
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3234–3243
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3234

STAR: Cross-modal STAtement Representation for selecting relevant
mathematical premises

Deborah Ferreira1, André Freitas1,2
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Abstract

Mathematical statements written in natural lan-
guage are usually composed of two different
modalities: mathematical elements and natu-
ral language. These two modalities have sev-
eral distinct linguistic and semantic properties.
State-of-the-art representation techniques have
demonstrated an inability in capturing such an
entangled style of discourse. In this work,
we propose STAR, a model that uses cross-
modal attention to learn how to represent math-
ematical text for the task of Natural Language
Premise Selection. This task uses conjectures
written in both natural and mathematical lan-
guage to recommend premises that most likely
will be relevant to prove a particular statement.
We found that STAR not only outperforms
baselines that do not distinguish between natu-
ral language and mathematical elements, but it
also achieves better performance than state-of-
the-art models.

1 Introduction

Natural language understanding has been applied
to several different tasks and areas, from question
answering to visual grounding. Even though Math-
ematics is a well-established field with immense
importance for most areas of science, applications
of NLP in this field are still limited.

Natural language premise selection (NLPS) (Fer-
reira and Freitas, 2020a) is a task that requires
the combination of natural language reasoning and
mathematical reasoning. Given a certain conjec-
ture (a mathematical statement written in natural
language) that needs to be proven, we attempt to
recommend useful premises that can be relevant
for developing that mathematical argument.

Mathematical statements have a particular dis-
course structure that makes it challenging to use
traditional NLP techniques. Some of its distinc-
tive features are: (1) Entangled dual lexical spaces

for the mathematical elements (ME) and natural
language (NL); (2) Distinct syntactic phenomena
between ME and NL.

Given this entangled nature of the discourse,
where two very different linguistic modalities co-
exist in the same text, traditional information re-
trieval approaches are not able to capture the dif-
ferent semantics for each modality (Greiner-Petter
et al., 2019). For example, in the mathematical
domain, variables are represented using generic
symbols; this lexical layer does not necessarily
ground the semantics of the variables. The context
surrounding the variables is more important than
the symbol itself. When interpreting mathematical
discourse, such particulars need to be taken into
account.

In this work, we propose STAR, a cross-modal
representation for mathematical statements for ad-
dressing the task of premise selection. In order to
interpret the different modalities in the mathemat-
ical discourse (natural language and equational),
STAR uses two different self-attention layers, one
focused on the mathematical elements, such as ex-
pressions and variables, while the other attends to
natural language features. STAR is taught to see
these tokens as parts of different languages, the
mathematical language and the English Language,
similar to what our human brain does (Butterworth,
2002). Even though the brain interprets mathe-
matics as a language, it requires different parts for
processing it (Amalric and Dehaene, 2016). Using
different attention layers, STAR can learn that un-
derstanding mathematics requires a different type
of reasoning than natural language, approximating
the behaviour of the brain when faced with mathe-
matical tokens.

The approach presented in this work is based on
the hypothesis that the use of cross-modal attention-
based mechanisms provides a better encoding of
the semantic content of mathematical statements
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for the task of premise selection.
The contributions of this work can be sum-

marised as follows:
• Proposal of a novel cross-modal embedding

that captures the different modalities inside
mathematical text: mathematical elements
(expressions) and words.
• A systematic analysis of the transferability of

this representation across different mathemat-
ical domains.
• An empirical evaluation, comparing our ap-

proach with state-of-the-art models and the
performance of supporting ablation studies.
• We demonstrate an improvement of up to

70.34% in F1-Score, compared to a baseline
that does not distinguish between mathemat-
ical elements and natural language. We also
obtain competitive results with state-of-the-
art approaches, using a smaller model and no
pre-training.

2 Background: Natural Language
Premise Selection

In this work, we address the problem of Natural
Language Premise Selection (Ferreira and Freitas,
2020a) (premise selection or NLPS). A mathe-
matical statement can be a definition, an axiom,
a theorem, a lemma, a corollary or a conjecture.
Premises are composed of universal truths and ac-
cepted truths. Definitions and axioms are universal
truths since the mathematical community accepts
them without requiring proof.

On the other hand, accepted truths include state-
ments that need proof before being adopted. The-
orems, lemmas and corollaries are such types of
statements. These statements were, at some point,
framed as a conjecture, before they were proven.
As such, they can be grounded on past mathe-
matical discoveries, referencing their own support-
ing premises. This network structure of known
premises can be used as a foundation in order to
predict new ones.

Given a new conjecture c, that requires a math-
ematical proof, and a collection of premises P =
{p1, p2, . . . , pNp}, with size Np, the NLPS task
aims to retrieve the premises that are most likely
to be useful for proving c. Premises of accepted
truth statements can also have a subset of premises
P̃ ⊆ P .

Figure 1 presents an example of a conjecture con-
taining two premises. Both Premise 1 and Premise

2 can be used as part of the proof for this conjec-
ture.

Figure 1: Example of a conjecture and its premises.

Similar to previous approaches (Irving et al.,
2016; Ferreira and Freitas, 2020a), we formulate
this problem as a pairwise relevance classification
problem. Given a pair (c, pi), we classify if pi can
be used for proving c. Our approach is built on top
of a cross-modal representation for mathematical
statements, as the following section presents.

3 Our Approach: Cross-modal
STAtement Representation (STAR)

Mathematical language follows a regular pattern (in
contrast to natural language) (Ganesalingam, 2013),
regardless of representing a conjecture, universal
truth or accepted truth. In this work, we consider
mathematics written in natural language, instead of
mathematics expressed in logical formal languages.
The target corpus is composed of a combination of
mathematical symbols and natural language words.

Given the set of mathematical statementsM and
a statement m ∈ M, m is defined as a sequence
of elements m = {s1, s2, . . . , sn}, where si ∈ W ,
the set of words, or si ∈ E , the set of mathemat-
ical elements present in M. These components
are situated in different lexical spaces; therefore, a
function to generate a representation for m should
take this into account.

We define an embedding model γ :M 7→ Rd,
where d is the dimension of the output vector. The
complete architecture is presented in Figure 2a,
where part of a statement is shown as an input
example. Each layer is described in detail below.

3.1 Token embedding layer

The input to the embedding model is a mathe-
matical statement. This embedding layer is a



3236

Let x + 1 and y + 2 be  integers
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(a) Embedding model.
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Figure 2: Architecture for STAR. Figure (A) presents the model used to generate a representation for each state-
ment, where we combine two self-attention layers, one for each modality of token. Figure (B) presents the Siamese
Network used for classifying the conjecture-premise pair, based on the representations obtained.

WE ∈ Rk×v where k is the dimension of the word
embeddings, and v is given by |W|+ |E|.

3.2 Word/Expression-specific Self-Attention
Layer

Research on the human brain has shown that there
is no overlap between the parts of the brain that
are activated in math-related tasks (both simple and
complex) and sentence comprehension and general
semantic knowledge tasks (Amalric and Dehaene,
2016). This behaviour hints at how we should map
distinct representations to these different modalities
of symbols and linguistic structures (maths and
natural language).

Inspired by the behaviour of the human brain,
we introduce two layers of self-attention (Vaswani
et al., 2017), one for each modality, attempting
to approximate human reasoning. One layer cap-
tures specific natural language linguistic features,
while the other represents particular mathematical
formalism features. Given a matrix of queries Q
and matrices of keys and values K and V . The

attention head is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the keys.
These attention heads compose a multi-head at-

tention mechanism, defined as:

MultiHead(Q,K, V ) =

Concat(head1, . . . , headh)W
O

(2)

where:
headi = Attention(QWQ

i ,KW
K
i , V W

V
i )

and WQ
i WK

i and W V
i are parameter matrices. In

order to apply self-attention, we consider Q, K
and V as the same values, obtained using a linear
layer on top of the output of the embedding layer.
Words and expressions tokens have a very distinct
nature, and we hypothesise that these two layers
allow learning and representing these differences.

3.3 Long Short-Term Memory Layer

LSTM networks (Hochreiter and Schmidhuber,
1997) are a complex activation unit, based on a
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chain structure explicitly designed to capture long-
term sequence dependencies. LSTM is an ideal
candidate for treating sequential data such as math-
ematical statements. For the sake of brevity, we
omit the description of this layer, as it is extensively
described in the literature.

3.4 Training objective

Finally, in order to obtain the score between con-
jectures and premises, a siamese neural network
setting is used (Figure 2b), where a pair of state-
ments are simultaneously fed into two networks,
with shared weights. This allows the model to learn
the representation of each statement individually,
while still being aware that the statements belong
to the same semantic space.

The representation for each statement is obtained
and combined, where the expected score is 1 if B
is a premise to A, or 0 otherwise.

The used training objective function is the Cross
Entropy Loss, defined as:

L = − 1

N

N∑
n=1

[
Yn log Ŷn+(1−Yn) log(1− Ŷn)

]
(3)

where Y is the predicted classification and Ŷi is the
expected classification.

4 Experiments

This section presents the experiments performed
to test our hypotheses. We use the dataset PS-
ProofWiki (Ferreira and Freitas, 2020a) for these
experiments. This dataset is composed of pairs of
conjectures and premises, framing the problem as
a pair classification task. Each statement is written
using a combination of words and LATEXnotation.
For each positive pair, where the statement is a
premise to the conjecture, there can be n number
of negative pairs. For testing the robustness to noise
in the proposed model, we use n ∈ {1, 2, 5, 10}.
The number of entries for Train, Validation and
Test for each value of n is shown in Table 1.

The negative pairs are obtained using two differ-
ent methods. The first collects random examples
of statements that are not premises to form a new
pair (negative examples). In the second technique,
we use BM-25 to retrieve statements that are lexi-
cally similar to the premises, but that are not part
of positive pairs (similar examples). For these ex-
periments, we used 512 as a the size of the hidden

n Train Val Test

1 32,758 10,798 10,112
2 49,137 16,197 15,168
5 98,274 32,394 30,336
10 180,169 59,389 55,616

Table 1: Number of entries for Training, Validation and
Test for different values of n.

units layer in the LSTM, embedding size and out-
put statement vector in the embedding architecture.
We used 50 epochs for each training round. As
shown in Figure 3, with this number of epochs we
achieve convergence for all values of n. For each
epoch, the validation set was evaluated, and the
best model was chosen for testing.
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Figure 3: Number of training epochs and the obtained
validation F1 score.

All experiments and data can be found in our
Github repository1.

4.1 Quantitative Analysis

In order to verify our hypothesis, we compare
the proposed approach, i.e., using different self-
attention layers for each modality (mathematical
elements and natural language) with a modified
model, using only one self-attention layer for all
parts of the text. This modified model is obtained
by replacing the layers inside the dotted rectan-
gle from Figure 2a with a single self-attention
layer. This modified model is referred here as Self-
attention + BiLSTM.

1http://github.com/ai-systems/
crossmodal_embedding

http://github.com/ai-systems/crossmodal_embedding
http://github.com/ai-systems/crossmodal_embedding
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4.1.1 Results
Table 2 presents the results for the premise selec-
tion task using the random examples.

The aggregate scores obtained using STAR is
consistently higher than the baseline. Even though
there is an expected degradation in the score with
the addition of more negative examples, STAR still
outperforms the baseline in all cases, demonstrat-
ing robustness to noise. These results support our
hypothesis that different modalities inside the math-
ematical text should be represented in different lin-
guistic spaces.

Similarly, we re-run both models, but this time
using the similar examples. The results can be
found in Table 3.

We can notice that STAR precision decreases
when compared with the results obtained using the
random examples. However, once more, STAR
outperforms the baseline for all values of n. The
results of the baseline model do not change sig-
nificantly from the previous result improving it in
some cases. We hypothesise that this is due to
the fact that the use of lexical similarity for the
generation of similar examples does not provide
reliable discriminators (due to the limited intrin-
sic semantics of variables). Variables can have the
same lexical form across mathematical statements,
without sharing the same meaning.

4.1.2 Transferring Knowledge across
mathematical domains

Another targeted hypothesis is that STAR performs
better than the baseline in the task of transfer-
ring knowledge between different mathematical
domains. In order to verify this hypothesis, we
train the baseline and our model using one topic
and test it in a different one, the topics used are Ab-
stract Algebra (AA), Topology (TP) and Set Theory
(ST). Table 4 presents the number of statements for
Train/Val/Test for each topic.

Table 5 shows the experimental results for the
different mathematical topics. Initially, we ex-
pected that training using the largest dataset would
allow both models to obtain the best performance.
However, training using the Topology dataset topic
did not achieve the highest results. This is likely
because of the distinctive nature of its symbolic
space, more focused on the properties of geometric
objects. On the other hand, the best performing
training and test dataset, Abstract Algebra, is heav-
ily based on the algebraic notation that our model
is capable of capture using cross-modal attention.

In terms of transferable knowledge, Set Theory
is the tested dataset with the highest score, confirm-
ing the expectation that Set Theory is an important
component of both Abstract Algebra and Topol-
ogy, being an intrinsic part of the mathematical
argumentation on these topics. Therefore, such
knowledge is more natural to transport. Our pro-
posed approach outperforms the baseline in all
cases. However, both models see substantial per-
formance degradation when trying to transfer the
knowledge from one topic to another, indicating
both the need for better abstractive mathematical
models and an intrinsic domain-specificity mathe-
matical inference.

4.1.3 Other baselines
In order to verify the model performance, we test
our model against two state-of-the-art models. The
first baseline is a Transformer-based model, BERT.
We fine-tune BERT (Vaswani et al., 2017) using
the same configuration as the one used for Nat-
ural Language Inference (Jiang and de Marneffe,
2019) since this task carries similarities with the
premise selection task. The other baseline is Math-
Sum (Yuan et al., 2019): an encoder-decoder model
used to represent mathematical content found in
online forums. We use only the encoder part of this
model, together with the same siamese network as
STAR and the same parameter configuration. The
results can be found in Table 6.

Considering the F1-Score obtained, BERT was
placed second in the test set evaluation. Even
though BERT is not explicitly trained for the Math-
ematical domain, it presents an excellent perfor-
mance for the premise selection task. BERT is a
large-scale model that was also trained on sources
containing mathematical notation, including latex
notation, therefore it partially encodes mathemat-
ical notation. Our model outperforms BERT for
the test set, even though it employs a significantly
smaller set of parameters (5x less parameters) and
is not pre-trained on a large corpus as BERT is.

4.2 Qualitative analysis

We present examples of predicted pairs in Table 7.
When analysing the obtained classified pairs, we
found that STAR not only can deal with heavily
equational statements, such as the second pair from
the table, but it can also handle statements that
contain a high level of entanglement between math-
ematical and natural language terms, such as the
first pair.
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Val Test

n F1 P R F1 P R

STAR

1 .885 .854 .917 .882 .865 .899
2 .836 .803 .871 .829 .793 .870
5 .765 .693 .853 .765 .706 .835
10 .695 .614 .799 .684 .603 .791

Self-att
+ LSTM

1 .651 .550 .796 .631 .573 .703
2 .514 .406 .702 .514 .420 .663
5 .493 .372 .728 .461 .344 .700
10 .408 .283 .731 .406 .276 .766

Table 2: Comparison of STAR with a model containing a single self-attention layer. In this experiment, we test for
a different number of random negative examples (n). The metrics used are F1-score (F1), precision (P) and recall
(R).

Val Test

n F1 P R F1 P R

STAR

1 .798 .725 .886 .793 .723 .879
2 .716 .624 .840 .707 .593 .875
5 .620 .485 .857 .626 .493 .854
10 .546 .412 .809 .528 .387 .834

Self-att
+ BiLSTM

1 .648 .561 .767 .538 .699 .437
2 .537 .444 .679 .540 .448 .678
5 .389 .261 .760 .379 .251 .773
10 .289 .179 .759 .286 .174 .799

Table 3: Results for STAR and baseline for different number of negative examples (n) using similar examples.

Topic Train Val Test

AA 2,246 633 580
ST 1,897 618 590
TP 2,539 810 788

Table 4: Distribution of dataset wih different topics.

However, we found that STAR can sometimes
struggle with variable names. For example, in pair
3, the variable T appears several times. STAR in-
fers that this implies that there is a relation between
both statements. The relationship exists since both
statements refer to the concept spaces; however,
this does not define a dependency relationship. This
result provides evidence for the need of an archi-
tecture which better captures variable semantics.

Figure 4 presents a comparison of our model
with the single attention model. This graph shows
the percentage of mathematical elements in the
statement versus the percentage of the statements

in the dataset that the model was able to predict
correctly.

STAR has an consistent performance throughout
different distributions of mathematical and natural
language terms. Such results demonstrate a need
of an attention layer for each term modality. On
the other hand, we can observe that the baseline
struggles to predict statements that are mostly math-
ematical (right-end of the graph), finding it easier
to predict the statements which have the prevalence
of natural language terms (left-end of the graph).
The results show that our model is better suitable
for dealing with this type of entangled text.

5 Related Work

Several areas of research apply Natural Language
Processing for domain-specific tasks, Mathemat-
ics being one of these areas. One crucial task in
this field is solving mathematical word problems,
where the goal is to provide the answer to a mathe-
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Topic STAR Self-att + BiLSTM

Train Test F1 P R F1 P R

AA AA .862 .823 .906 .629 .581 .684
TP TP .752 .692 .825 .722 .680 .769
ST ST .787 .763 .813 .613 .654 .578
AA ST .662 .595 .747 .627 .595 .664
AA TP .595 .520 .693 .570 .539 .605
TP AA .654 .536 .836 .649 .602 .704
TP ST .673 .588 .787 .628 .561 .714
ST TP .535 .539 .531 .578 .535 .627
ST AA .644 .598 .697 .625 .591 .663

Table 5: Testing how different mathematical areas are transportable to other areas. The areas considered here are
Abstract Algebra(AA), Topology (TP) and Set Theory (ST). For these experiments, we use random examples with
n = 1.

Val Test

F1 P R F1 P R

BERT .886 .871 .901 .877 .925 .834
MathSum .644 .512 .869 .459 .562 .388
Self-attention +
BiLSTM

.651 .550 .796 .631 .573 .703

STAR .885 .854 .917 .882 .865 .899

Table 6: Comparison of our model with other baselines, using n=1 and random examples.

matical problem written in natural language (Zhang
et al., 2020; Kushman et al., 2014; Ran et al., 2019).
These problems are usually self-contained and are
structured in a didactic and straightforward manner,
not containing complex mathematical expressions.

Some contributions focus on the representation
of mathematical text and mathematical elements.
Zinn (2004) proposes a representation for mathe-
matical proofs using Discourse Representation The-
ory. Similarly, Ganesalingam (2013) introduces a
grammar for representing informal mathematical
text, while Pease et al. (2017) presents this style
of text using Argumentation Theory. Such explicit
representations are relevant for representing the
reasoning process behind mathematical thinking.
However, it is still not possible to accurately extract
these representations at scale.

Representations of mathematical elements are
often used in the context of Mathematical Informa-
tion Retrieval, used, for example, for obtaining a
particular equation or expression, given a specific
query. Tangent-CFT (Mansouri et al., 2019) is an
embedding model that uses the subparts an expres-

sion or equation, to represent its meaning. This
type of representation (Fraser et al., 2018; Zanibbi
et al., 2016) often removes the expression for its
original discourse, losing the textual context that
can help to find a semantic representation. In this
work, we focus on creating a representation that can
integrate both of these aspects, natural language
and mathematical elements. Similar to our work,
Yuan et al. (2019) uses self-attention for mathe-
matical elements in order to generate headlines for
mathematical questions. Other relevant tasks for
NLP applied to Mathematics include typing vari-
ables according to its surrounding text (Stathopou-
los et al., 2018), obtaining the units of mathemati-
cal elements (Schubotz et al., 2016) and generating
equations on a given topic (Yasunaga and Lafferty,
2019).

Premise selection is a well-defined task in the
field of Automated Theorem Proving (ATP), where
proofs are encoded using a formal logical represen-
tation. Given a set of premises P , and a new con-
jecture c, premise selection aims to predict those
premises from P that will most likely lead to an
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Conjecture Premise Predicted Label
Let T = (S, τ) be a topological space.
Let A,B be subsets of S.
Then:
∂(A ∩B) ⊆ ∂A ∪ ∂B where ∂A denotes the boundary of A.

Let S, T1, T2 be sets such that T1, T2 are both subsets of S.
Then, using the notation of the relative complement:
ST1 ∩ T2 = ST1 ∪ ST2

1 1 3

∫ x.
x(x2−a2)

= 1
2a2
, ln x2−a2

x2 + C

for x2 > a2.

∫
dx
x = lnx+ C

for x 6= 0.
1 1 3

Let T = S, τ be a compact space.
Then T is countably compact.

Let T = (S, τa,b) be a modified Fort space.
Then T is not a T3 space, T4 space or T5 space.

1 0 7

Table 7: Some of the premises existing in the dataset, together with the predictions from STAR.
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Figure 4: Comparison of our model and the baseline on the capability of predicting correctly statements with
different levels of entanglement.

automatically constructed proof of c, where P and
c are both written using a formal language. (Irving
et al., 2016) is one of the first models to use Deep
Learning for premise selection in ATPs.

Ferreira and Freitas (2020a) proposed an adap-
tation of this task, focusing on mathematical text
written in natural language. A model based on
Graph Neural Networks has been previously intro-
duced for this task (Ferreira and Freitas, 2020b),
however, the authors do not take into account the
differences between mathematical and natural lan-
guage terms, representing all statements homoge-
neously. The premise selection task can also be
seen as an explanation reconstruction task, where
premises are considered explanations for mathe-
matical proofs. Approaches for dealing with such
type of challenge in the science domain include
unification retrieval (Valentino et al., 2020b,a) and
abductive reasoning (Thayaparan et al., 2020).

In this work, we propose a new representation
that distinctively captures both language modalities
present in the mathematical discourse in order to
solve the premise selection task.

6 Conclusion

In this work, we introduced STAR, a model to rep-
resent mathematical statements for the task Natural
Language Premise Selection. In this model, we
used two layers of self-attention, one for each lan-
guage modality present in the mathematical text.

In order to test STAR’s ability to capture the
different aspects of each modality, verifying if it
can interpret that expressions and words belong to
different lexical spaces, we compared our perfor-
mance with other baselines. We found that having
one layer for each modality significantly increases
the performance for premise selection. We also
compared our approach with state-of-the-art mod-
els and found that STAR achieves the highest re-
sults for the Test set. STAR was also tested for
transfer learning, revealing that cross-modal atten-
tion improves the transportability between different
mathematical areas.

However, we discovered that STAR is still lim-
ited regarding variable modelling. There is still
a gap in how to handle variable typing in latent
models, considering its meaning instead of its lexi-
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cal symbol. As future work, this issue will be ad-
dressed using latent representations trained specifi-
cally for variable modelling.
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