
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3213–3221
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3213

Handling Out-Of-Vocabulary Problem in Hangeul Word Embeddings

Ohjoon Kwon1† Dohyun Kim2† Soo-Ryeon Lee3 Junyoung Choi3 SangKeun Lee2,3
1Samsung Research, Republic of Korea

2Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
3Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea

ohjoon.kwon@samsung.com
{dhkim1028, bonny05616, dnduddl2015, yalphy}@korea.ac.kr

Abstract

Word embedding is considered an essential
factor in improving the performance of vari-
ous Natural Language Processing (NLP) mod-
els. However, it is hardly applicable in real-
world datasets as word embedding is generally
studied with a well-refined corpus. Notably,
in Hangeul (Korean writing system), which
has a unique writing system, various kinds of
Out-Of-Vocabulary (OOV) appear from typos.
In this paper, we propose a robust Hangeul
word embedding model against typos, while
maintaining high performance. The proposed
model utilizes a Convolutional Neural Net-
work (CNN) architecture with a channel atten-
tion mechanism that learns to infer the origi-
nal word embeddings. The model train with a
dataset that consists of a mix of typos and cor-
rect words. To demonstrate the effectiveness of
the proposed model, we conduct three kinds of
intrinsic and extrinsic tasks. While the existing
embedding models fail to maintain stable per-
formance as the noise level increases, the pro-
posed model shows stable performance.

1 Introduction

Word embedding refers to the process of generating
vectors that contain semantic and syntactic infor-
mation of languages. Machines can understand the
meaning of words through the word embeddings.
Several embedding methodologies have been pro-
posed to improve various Natural Language Pro-
cessing (NLP) models’ performance, such as ma-
chine translation, sentence classification, and text
generation (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017).

Word2vec (Mikolov et al., 2013) generates word
vectors using the contextual data of words based

†Equal contribution

on the distributional hypothesis. Word2vec assigns
a unique vector to each word, and has proved its
effectiveness by improving various systems’ perfor-
mance. Similarly, GloVe (Pennington et al., 2014)
that uses co-occurrence information of each word
found throughout the corpus, generates word vec-
tors that contain semantic and syntactic character-
istics.

However, Word2vec and GloVe suffer from be-
ing dependent on the training corpus. In particu-
lar, they do not include the word embeddings that
did not appear in the training process. To tackle
this OOV problem, replacing unseen words with a
unique token “UNK” is widely used as a solution.
This method can allow the model to deal with OOV
words. However, this countermeasure reduces the
performance of the system. This is because several
unseen words are recognized as having the same
meaning. Hence, the importance of each word is
ignored and recognized as noise.

This OOV problem amplifies when dealing with
real-world datasets that contain a large number of
typos and intended slang that has not been included
in the training phase. In particular, if words relevant
to the core meaning of a sentence are replaced as
OOV, the system’s performance will drastically re-
duce. For example, suppose an evaluation set for a
sentiment classification task contains typos such as
“funnnny” and “coooool”. When predicting the sen-
timent of the sentence, the original meanings of the
two words, “funny” and “cool”, serve as decisive
information. However, the sentiment classification
accuracy drastically reduces when these words are
processed as “UNK” and encoded to have the same
meaning. Therefore, to increase the effectiveness of
NLP models, robust word embeddings are strongly
needed in noisy text.

Meanwhile, FastText (Bojanowski et al., 2017)
presents a method to address the OOV problem.
FastText follows the training process of Word2vec,



3214

but understands a word as a set of n-gram subword
information. For example, the meaning of the word
‘funny’ is learned by decomposing the characters
into n-grams such as ‘fun’, ‘unn’, and ‘nny.’ In this
way, FastText can generate embeddings for OOV
words that did not appear during the training phase
by utilizing this subword information.

FastText is suitable for languages that have char-
acteristics of isolated words (e.g., English). This is
because the meaning of the word can be inferred
through the summation of subword information:
prefix, root, and postfix. However, in the case of
agglutinative languages such as Hangeul (Korean
writing system), it is not easy to fully understand
the meaning of a word by merely referring to the
summation of the subword information. A word in
Hangeul consists of at least one to ten or more dif-
ferent morphemes, which make extracting internal
information complicated. Therefore, to decipher a
Hangeul word, it is necessary to be sensitive when
looking for the vital subword information within
the word.

CNN captures locational and morphological in-
formation of words and characters, and many stud-
ies using CNN have achieved good performance in
various NLP tasks (Zhang et al., 2015; Kim et al.,
2016, 2018; Ma and Hovy, 2016). Inspired by this,
in this paper, we propose a CNN-based channel
attention word embedding model that generates
robust Hangeul embeddings for noisy text. The pro-
posed model utilizes CNN to extract n-gram pairs
from Korean words. The model then applies an at-
tention mechanism to features from each channel
representing the inherent information in the n-gram
pairs. An input word for training is replaced with in-
tentionally generated typos with a certain probabil-
ity of adapting to typos. This generated word vector
enhances the semantics of a word by predicting the
context words. In summary, the contributions of
this paper are three-fold:

• We propose a robust word embedding model
against typos by training it with intentionally
generated typos.

• We introduce a channel attention mechanism
to utilize the distinctive structure of Hangeul
words.

• We demonstrate the effectiveness of the pro-
posed model on the noisy text through word
analogy, language modeling, and sentiment
classification tasks.

The remainder of the paper is organized as fol-
lows. In Section 2, we investigate related work and
discuss key differences from ours. In Section 3,
we describe the proposed methodology in detail.
Furthermore, we present the evaluation results and
analyze the performance in Section 4 and 5, respec-
tively. Finally, Section 6 contains the conclusion.

2 Related work

In this section, we review previous studies on 1)
embedding generation methods that are robust to
typos and 2) embedding generation methods that
consider the unique characteristics of Hangeul.

2.1 Typos word embedding methods for
English

There have been many studies for dealing with
OOV problems (Bojanowski et al., 2017; Belinkov
and Bisk, 2018; El Boukkouri et al., 2020). Unlike
unseen words, typos require a different approach
in that the originally intended word is likely to
be known. RoVe (Malykh et al., 2018) and MOE
(Piktus et al., 2019) explored the methodologies
to deal with typos. RoVe (Malykh et al., 2018)
utilized the English word’s structural features as
prefix, root, and postfix. The target word is encoded
into Beginning, Middle, and End vectors. Embed-
dings generated in this way maintain robust model
performance, although a noise level of the down-
stream task increases. However, RoVe performs
poorly in generating agglutinative embeddings in
languages such as Hangeul. As mentioned earlier,
this is due to the feature of agglutinative languages
where dozens of morphemes are combined to form
a word. In other words, dividing morphemes into
three parts – Beginning, Middle, and End – is not
sufficient to comprehend Hangeul words.

MOE (Piktus et al., 2019) introduced supervised
learning for misspelling patterns to FastText’s train-
ing mechanism. The model was explicitly trained
to infer the original meaning of the word from the
irregular shape of typos by increasing the similar-
ity between them. In this way, MOE was trained
on typo data collected from real users on the web.
Consequently, MOE showed stable performance
for unseen words in intrinsic and extrinsic tasks.
However, MOE generates the word embeddings
with linear combinations of the constituent sub-
words. In other words, the word vectors do not
reflect the differences in importance among the
subword information. This is insufficient to fully



3215

Figure 1: Overall framework for the word embedding generating system proposed in this paper.

Figure 2: Example of the constituent of a Korean word
”단어 (word)”.

explain the meaning of words in complex agglu-
tinative languages such as Hangeul. To generate
effective Hangeul word embeddings, differentiat-
ing importance across n-gram pairs is necessary.

2.2 Word Embedding Methods for Korean

Ko-FastText (Park et al., 2018) and other
morpheme-based studies (Lee et al., 2018; Nam
and Kim, 2016) considered the characteristics of
agglutinative languages during embedding. Ko-
FastText performed better in intrinsic and extrinsic
tasks with a Hangeul dataset by applying the Fast-
Text to each jamo (the smallest unit of a Hangeul
word). However, this model did not fully utilize
the sophisticated internal information of Hangeul
words. Although the model refers to the morpho-
logical information revealed in the n-gram, lack of
selectivity regarding the important morphological
information of a word remains a problem.

Nam and Kim (2016) and Lee et al. (2018) ex-
plicitly considered the Korean words’ morphologi-
cal information. They decomposed words into char-
acter n-grams using morpheme analyzers. However,
they encountered a fundamental problem that their
models are dependent on the performance of the
morpheme analyzer. In particular, the analyzer did
not work appropriately for typos, so the perfor-
mance of word embeddings cannot be guaranteed.

Unlike previous studies, we do not utilize a spe-
cific morpheme analyzer (or stemmer) or use typo
data collected from the web. Instead, we propose

a model that trains with our own generated typo
set. Besides, we linearly combine the subword in-
formation by reinforcing the necessary information
dynamically. Therefore, the model maintains robust
performance against different grammatical errors
as its embedding generation technique incorporates
morphologically complicated Hangeul features.

3 Methodology

In this section, we describe the architecture of the
proposed model. The model consists of three parts.
The first part is the generation of Korean typos. We
create rule-based typo datasets, and they reinforce
the robustness of the embedding model for typos.
Next, we create a jamo-level CNN with channel
attention to represent the word vector. By apply-
ing channel attention to features extracted through
convolution operation from each jamo, we selec-
tively enhance the importance of the primary n-
gram features. Based on a certain probability, the
CNN learns to generate the original word vector
from the typos, reducing the difference between the
typos and the actual word embeddings. Finally, we
perform the task of predicting the surrounding con-
text words from the generated word embeddings.
Through this process, we can proceed with the re-
inforcement of the semantics of words. Figure 1
shows the whole architecture of our model.

3.1 Generating Korean Typos

The smallest unit of Hangeul words that corre-
sponds to the alphabet of English is jamo, consist-
ing of 14 consonants and 10 vowels. In Hangeul,
a syllable consists of three jamos: chosung, joong-
sung and jongsung. We divide each syllable into
jamo units (Song, 2006). Figure 2 shows an exam-
ple of dividing each syllable. The syllable “단” is
divided into [ㄷ,ㅏ,ㄴ] and “어” is divided into



3216

Figure 3: Examples of typos in Korean words. The ty-
pos generated in this paper are based on these cases.

[ㅇ,ㅓ]. In Hangeul, the chosung and joongsung
jamos are always present while the jongsung jamo
is only present or not (e.g., in “어”).

After separating the Korean word into jamo,
we make the following rules for creating a typo
: (a) reversing the order of letters in the word, (b)
adding arbitrary letters, or (c) dropping out a let-
ter from the word. We generate our typo dataset
following a well-known Korean typo distribution
reported in the Korean information processing com-
munity (Jeon et al., 2010). Figure 3 shows exam-
ples of typos by the three rules. When following the
rules, typos in Hangeul cause a breakdown of the
word’s form. This is because only consonants can
be placed in the chosung position and only vowels
can be placed in the joongsung position. Therefore,
while typos in English can easily infer the original
meaning (e.g., englihs, englis, ennglish), Hangeul
typos are hard to understand even when they come
from native speakers. Consequently, we generate
at least 10 to 25 typo word pairs for each Korean
word.

3.2 Jamo-level CNN with Channel Attention

After decomposing the input word into jamo units
and generating typos, the convolution operation is
used to extract the most prominent features of the
word. Each one-hot encoded jamo representation
is concatenated to set in a form suitable for con-
volution operations. We use zero padding to fix
the input word vector’s length to the size of the
longest word. Then we obtain jamo representation
K ∈ Rm×d, where m is the maximum length of the
input word, and d is the embedding dimension. A
convolution operation involves a filter w ∈ Rh×d,
where h ∈ {1, 2, ..., 10} is a filter size. We apply
the convolution operation and activation function
with these generated jamo representations. For ex-
ample, a feature c is generated from a window of
jamos wi:i+h−1 by

ci = ReLU(Kh · wi:i+h−1 + b) (1)

where b ∈ R is a bias. This convolution
filter extracts the major feature of the jamos
{w1:h, w2:h+1, ..., wm−h+1:m} to produce a fea-
ture map

c = [c1, c2, ..., cm−h+1], (2)

with c ∈ Rm−h+1. We generate n feature maps in
this way. Hence, we obtain concatenated feature
map C ∈ R(m−h+1)×n, where n is the number of
the feature maps. To extract the features for the
attention score from the convolution operation re-
sults, we employ average and max pooling in chan-
nel level as follows:

Cavg = average(C), (3)

Cmax = max(C), (4)

where Cavg, Cmax ∈ Rn. Next, to extract the
attention-applied feature map, we compute the at-
tention scores between the channels.

Cscore = W2(W1(Cavg + Cmax)), (5)

where W1,W2 ∈ Rn×n are the first and second
weight matrix of the attention network for calcu-
lating the attention score, respectively. Cscore is
the result that comes from passing through the at-
tention network. We apply a softmax function to
create a standardized channel attention map. We
then broadcast Cscore into the same shape of C.
The channel attention map is multiplied by the con-
tinuous jamo pair features to generate a feature map
of the input word reflecting an attention score for
each channel. Then max pooling is applied to the
attention score as follows:

Catt = max(ReLU(C × softmax(Cscore))).
(6)

We obtain Catt for each filter size following this
method, and consequently we obtain Ch

att ∈ R10n.
Then Ch

att is connected to the fully-connected
layer, and we obtain final word representation w as
follows:

w = Ch
att ·W + b, (7)

where W ∈ R10n×d, b ∈ R. We have selectively
enhanced the substructure of the word and created
word vector w ∈ Rd that reflects contextual infor-
mation. We then train the jamo-level CNN so that
the word vector w resembles the representation of
the vector ŵ from the pre-trained word. In this step,



3217

we use the squared Euclidean distance with each
normalized word vector for the objective function
as follows:

Loss =
∑
v∈Vw

‖ wv − ŵv ‖2 . (8)

This equation approximates the generated word
vector w to the pre-trained word vector ŵ. To cre-
ate word embeddings using the proposed model,
we split a word to jamo-level and insert it into the
model as an input following a similar approach in
the training phase. When the input tensor flows
through the model and reaches the transformation
layer, it is considered as the newly created embed-
dings of the word.

4 Experiments

In this section, we present our experimental results
by comparing the performance of the proposed
model with other embedding methods. We mea-
sure the performance of the models through word
analogy, language modeling, and sentiment classi-
fication tasks.

4.1 Experimental Settings
We use an Adam optimizer with a learning rate of
0.001. The convolution filter has a size from one to
nine, and each filter has 100 channels. The context
window size for calculating semantic loss is set
to an arbitrary number of less than five. The cor-
pus used for learning is a Korean Wikipedia dump
dataset released on June 1st, 2019. No preprocess-
ing is performed other than removing special char-
acters and replacing numbers with “N” tokens. We
tokenize the corpus in word units for all models in
the experiment. To ensure fairness, we set different
random seeds in the training and evaluation phases.

4.2 Baselines
To measure the performance of the proposed model
against widely used and state-of-the-art models,
we used the following methods:

• Word2vec (Mikolov et al., 2013): Word2vec
uses a representative embedding technique
based on the distributional hypothesis. To find
the meaning of a word in context, Word2vec
learns the meaning of the target word from
context words. Following this, if a word
that is not registered at the training phase
appeared at the evaluation phase, we replaced

the word as “UNK” token. We used skip-gram
architecture since it is generally proven to be
better than other methods.

• Ko-FastText (Ko-ft) (Park et al., 2018): Ko-
ft uses the jamo n-gram as the smallest unit.
Therefore, it has an advantage that unseen
words can be generated by a combination of
jamo n-grams generated in the training phase.
This model has proved to have the best perfor-
mance in Hangeul embedding methods. ch4
means the model use one to four jamo-level
n-grams, and ch6 means the model use one to
six n-grams.

4.3 Word Analogy Task
We first conduct an embedding evaluation using
the word analogy task as an intrinsic task. We mea-
sure how the word embedding process has learned
semantic and syntactic meaning. Following (Park
et al., 2018), we use 3COSADD based metric as an
evaluation metric.

4.3.1 Dataset
We use the dataset introduced in (Park et al., 2018).
The dataset is divided into two categories of seman-
tic and syntactic meaning in the English version.
Then they are translated into Korean and divided
into ten subcategories. In this way, it is suitable to
evaluate the performance of Hangeul embedding.

4.3.2 Results
Table 1 shows the analogy task results1. Word2vec
has a big gap compared to Ko-ft and misK, which
shows the limitations of the embedding technique
from the viewpoint of words. In general, misK out-
performs Ko-ft, indicating that the misK learned
the semantic and syntactic meaning of each word
better with the help of the well-designed attention
mechanism in Figure 1. Also, misK-ft generally per-
forms better than the model that learned the shape
of words from Word2vec (misK-w2v). This demon-
strates the importance of pre-trained embedding
knowledge when creating new embeddings (Pinter
et al., 2017).

4.4 Language Modeling Task
We conducted a language modeling experiment to
check the embedding performance as an extrinsic

1Although our word embedding is designed to work in the
noisy environment, we examine how it works in the clean (i.e.
typo-free) environment.



3218

Model
Semantics Syntactics

Capt Gend Name Lang Misc Case Tense Voice Form Horn
Word2vec 0.471 0.574 0.528 0.466 0.587 0.478 0.561 0.633 0.672 0.665
Ko-ft (ch6) 0.446 0.512 0.524 0.364 0.512 0.194 0.417 0.461 0.524 0.362
Ko-ft (ch4) 0.441 0.517 0.521 0.368 0.521 0.197 0.422 0.468 0.529 0.369
misK-w2v 0.463 0.482 0.513 0.331 0.486 0.328 0.382 0.436 0.389 0.326
misK-ft 0.460 0.488 0.498 0.327 0.491 0.311 0.388 0.421 0.361 0.294

Table 1: Result of a word analogy task experiment. misK-w2v and misK-ft are our proposed models trained from
Word2vec (Mikolov et al., 2013) and Ko-FastText (Park et al., 2018), respectively. Lower score is better. Best results
are highlighted in bold font.

Model
Noise level

0% 10% 20% 30%
Word2vec 248.3 259.7 269.1 281.4
Ko-ft (ch6) 206.4 218.1 229.5 241.7
Ko-ft (ch4) 210.2 223.1 231.9 246.3
misK-w2v 213.8 220.7 224.7 229.8
misK-ft 211.6 219.4 224.6 228.4

Table 2: Perplexity measured from the language model-
ing. The noise level is the probability that each word in
the dataset will be replaced by typos. Best results are
highlighted in bold font.

task. Also, we replaced the word embeddings of
the basic LSTM network with dropout regulariza-
tion (Kim et al., 2016). All embedding dimensions
are set to 300 and the dropout probability is set to
0.5. Each embedding model is measured using per-
plexity, which is widely used to measure language
modeling performance (Katz, 1987). The lower
the perplexity value measured, the more likely the
model predicts the next word correctly. Besides,
in the downstream task, we used intentionally gen-
erated typo data in the experiment to verify the
robustness of embedding for noisy text.

4.4.1 Datasets
The language modeling dataset was released by the
Korean Wikipedia, published on June 1, 2019. Each
embedding technique was trained based on this
corpus in its way. The code to extract and refine the
text from the Wikipedia database dump followed
the open-source software2.

4.4.2 Results
The results of the language modeling experiments
are shown in Table 2. Regardless of the noise level,
Word2vec has the lowest performance. In other

2https://github.com/attardi/wikiextractor

Model
Noise level

0% 10% 20% 30% 40%
Word2vec 64.1 62.9 60.4 59.3 58.4
Ko-ft (ch6) 68.8 67.3 66.3 64.1 62.3
Ko-ft (ch4) 68.4 66.4 65.2 63.4 61.7
misK-w2v 68.3 67.6 66.7 65.4 64.2
misK-ft 68.1 67.2 66.4 65.5 64.1

Table 3: Result of the sentiment classification experi-
ment. The noise level is the probability that each word
in the dataset will be mistyped. Best results are high-
lighted in bold font.

words, it can be seen that the word-level embed-
dings separated by blank spaces are not suitable
for Korean text irrespective of the response to mis-
spelled words. Ko-ft performs best when the noise
level is below 20%. Meanwhile, the performance
of misK is better than the other models as the noise
level rises to more than 10%. The fact that misK
showed superior performance means it can stably
respond to various typos in Hangeul text.

4.5 Sentiment Classification Task

The performance of each model is compared us-
ing the sentiment analysis experiment on movie
reviews. We represent the reviews by averaging the
word embeddings, constructing a review, and train-
ing through the logistic regression classifier for a
fair comparison.

4.5.1 Datasets
For sentiment classification, we used the Naver
Sentiment Movie Corpus3 as our classification data.
For the typos used in the real world, we did not
proceed with any form of preprocessing. Therefore,
it includes typos or slang used by Koreans. The
experiment was also conducted by increasing noise

3https://github.com/e9t/nsmc/



3219

In-Vocabulary Out-Of-Vocabulary
컴퓨터 대한민국 대학교 자동차 커뮤펕 댛나민국 댛가교 자도앛

개인용 한국 대학교의 승용차 - - - -
Word2vec 그래픽 국내 대학교에서 자동차의 - - - -

컴퓨터의 대한민국의 대학교의 자동차가 - - - -

FastText
컴퓨터의 대한민국은 대학교는 자동차를 커뮤니티 중화민국 침례교 자

컴퓨터에 대한민국을 대학교와 자동차도 객실 대한민국 외교 재차

컴퓨터로 대한민국이 대학교의 자동차에 앱 대한민국과 폐교 자작

misK-ft
컴퓨터는 한국 대학교의 자동차에 코뮌 대한민국 대학원을 자동차

컴퓨팅 대한민국에서 대학의 자동차의 소프트웨어 중화민국 대학원의 자동차의

소프트웨어 국내 대학교는 자동차가 컴퓨터는 웹 학사 광고

Table 4: In OOV experiments, words that are related to the original word are highlighted in bold font. 커뮤니
티-community, 객실-room, 앱-app, 소프트웨어-software, 침례교-baptist church, 외교-diplomacy, 폐교-closing
schools,학사-bachelor,자-ruler,재차-again,자작-oneself.

level of the evaluation dataset and intentionally
producing misspelled words to compare robustness
to the typos.

4.5.2 Results
Table 3 shows that Ko-ft has the highest perfor-
mance in the sentiment classification experiment re-
sults in the clean environment. Besides, Word2vec
showed significantly reduced performance than Ko-
ft. This is because several OOVs were included in
the test set. However, as the noise level increases,
the performance of misK overtakes that of the Ko-ft.
It confirms that the performance of misK decreases
relatively smoothly as the amount of noise in the
data rises. In other words, misK is more robust to
the noisy data than the others.

5 Analysis

In this section, we analyze the proposed methodol-
ogy. We find the nearest neighbor words mapped
close to the misspelled word to evaluate robustness
of the typo embeddings qualitatively.

5.1 Nearest Neighbor of Words

We check the nearest neighbor of words to com-
pare the performance of each word embedding.
This evaluation is to identify which words are lo-
cated around the represented target words (컴퓨
터-computer,대한민국-Korea,대학교-university,
자동차-automobile) and typos transformed from
these words.

Table 4 shows the experimental results. The re-
sults with In-Vocabulary show that all three models
produce the appropriate embeddings. However, the
results from the OOV confirm that Word2vec can-
not deal with the typos. In contrast, Ko-ft and misK
can generate embeddings for these unseen words to

Figure 4: Cosine similarity between the generated word
vector and pre-trained word vector.

investigate these nearest words. In general, the typo
embeddings generated by the Ko-ft are inaccurate
(note the meaning of the words described in the
caption). On the other hand, we deduce that words
with appropriate meanings are mapped with our
proposed model, misK.

5.2 Similarity between Generated and
Pre-trained Word Vector

Experiments show superiority in the noisy text of
our proposed embedding generation model. We
measure the cosine similarity between the pre-
trained word embeddings and those generated by
our proposed model. As shown by the dotted curve
in Figure 4, when training data includes intentional
typos, the cosine similarity between the pre-trained
word embeddings and those generated by the pro-
posed model could not be increased beyond 0.86.
On the other hand, in the absence of typos, the sim-
ilarity increases to around 0.95. Besides, there is a



3220

tradeoff between the ability to map typos closely
to the original word and the ability to mimic pre-
trained word vectors.

6 Conclusion

In this paper, we proposed a robust Hangeul em-
bedding model against typos. For this purpose, we
intentionally generated typos to train word em-
beddings. A channel attention mechanism is used
to utilize the structure information found in Ko-
rean words selectively. This reflects the distinctive
characteristics of Hangeul, which combines several
morphemes to form a single word, without depend-
ing on the performance of a morpheme analyzer.
Based on this, the training progresses from the ex-
tracted jamo n-gram feature of the target words
through the convolution layer to aim the pre-trained
word embeddings. The proposed embedding model
outperformed the current state-of-the-art in the in-
trinsic task. Also, we verify that the original re-
search goal was achieved by functioning a stable
embeddings even in the extrinsic tasks. We plan to
apply the proposed methodology to various down-
stream tasks (e.g., POS tagging and machine trans-
lation) and other agglutinative languages, such as
Japanese and Turkish.

Acknowledgments

We would like to thank the anonymous review-
ers for their valuable comments. This research
was supported by the Basic Research Program
through the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea Govern-
ment (MSIT) (No. 2020R1A4A1018309), the NRF
grant funded by the Korea government (MSIT)
(No. 2018R1A2A1A05078380), and Institute of
Information communications Technology Planning
Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2019-0-00079, Artificial In-
telligence Graduate School Program (Korea Uni-
versity)).

References
Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic

and natural noise both break neural machine transla-
tion. In Proceedings of International Conference on
Learning Representations.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Hicham El Boukkouri, Olivier Ferret, Thomas
Lavergne, Hiroshi Noji, Pierre Zweigenbaum, and
Jun’ichi Tsujii. 2020. CharacterBERT: Reconciling
ELMo and BERT for word-level open-vocabulary
representations from characters. In Proceedings
of the International Conference on Computational
Linguistics, pages 6903–6915.

Hee-Won Jeon, Daniel Huang, and Hae-Chang Rim.
2010. Analyzing of hangul search query spelling
error patterns and developing query spelling correc-
tion system based on user logs. In Proceedings of
Annual Conference on Human and Language Tech-
nology, pages 15–21.

Slava Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401.

Yeachan Kim, Kang-Min Kim, Ji-Min Lee, and
SangKeun Lee. 2018. Learning to generate word
representations using subword information. In Pro-
ceedings of the International Conference on Compu-
tational Linguistics, pages 2551–2561.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the American Association
for Artificial Intelligence Conference on Artificial In-
telligence.

Dongjun Lee, Yubin Lim, and Taekyoung Kwon. 2018.
Morpheme-based efficient korean word embedding.
Journal of Korean Institute of Information Scientists
and Engineers, 45(5):444–450.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1064–
1074.

Valentin Malykh, Varvara Logacheva, and Taras
Khakhulin. 2018. Robust word vectors: Context-
informed embeddings for noisy texts. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing Workshop W-NUT: The
4th Workshop on Noisy User-generated Text, pages
54–63.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the Advances in Neural Infor-
mation Processing Systems, pages 3111–3119.

Kyeong-Min Nam and Yu-Seop Kim. 2016. A word
embedding and a josa vector for korean unsuper-
vised semantic role induction. In Proceedings of the
American Association for Artificial Intelligence Con-
ference on Artificial Intelligence, pages 4240–4241.

Sungjoon Park, Jeongmin Byun, Sion Baek, Yongseok
Cho, and Alice Oh. 2018. Subword-level word vec-
tor representations for korean. In Proceedings of



3221

the Annual Meeting of the Association for Compu-
tational Linguistics, pages 2429–2438.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543.

Aleksandra Piktus, Necati Bora Edizel, Piotr Bo-
janowski, Edouard Grave, Rui Ferreira, and Fabrizio
Silvestri. 2019. Misspelling oblivious word embed-
dings. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3226–
3234.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2017. Mimicking word embeddings using subword
rnns. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
102–112.

Jae Jung Song. 2006. The Korean language: Structure,
use and context. Routledge.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the Advances in Neural
Information Processing Systems, pages 649–657.


