are standard sequence-
to-sequence models, where an encoder consumes
a sequence of source-side tokens, and a decoder
acts as a conditional language model, generating
target tokens given a source sequence. Intuitively,
we want the encoder and decoder to be performing
roughly the same tasks during fine-tuning as they
were during pre-training. For BART this means
the input to the encoder should be similar to (em-
bedding vectors of) noisy English text. Therefore
when training on say, Vietnamese to English, we
first transform the Vietnamese source sentence into
a representation useful for BART. We introduce
new parameters (the ‘Input Module’) that consume
the source sentence and produce hidden vectors we
can feed into the BART encoder. We describe the
Input Module architecture in section 3.1.

mBART can be fine-tuned without modification
since during pre-training it saw the languages it
will be fine-tuned on. To increase flexibility when
freezing parts of the network, we optionally add
extra parameters to both BART and mBART, de-
scribed in section 3.3.

3.1 Input Module Architecture

We refer to the network that takes in the source
language text and outputs hidden vectors useful for
BART as an ‘Input Module’ or IM(·). To improve
performance on low-resource MT, we use smaller
token embedding vectors on the source side of size
ds = 512, whereas BART uses hidden vectors of



3443

size dBART = 1024. The full network is as fol-
lows, with {et}lt=0 token embeddings for a source
sentence with l tokens,

BART(IM({et}lt=0)), (1)

where BART(·) is the full BART encoder-decoder
model. Where we would normally input token em-
beddings to the BART model we use the outputs of
the Input Module. The t-th element of IM({et}lt=0)
as follows:

αLN(WTransformer({et}lt=0)t) (2)

and where LN(·) is layer-norm, W is a matrix
projecting up from ds to dBART, and Transformer(·)
is the application of a series of Transformer layers.
α is a scalar, in our case equal to

√
dBART, which

is required to insure the input to BART is on the
same scale as the embedding vectors BART was
trained on. If we remove LN(·), W and α, and set
ds = dBART, we recover the method introduced by
Lewis et al. (2019) for fine-tuning BART on MT.

3.2 Extra Positional Embeddings
We found empirically that the details of positional
embedding vectors are important for good perfor-
mance (see Table 1), perhaps because of the need
for the BART model to deal with different word
order to that it was trained on. Transformer mod-
els normally have either learnable positional em-
bedding vectors, or fixed sinusoidal positional em-
bedding (Vaswani et al., 2017) vectors pt, with
pt
i = sin(t/10000i/(ds/2−1)), if 0 ≤ i < ds/2,

and pt
i = cos(t/10000(i−(ds/2−1))/(ds/2−1)) if

ds/2 ≤ i < ds, where t indexes position and i
indexes dimension.

Note that positional embedding are typically
only added to the token embeddings. We use learn-
able positional embeddings at the embedding layer.
But to get extra positional information, we option-
ally add fixed sinusoidal positional embedding to
the input of each transformer layer in IM(·), i.e.
the input to layer i, hi

t = oi−1t + pt, with oi−1t the
previous layer output. This means the network has
access to both learned positional embeddings (only
at the embedding layer), and fixed sinusoidal ones
at the input to each layer.

3.3 Within-Network Adapter Architecture
When freezing parts of a pre-trained model (either
BART or mBART in our case), we may want to
add flexibility by modifying the pre-trained model

architecture. One approach is to use ‘adapters’,
introduced by Houlsby et al. (2019); Stickland and
Murray (2019) which are newly-initialised neural
network layers that can be ‘slotted in’ to the layers
of the pre-trained model.

We only considered simple adapter architectures,
essentially feed-forward networks, with one hidden
layer, and a residual connection to the output. The
dimension of the hidden layer can be much smaller
than the model dimension to reduce computational
cost and parameter count. We use one adapter
per transformer layer, inserting them at the end of
the layer (Stickland and Murray, 2019; Bapna and
Firat, 2019). We use the following architectures,
with h the hidden state of a particular token after
the usual transformer layer, and hout the hidden
state of the token after the adapter layer:

z = gelu(Wdh)

hout = tanh(Wuz) + h
(3)

The tanh non-linearity helped with stability in
early experiments, probably because it prevents
the adapter output exploding by constraining it be-
tween -1 and 1.

We also considered a version of the adapter
based on the ‘gated linear unit’ (GLU; Dauphin
et al., 2016) architecture:

z = 2σ(Wgh)� gelu(Wdh)

hout = tanh(Wuz) + h.
(4)

We found the network was sensitive to changes
in the magnitude of the hidden states the adapter
produced, and therefore multiply the sigmoid gate
by 2 so that it approximately leaves the magnitude
of the hidden states unchanged.

3.4 Freezing Details

BART We freeze all parameters of BART except
the weights and biases of the layer-norm modules
(following Houlsby et al. (2019)), and addition-
ally unfreeze the self-attention module of the first
layer in the BART encoder, which is a small frac-
tion of total BART parameters (24 · 2dBART from
layer-norm parameters and 4d2BART from the self-
attention module). We freeze BART token embed-
dings (used in the softmax layer).

mBART In most of our experiments we unfreeze
layer-norm parameters, positional and token em-
beddings, and either the entire encoder or decoder



3444

Languages Vi-En Tuned Params (m)
(1): BART + InputModule (unfreeze all) 9.5 374
(2): BART (frozen) + InputModule 27.9 26
(3): (2) + unfreeze layer-norm 28.4 26

(3) + sinusoidal positional embeddings 18.3 26
(1) + extra positional embeddings 22.0 26
(4): (3) + extra positional embeddings 29.0 26

(5): (3) + encoder adapters 28.9 29
(3) + decoder adapters 28.3 29

(6): (5) + extra positional embeddings 30.0 29
(7): (6) + GLU adapters 30.5 29

Table 1: Ablation study for various choices in the frozen BART method, with validation set BLEU score. We
organise model settings by a number in brackets, (n), and define a new model configuration in bold as (n):. We
use ‘+’ to indicate the addition of new model settings on top of the previous ones. Method (2) is similar to
the method introduced by Lewis et al. (2019). ‘+ sinusoidal positional embeddings’ refers to adding sinusoidal
positional embeddings to token embeddings, while ‘+ extra positional embeddings’ refers to adding them within
each transformer layer (see section 3.2). ‘Tuned Params (m)’ refers to the number of tunable parameters for each
method in millions. Test set results are listed in Table 3 (as ‘Frozen BART’).

Languages It-En Si-En
(1): BART + InputModule + LN 34.1 5.1
(2): (1) + encoder adapters 35.0 7.3
(1) + decoder adapters 35.5 6.8
(3): (2) + extra pos. embeddings 36.3 8.7
(4): (3) + GLU adapters 35.7 9.2

Table 2: Further Ablation study for key settings of the
frozen BART method, with validation set BLEU score.
Test set results are listed in Table 3 (as ‘Frozen BART’).

module (or the encoder and subsections of the de-
coder). We unfreeze the self-attention module of
the first layer in the mBART encoder and decoder.

4 Experimental Settings

We use the fairseq (Ott et al., 2019) library for all
experiments. The final models are selected based
on validation likelihood, except for multilingual
fine-tuning where we evaluate the models after
10000 training steps. We use beam-search with
beam size 5 for decoding, and evaluate all BLEU
scores using SacreBLEU (Post, 2018) 1. We use
ISO 693-2 language codes in this work for con-
venience, and use the same parallel data as Liu
et al. (2020), both listed in listed in Table 11 of the

1SacreBLEU signature: BLEU+case.lc+lang.
[src-lang]-[tgt-lang]+numrefs.1+smooth
.exp+tok.13a+version.1.3.6

Appendix.
We fine-tune frozen BART and an Input Mod-

ule on bilingual parallel text, feeding the source
language into the Input Module. For mBART we
feed the source language into the encoder, and use
the same hyper-parameters as Liu et al. (2020).
When using adapters we use 0.1 dropout in the
adapter bottleneck layer (z in section 3.3), and a
hidden dimension of either 128, or b2/3 · 128e
when using a gated linear unit adapter. We use the
Adam (Kingma and Ba, 2015) optimizer. Hyper-
parameters are listed in Appendix B, and we use
the same hyper-parameter search space for frozen
and non-frozen models.

4.1 Multilingual MT
We train with a very large effective batch size,
training on 32 GPUs with a per-GPU batch size
of 4096 tokens, meaning our total batch size is
N · 32 · 4096 tokens, where N is the number of
language pairs. We evaluate our model after 10000
training steps (amounting to N · 10000 forwards-
backwards passes through the model).

4.2 Vocabulary
BART uses the GPT-2 tokenizer, which uses the
BPE (Sennrich et al., 2016) approach (on the level
of bytes, not characters). BART could techni-
cally take any Unicode string as input, however the
BPE is learned on English text. When fine-tuning
BART on machine translation we therefore learn a



3445

Languages Vi-En† Vi-En It-En My-En Ne-En Si-En Cs-En Es-En Pars (m)
Size 110k 133k 250k 259k 564k 647k 11M 15M

(1): Freeze decoder 12.1 30.0 36.5 27.4 11.0 13.6 26.6 34.1 407
Freeze encoder 12.0 29.7 36.6 25.2 8.8 12.3 25.6 33.8 457
(2): (1) + adapters 12.2 30.0 36.7 27.7 10.8 14.2 27.4 34.4 410

(2) + ft enc-attn 12.3 30.6 37.0 29.0 11.4 14.9 27.0 35.1 461
(2) + ft self-attn 11.7 30.4 36.1 28.3 10.6 14.3 27.4 34.7 461
(2) + ft last 3 lyrs 12.1 30.6 36.6 28.1 11.5 14.7 27.6 34.9 461

Test (random init) 8.1 23.6 31.7 23.3 7.6 7.2 22.0 29.0 N/A
Test (frozen BART) - 35.2 38.5 21.0 0.5 7.8 - - 29
Test (ft all) 14.1 36.7 39.8 27.6 14.1 14.0 29.2 34.5 610
Test (ft enc-attn) 14.9 36.4 39.4 27.9 14.6 14.1 29.8 34.4 461

Table 3: Validation BLEU score (unless stated otherwise) obtained by freezing various parts of the mBART and
of adding adapters for Xx→ En. ‘ft’ refers to fine-tuning, i.e. unfreezing. Vi-En† refers to a new parallel, ‘out-of-
domain’ dataset constructed similarly to the Flores (Guzmán et al., 2019) train sets (see section 5.2). ‘Test (frozen
BART)’ indicates results from English-only BART with the best performing method from Table 2 or Table 1. ‘Test
(random init)’ refers to training models (of various sizes) from scratch on the bitext for that language pair. ‘Pars
(m)’ refers to the number of tunable parameters for each method in millions (note token embeddings are tuned
in every method and account for 256m parameters). Bold indicates the best test set score and all scores whose
difference from the best is not statistically significant (with p-value less than 0.05). (Statistical significance is
computed via bootstrapping (Koehn, 2004).)

Vi-En It-En My-En Ne-En Si-En

Freeze decoder (don’t ft layer-norm) 26.6 35.1 26.6 10.3 13.1
Freeze encoder (don’t ft layer-norm) 29.4 36.1 24.1 8.7 12.1

Table 4: Ablation study on improvement from fine-tuning layer-norm. Compare to the ‘Freeze decoder’ and
‘Freeze encoder’ methods in the first two rows of Table 3.

new subword vocabulary (using the sentencepiece
(Kudo and Richardson, 2018) library) on the source
data from the fine-tuning dataset, and use a smaller
vocabulary size of 5000, which empirically per-
forms better for low-resource MT (Guzmán et al.,
2019; Sennrich and Zhang, 2019). We don’t change
the mBART tokenizer or vocabulary.

5 Results and Discussion

5.1 Frozen BART
Table 1 shows the effects of various choices we
made in fine-tuning BART for MT. Freezing is im-
portant: we see an 18.4 BLEU point improvement
from fine-tuning a frozen BART model compared
to fine-tuning an unfrozen BART (both with an
Input Module; see section 3.1).

Adding extra flexibility with within-network
adapters helps performance, especially when added
to the BART encoder. It is important to use learned
positional embeddings at the embedding layer in

the Input Module, with an 10.1 BLEU score drop
if we use fixed positional embeddings (at the em-
bedding layer). We see consistent gains in Table 1
and Table 2 by adding additional, fixed sinusoidal
positional embeddings to the input of every trans-
former layer of the Input Module (see section 3.2),
even when using an unfrozen BART. The BART
encoder ‘expects’ English input, and it may be
the Input Module with extra fixed embeddings can
better account for the different word order in the
input language. In the next section we compare to
mBART and baselines.

5.2 Frozen mBART

In Table 3 and Table 5 we list results from freezing
various parts of mBART. We get better perfor-
mance than fine-tuning (‘ft all’ in Table 3) with our
freeze decoder + fine-tune encoder-decoder atten-
tion method (‘ft enc-attn’ in Table 3) on Ne-En and
Cs-En for Xx→ En, and mostly similar results to



3446

Languages En-Vi En-It En-My En-Ne En-Si En-Cs En-Es Pars (m)

Freeze decoder 29.7 32.2 35.0 5.8 2.1 17.7 35.4 407
(1): Freeze encoder 30.1 31.5 36.0 5.3 3.7 16.5 35.0 457
(2): (1) + encoder adapters 30.3 32.3 36.9 5.4 4.2 16.6 35.3 461

Test (ft all) 35.4 34.0 36.9 7.4 3.3 18.0 34.0 610
Test (freeze enc. + adapters) 35.0 34.3 35.9 6.9 3.3 16.7 32.5 461

Table 5: Validation BLEU score (unless stated otherwise) obtained by freezing various parts of the mBART and
of adding adapters for for En → Xx. ‘Pars (m)’ refers to the number of tunable parameters for each method in
millions.

the baseline otherwise.
We believe a benefit to freezing, when fine-

tuning on training data from a different domain
to test data, will be avoiding specialising the pre-
trained model to the fine-tuning train data do-
main. To test this we constructed a new Vi-
En parallel dataset (Vi-En† in Table 3) using the
some of the same sources as the Flores (Guzmán
et al., 2019) training data (the Si-En and Ne-
En training sets used in this work), specifically
GNOME/KDE/Ubuntu domain from the OPUS
repository2 and Bible translations from the bible-
corpus3, and use the same test and validation sets
as the IWSLT15 Vi-En dataset. By constraining
ourselves to this out-of-domain training set we see
the largest gains out of the language pairs we con-
sidered over the fine-tuning baseline (0.9 BLEU).

We also consider the effect of the size of the fine-
tuning dataset. If we constrain the training data to a
random subset of 200k training examples from Ro-
En (Table 6), the ‘ft enc-attn’ method outperforms
simple fine-tuning. This effect generalises to an
mBART variant that was pre-trained on only Ro
and En monolingual data (using the same data as
Liu et al. (2020)). Further results on Ro-En data
are available in the Appendix, Table 10, and show
similar trends to Table 3, with fine-tuning encoder-
decoder attention the most important.

Table 3 shows the relative performance of frozen
BART, frozen mBART and baselines. Fine-tuning
mBART gave consistently better results than frozen
BART especially for distantly related languages.
For Si, Ne and My the performance of frozen
BART is roughly on par with a randomly initialised
model (or much worse in the case of Ne-En). The
parallel data for these languages is often lower qual-
ity, and the BART system has to learn about the

2http://opus.nlpl.eu/
3https://github.com/christos-c/bible-corpus/

non-English language from noisy or out-of-domain
text (e.g. text from the Ubuntu manual for the En-
Ne pair). For Vi and It, we have high quality par-
allel data, and the frozen BART method is only
approximately 1.5 BLEU points behind the best
mBART results. We note mBART was trained on
more English data than BART, and with different
noising function hyper-parameters.

5.3 What Should be Unfrozen?
Layer-Norm We find large benefits to simply
fine-tuning the weights and biases of the pre-trained
layer-norm weights (recall that after normalisation,
the layer-norm module multiplies each hidden di-
mension by a weight and adds a bias); this was
observed in the setting of BERT by Houlsby et al.
(2019). This gains e.g. 0.5 BLEU for frozen BART
(see Table 1) and an average of 0.8 BLEU across
five languages for mBART (see Table 4 compared
to Table 3). Since these weights and biases are
only 2d parameters per layer-norm, where d is the
model dimension. This is parameter-efficient, with
adding more parameters with ‘Adapters’ on top of
unfrozen layer-norm providing a smaller improve-
ment.

Encoder vs Decoder For the Xx→ En direction
(Table 3) we can see that freezing the decoder al-
ways performs better than freezing the encoder
(except for It-En where they perform roughly the
same.) For the En → Xx direction (Table 5) we
see slightly weaker evidence for the opposite trend,
with the decoder more useful to fine-tune; but for
the high resource languages Es and Cs freezing the
decoder works better. There is more English data in
mBART pre-training than data in other languages,
which may account for better results with a frozen
encoder (when English is the source language)
or decoder (when English is the target language).
Adding flexibility with adapters in the frozen layers



3447

Model mBART En-Ro mBART

Languages (Size) Ro-En (608k) Ro-En (200k) Ro-En (608k) Ro-En (200k)

Test (ft all) 37.8 36.4 38.5 37.7
Test (ft enc-attn) 37.8 36.8 38.1 37.9

Table 6: Validation set BLEU (unless stated otherwise) comparing freezing various parts of mBART and En-Ro
mBART (pre-trained only on En and Ro data), fine-tuned on Ro→ En parallel data. ‘ft’ referes to fine-tuning, i.e.
unfreezing. ‘Ro-En (200k)’ refers to a random subset of the Ro-En training data of size 200k.

Src. Lang. Ru Fr De Zh Es Cs Lv Fi Lt Et Hi Si
Size 32M 29M 28M 25M 15M 11M 4.5M 2.7M 2.1M 1.9M 788k 647k

Finetune all 33.6 39.0 33.1 20.2 33.7 29.9 21.1 29.0 22.8 28.6 25.4 16.9
Ft enc-attn 33.4 38.2 32.6 20.2 34.0 29.7 20.8 29.1 22.7 28.3 25.1 16.7

Src. Lang. Ro Ne My Ar It Nl Ko Ja Tr Vi Kk Gu
Size 612k 563k 259k 251k 251k 237k 230k 223k 207k 133k 91k 12k

Finetune all 37.8 20.7 31.0 37.0 39.6 43.3 25.0 18.7 24.0 37.4 14.6 18.7
Ft enc-attn 37.9 20.8 30.5 36.9 39.3 43.0 24.2 18.8 23.7 37.5 15.0 18.3

Table 7: Test set BLEU score on many-to-one (Xx → En) multilingual MT with a simple round-robin training
schedule. ‘Ft enc-attn’ refers to fine-tuning the encoder, and fine-tuning the encoder-decoder attention module in
every decoder layer, leaving the other decoder sub-modules frozen. The ‘Ft enc-attn’ model setting uses adapter
modules in the decoder to increase flexibility after freezing parameters. Bold indicates the best score and all scores
whose difference from the best is not statistically significant (with p-value less than 0.05). For clarity we underline
language pairs where the ‘Ft enc-attn’ method matches or outperforms naive fine-tuning.

improves performance in all languages and direc-
tions, except for Ne→En.

We explore more fine-grained unfreezing for the
Xx→ En direction (Table 3). We fine-tuned three
equally sized subsets of the decoder: the encoder-
decoder attention layers (approx. 12 · 4d2BART pa-
rameters), the self-attention layers in the decoder
(approx. 12 · 4d2BART parameters), or the entire last
three layers of the decoder (approx. 3 ·16d2BART pa-
rameters). We observe that fine-tuning the encoder-
decoder attention performed well (note the last
three layers include three encoder-decoder atten-
tion layers), with fine-tuning self-attention the least
useful. We hypothesize that the pre-training task
of mBART (reconstructing noisy monolingual sen-
tences) does not help with teaching the encoder-
decoder attention to align source and target text of
different languages.

5.4 Memory Cost
Freezing parameters means we no longer need to
allocate memory to storing their gradients. We
will obtain additional memory savings when using
an optimizer that stores various other quantities
(i.e. the Adam optimizer stores running averages

Tokens per GPU

Finetune all 2304
(1): Freeze decoder 4096
Freeze encoder 3584
(2): (1) + decoder adapters 4096
(2) + ft enc-attn 3328

Table 8: Maximum number of tokens that would fit on
one NVIDIA Volta GPU when fine-tuning mBART on
the En-Vi training set. We evaluated batch sizes in in-
crements of 256 tokens.

of the first and second moments of gradients.). The
memory savings allow for roughly 45-75% larger
batches for the methods we consider in this work
(see Table 8 for our mBART methods), but for
larger pre-trained models the proportion of GPU
memory freed up by freezing will increase. At
inference time we no longer require gradients and
we have the same memory cost.

5.5 Multilingual Fine-tuning of mBART

We explore freezing parts of the mBART model
when fine-tuning on a challenging multilingual MT



3448

task. Table 7 lists results from a naive fine-tuning
baseline, and results from freezing most of the de-
coder but unfreezing the encoder-decoder attention
(when freezing we use GLU adapters in the de-
coder, see section 3.3). Freezing parameters hurts
performance on some language pairs, and since
freezing removes flexibility from the model and
we have to adapt to 25 different directions this is
perhaps not surprising. The language pairs where
we match or improve on the baseline are Zh, Es,
Fi, Ne, Ja, Vi and Kk. These are mostly (five out
of seven) non-European languages, and distantly
related to En. However since most of these re-
sults are not statistically significant further study
is needed to verify this. Note we see a clear ben-
efit over bilingual fine-tuning for some language
pairs (e.g. compare our best Ne result from Table 3,
14.6 BLEU vs. 20.8 BLEU for multilingual fine-
tuning). We leave to future work a more thorough
investigation of the multilingual MT setting.

6 Conclusion

We recommend: For a language with high qual-
ity parallel data but without a pre-trained model
trained on monolingual data from that language,
using a frozen (English-only) BART model with
additional parameters at the source side (the ‘in-
put module’) improves performance over a ran-
domly initialised baseline. For this approach it
is important to freeze the pre-trained model. We
also give the model both learned positional embed-
dings at the embedding layer, and fixed sinusoidal
positional embeddings at each layer of the input
module.

For a multilingual pre-trained model, we found
performance improvements on some (mostly dis-
tantly related) languages for multilingual many-
to-one fine-tuning. For bilingual En → Xx fine-
tuning we did not see any improvement, although
the performance drops are small, and by freezing
parameters we need less memory at training time
compared to fine-tuning. For Xx→ En bilingual
fine-tuning it is important to unfreeze the encoder-
decoder attention, and keep the rest of the decoder
frozen. This can improve on simple fine-tuning,
especially for distantly-related language pairs or
those with out-of-domain training data.

We recommend fine-tuning layer-norm parame-
ters as a parameter-efficient complement to adapter
layers. For our mBART experiments we found it
was necessary to fine-tune the token embeddings,

which correspond to a large number of parameters,
and future work could remove this cost by work-
ing out a subset of the vocabulary to fine-tune, or
another method.

Acknowledgments

We’d like to thank James Cross, Mike Lewis, Na-
man Goyal, Jiatao Gu, Iain Murray, Yuqing Tang
and Luke Zettlemoyer for useful discussion. We
also thank our colleagues at FAIR and FAIAR for
valuable feedback.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3874–3884, Minneapolis, Minnesota. Association
for Computational Linguistics.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and
Yonghui Wu. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. CoRR, abs/1907.05019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR,
abs/1612.08083.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://doi.org/10.18653/v1/N19-1388
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083


3449

deep bidirectional transformers for language under-
standing. In North American Association for Com-
putational Linguistics (NAACL).

Li Dong, Nan Yang, Wenhui Wang, Furu Wei,
Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. 2019. Unified
language model pre-training for natural language
understanding and generation. arXiv preprint
arXiv:1905.03197.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
NAACL.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K.
Li. 2018. Universal neural machine translation for
extremely low resource languages. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 344–354, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The
FLORES evaluation datasets for low-resource ma-
chine translation: Nepali–English and Sinhala–
English. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6097–6110, Hong Kong, China. Association for
Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799,
Long Beach, California, USA. PMLR.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Tom Kocmi and Ondřej Bojar. 2017. Curriculum learn-
ing and minibatch bucketing in neural machine trans-
lation. In Proceedings of the International Confer-
ence Recent Advances in Natural Language Process-
ing, RANLP 2017, pages 379–386, Varna, Bulgaria.
INCOMA Ltd.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Graham Neubig and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
875–880, Brussels, Belgium. Association for Com-
putational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. FAIRSEQ: A fast, extensible
toolkit for sequence modeling. In North American
Association for Computational Linguistics (NAACL):
System Demonstrations.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In North American Association for Com-
putational Linguistics (NAACL).

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting
pretrained representations to diverse tasks. CoRR,
abs/1903.05987.

https://doi.org/10.18653/v1/N18-1032
https://doi.org/10.18653/v1/N18-1032
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/2001.08210
http://arxiv.org/abs/2001.08210
https://doi.org/10.18653/v1/D18-1103
https://doi.org/10.18653/v1/D18-1103
http://arxiv.org/abs/1903.05987
http://arxiv.org/abs/1903.05987


3450

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Time Salimans,
and Ilya Sutskever. 2018. Improving language un-
derstanding with unsupervised learning. Technical
report, OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Prajit Ramachandran, Peter J Liu, and Quoc Le. 2017.
Unsupervised pretraining for sequence to sequence
learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 383–391.

Devendra Sachan and Graham Neubig. 2018. Parame-
ter sharing methods for multilingual self-attentional
translation models. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers,
pages 261–271, Belgium, Brussels. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Association for Computational
Linguistics (ACL), pages 1715–1725.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-
resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 211–
221, Florence, Italy. Association for Computational
Linguistics.

Jason R. Smith, Herve Saint-Amand, Magdalena Pla-
mada, Philipp Koehn, Chris Callison-Burch, and
Adam Lopez. 2013. Dirt cheap web-scale parallel
text from the common crawl. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1374–1383, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and
Tie-Yan Liu. 2019. MASS: Masked sequence
to sequence pre-training for language generation.
In International Conference on Machine Learning
(ICML).

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings
of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5986–5995, Long Beach,
California, USA. PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and
Tie-Yan Liu. 2019. Multilingual neural machine
translation with language clustering. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 963–973, Hong
Kong, China. Association for Computational Lin-
guistics.

Brian Thompson, Huda Khayrallah, Antonios Anasta-
sopoulos, Arya D. McCarthy, Kevin Duh, Rebecca
Marvin, Paul McNamee, Jeremy Gwinnup, Tim An-
derson, and Philipp Koehn. 2018. Freezing subnet-
works to analyze domain adaptation in neural ma-
chine translation. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers,
pages 124–132, Belgium, Brussels. Association for
Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 2214–2218, Istan-
bul, Turkey. European Languages Resources Associ-
ation (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Fernanda Viégas, Greg Corrado, Jeffrey Dean, Macduff
Hughes, Martin Wattenberg, Maxim Krikun, Melvin
Johnson, Mike Schuster, Nikhil Thorat, Quoc V Le,
et al. 2016. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Yong Yu, Weinan Zhang, and Lei Li. 2019a.
Towards making the most of bert in neural machine
translation. arXiv preprint arXiv:1908.05672.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/W18-6327
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://www.aclweb.org/anthology/P13-1135
https://www.aclweb.org/anthology/P13-1135
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.18653/v1/D19-1089
https://doi.org/10.18653/v1/D19-1089
https://doi.org/10.18653/v1/W18-6313
https://doi.org/10.18653/v1/W18-6313
https://doi.org/10.18653/v1/W18-6313
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


3451

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020. Incorporating bert into neural machine trans-
lation. arXiv preprint arXiv:2002.06823.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1568–1575, Austin,
Texas. Association for Computational Linguistics.

A Additional Ablation Study

In Table 9 we reproduce Table 4 of the main paper
with more context to study the effect of unfreezing
layer-norm parameters when fine-tuning mBART.
Across all language pairs we see improvements
from fine-tuning layer norm parameters over not
fine-tuning them, and additional, smaller, improve-
ments from adding adapters, indicating both forms
of adding flexibility are useful. In Table 10 we
present additional results on the Ro-En pre-trained
model (see section 3.2 of the main body).

B Fine-tuning Hyper-parameters

For all experiments with bilingual datasets we use
a batch size of 2048×16 tokens, i.e. 2048 tokens
per GPU and 16 GPUs (we investigate larger batch
sizes for frozen models only to test GPU memory
usage, and do not evaluate models trained with
larger batch sizes). Ranking of hyper-parameters
was done by validation set BLEU score.

Frozen BART We train with 0.3 dropout for the
frozen BART parameters, and 0.2 dropout for the
Input Module parameters, 0.1 label smoothing, 0.2
dropout for the self-attention scores in the Input
Module, 5000 warm-up steps, and 7e−4 maximum
learning rate. We performed a grid search over
learning rates in {7e−4, 5e−4, 3e−4}, dropout
for Input Module parameters in {0.2, 0.1}, and
dropout for self-attention scores in {0.2, 0.1}. We
train for a maximum of 50K training updates for
all low and medium resource pairs and 100K for
high resource pairs (which takes roughly 8 hours
and 16 hours respectively).

Frozen mBART We train with 0.3 dropout, 0.2
label smoothing, 2500 warm-up steps, and 3e−5
maximum learning rate. We did not search over
hyper-parameters, simply re-using those of Liu
et al. (2020). Despite the adapter parameters being
randomly initialised, the small learning rate did not
affect performance (we performed a small sweep

of larger learning rates and found only marginal
gains, and so kept the same settings for simplicity).
We use a maximum of 40K training updates for all
low and medium resource pairs and 100K for high
resource pairs (Es and Cs in our case), this takes
roughly 12 hours and 30 hours respectively.

Multi-lingual MT We train with 0.3 dropout, 0.1
dropout for self-attention scores, 4000 warm-up
steps, and 1e−4 maximum learning rate.

Out-of-domain Vi-En Baseline To train a ran-
domly initialised baseline for the out-of-domain
Vi-En data (Vi-En† in Table 3 of the main body)
we used the same model architecture and training
settings as those of Guzmán et al. (2019) use for
training MT systems on similar data (but with Si or
Ne source language). Specifically a seq2seq trans-
former with 5 encoder and decoder layers, hidden
dimension 512. shared embeddings between the
input and softmax layers, and strong regularisation
(e.g. 0.4 dropout on hidden states, 0.2 dropout on
attention scores, 0.2 label smoothing). We learn
a BPE vocabulary (joint across source and target
data) of size 5000 on the training data. For full
details of hyper-parameters we refer the reader to
Guzmán et al. (2019) and the associated GitHub
repository4.

C Pre-training Languages

We reproduce in Table 11 the details from Liu et al.
(2020) of the size of each pre-training language
corpus for mBART.

4https://github.com/facebookresearch/flores

https://doi.org/10.18653/v1/D16-1163
https://doi.org/10.18653/v1/D16-1163


3452

Vi-En It-En My-En Ne-En Si-En

Freeze decoder 26.6 35.1 26.6 10.3 13.1
Freeze encoder 29.4 36.1 24.1 8.7 12.1

(1): Freeze decoder + ft layer norm 30.0 36.5 27.4 11.0 13.6
Freeze encoder + ft layer norm 29.7 36.6 25.2 8.8 12.3
(1) + decoder adapters 30.0 36.7 27.2 10.8 14.2

Table 9: Validation BLEU score (unless stated otherwise) obtained by fine-tuning layer-norm parameters and
of adding adapters for mBART, for Xx → En. ‘ft’ refers to fine-tuning, i.e. unfreezing. Note we are simply
reproducing rows from Table 3 and Table 4 of the main paper for ease of comparison.

mBART En-Ro mBART

Ro-En (608k) Ro-En (200k) Ro-En (608k) Ro-En (200k)

(1): Freeze decoder 38.8 37.9 40.4 39.9
Freeze encoder 39.1 38.3 40.0 39.2
(2): (1) + decoder adapters 39.3 38.0 40.6 40.0

(1) + ft enc-attn 39.8 39.0 40.5 40.5
(1) + ft self-attn 39.6 38.3 40.4 40.1
(1) + ft last 3 lyrs 39.6 38.6 40.5 40.3

Test (ft enc-dec) 37.8 36.8 38.1 37.9
Test (ft all) 37.8 36.4 38.5 37.7

Table 10: Validation set BLEU (unless stated otherwise) comparing freezing various parts of mBART and En-Ro
mBART (pre-trained only on En and Ro data rather than 25 languages), fine-tuned on Ro→ En parallel data. ‘ft’
refers to fine-tuning, i.e. unfreezing. ‘Ro-En (200k)’ refers to a random subset of the Ro-En training data of size
200k.



3453

Code Language Tokens(M) Size(GB) Parallel data source
En English 55608 300.8
Ru Russian 23408 278.0 WMT19
Vi Vietnamese 24757 137.3 IWSLT15
Ja Japanese 530 (*) 69.3 IWSLT17
De German 10297 66.6 WMT19
Ro Romanian 10354 61.4 WMT16
Fr French 9780 56.8 WMT19
Fi Finnish 6730 54.3 WMT17
Ko Korean 5644 54.2 IWSLT17
Es Spanish 9374 53.3 WMT19
Zh Chinese (Sim) 259 (*) 46.9 WMT19
It Italian 4983 30.2 IWSLT17
Nl Dutch 5025 29.3 IWSLT17
Ar Arabic 2869 28.0 IWSLT17
Tr Turkish 2736 20.9 IWSLT17
Hi Hindi 1715 20.2 ITTB
Cs Czech 2498 16.3 WMT19
Lt Lithuanian 1835 13.7 WMT19
Lv Latvian 1198 8.8 WMT17
Kk Kazakh 476 6.4 WMT19
Et Estonian 843 6.1 WMT18
Ne Nepali 237 3.8 FLoRes
Si Sinhala 243 3.6 FLoRes
Gu Gujarati 140 1.9 WMT19
My Burmese 56 1.6 WAT19

Table 11: Languages and Statistics of the CC25 Cor-
pus. A list of the 25 languages used in mBART pre-
training ranked with monolingual corpus size. (*) The
Chinese and Japanese corpora are not segmented, so
the token counts here are sentence counts.


