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Abstract

Answer Sentence Selection (AS2) is an effi-
cient approach for the design of open-domain
Question Answering (QA) systems. In or-
der to achieve low latency, traditional AS2
models score question-answer pairs individu-
ally, ignoring any information from the doc-
ument each potential answer was extracted
from. In contrast, more computationally ex-
pensive models designed for machine reading
comprehension tasks typically receive one or
more passages as input, which often results in
better accuracy. In this work, we present an
approach to efficiently incorporate contextual
information in AS2 models. For each answer
candidate, we first use unsupervised similarity
techniques to extract relevant sentences from
its source document, which we then feed into
an efficient transformer architecture fine-tuned
for AS2. Our best approach, which leverages
a multi-way attention architecture to efficiently
encode context, improves 6% to 11% over non-
contextual state of the art in AS2 with minimal
impact on system latency. All experiments in
this work were conducted in English.

1 Introduction

AS2 models for open-domain QA typically con-
sider sentences from webpages as independent
candidate answers for a given question. For any
webpage containing potential answer candidates
for a question, AS2 models first extract individ-
ual sentences, then independently estimate their
likelihood of being correct answers; this approach
enable highly efficient processing of entire docu-
ments. However, under this framework, context
information from the entire webpage (global con-
text), which could be crucial for selecting correct
answers, is ignored. Conversely, current systems
in Machine Reading (MR) (Huang et al., 2019;

∗ Work was conducted while the author was an intern at
Amazon Alexa.
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The math of pi explained, as simply as possible
How many digits of pi we really need?

Pi, you may also remember from grade school, is not an ordinary number. It’s 
irrational, meaning it has an endless number of decimals that never repeat. 
Though even cutting off pi at 15 digits allows for extremely precise measurements.

If you were to draw a circle with a diameter of 25 billion miles, using 15 digits of pi, 
you’d only arrive at a measurement of the circumference that’s off by 1.5 inches, 
NASA’s Marc Rayman explained in a post on NASA’s JPL website. And that’s 
good enough. 

Of course, that hasn’t stopped people from looking for more and more digits of pi. 
Currently, there are more than 22.4 trillion known digits, which show no hint of 
ending or repeating. Further reading: pi and pie.

Figure 1: Candidate sentence (in orange) for question
“how many digits are in pi?”. Local context is shown
in green, while global context is shown in red.

Kwiatkowski et al., 2019a; Lee et al., 2019; Joshi
et al., 2020a) uses a much larger context from the
retrieved documents. MR models receive a ques-
tion and one or more passages retrieved through a
search engine as input; they then select one or more
spans from the input passages to return as answer.

While being potentially more accurate, MR mod-
els typically have higher computational require-
ments (and thus higher latency) than AS2 models.
That is because MR models need to process pas-
sages in their entirety before an answer can be
extracted; conversely, AS2 systems break down
paragraphs in candidate sentences, and evaluate
them all at once in parallel. Therefore, in many
practical applications, MR models are only used to
examine 10 to 50 candidate passages; in contrast,
AS2 approaches can potentially process hundreds
of documents, e.g., (Matsubara et al., 2020; Sol-
daini and Moschitti, 2020).

In this work, we study techniques that can com-
bine the efficacy of MR models with the efficiency
of AS2 approaches, while keeping a single sen-
tence as target answer, as in related AS2 works1.
In particular, we focus our efforts on improving
accuracy of AS2 systems without affecting their
latency.

1MR systems have a different aim than AS2.
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Early neural models for retrieval-based QA fo-
cused on incorporated neighboring sentences (local
context) to improve performance. For example,
Tan et al. (2017) proposed a neural architecture
based on gated recurrent units to encode question,
answer, and local context; their approach, while
effective at the time, shows a significant gap to the
current state-of-the-art models (Garg et al., 2020).
Min et al. (2018) studied neural efficient models
for MR by optimizing answer candidate extrac-
tion. More recently, researchers have focused in
including source document information in trans-
former models. For example, Joshi et al. (2020b)
proposed a contextualized model for MR that aug-
ments named entities in candidate passages with
snippets extracted from Wikipedia pages. Their
approach, while interesting, is limited to entities-
based context, and specific to Wikipedia and MR
domain. For AS2, Lauriola and Moschitti (2021)
proposed a model that uses local context as defined
by the preceding and following sentences of the
target answer. They also introduced a simple bag-
of-words representation of documents as global
context, which did not show significant improve-
ment over non-contextual AS2 models.

Unlike previous efforts, our approaches consider
both local context (that is, the sentences immedi-
ately preceding or succeeding a candidate answer),
as well as global context (phrases in documents
that represent the overall topics of a page), as they
can both uniquely contribute to the process of se-
lecting the right answer. As shown in the example
in Figure 1, local context can help disambiguate
cases where crucial entities are not present in the
candidate answer (there’s no mention of “pi” in

“[c]urrently, there are more than 22.4 trillion known
digits”); conversely, global context can help reaf-
firm the relevance of a candidate answer in cases
where noisy information is extracted as local con-
text (in the example, “[f]urther reading: pi and pie”
does not contain any relevant information).

The contributions of this work are: (i) first, we
introduce two effective techniques to extract rel-
evant local and global contexts for a given ques-
tion and candidate answer; (ii) then, we propose
three different methods for combining contextual
information for AS2 tasks; (iii) finally, we evalu-
ate our approaches on two AS2 datasets: ASNQ
(Garg et al., 2020) and a benchmark dataset we
built to evaluate real-world QA systems. Results
show that our most efficient system, which lever-

Question: “where did the potter’s wheel first develop”
Corrent Answer: “Tournettes, in use around 4500 BC
in the Near East, were turned slowly by hand or by foot
while coiling a pot”
Sentence selected by N-grams: “In the Iron Age, the
potter ’s wheel in common use had a turning platform
about one metre (3 feet) above the floor, connected by
a long axle to a heavy flywheel at ground level. Use of
the potter’s wheel became widespread throughout the
Old World but was unknown in the Pre-Columbian New
World, where pottery was handmade by methods that
included coiling and beating.”

Question: “where do pineapples come from in the
world”
Correct answer: “In 2016, Costa Rica, Brazil, and the
Philippines accounted for nearly one-third of the world’s
production of pineapple.”
Sentence selected by Cosine Similarity: “The plant is
indigenous to South America and is said to originate
from the area between southern Brazil and Paraguay”

Table 1: Examples of global context selected via N-
gram similarity (top) and cosine similarity (bottom).
Overall, the N-gram approach tends to select longer
context sentences than Cosine’s, which in turn leads to
fewer context sentences being included in the global
context (as we limit it to 128 tokens). Empirically,
we also noticed that N-gram selected context sentences
also contain more noise.

ages a multi-way attention architecture, can im-
prove over the previous non-contextual state of
the art model for AS2 by up to 11%; further-
more, these results are achieved while maintain-
ing similar efficiency to the best-performing, non-
contextual AS2 systems, making our approach a
viable strategy for latency-sensitive applications.
Code and models are made available at https:

//github.com/alexa/wqa-contextual-qa.

2 Methodology

Our approach to ranking candidate answer consists
of two components: the first (Section 2.1) is re-
sponsible for extracting context for each candidate
answer, while the second (Section 2.2) encodes in-
formation from local and global contexts to score
each question / candidate answer pair.

2.1 Context Construction

As previously mentioned, our proposed method for
contextualizing answers relies on enriching them
with information encoded in sentences adjacent to
them, as well as from sentences throughout the doc-
ument each potential answer comes from; we will
define these extraction processes in this section.

https://github.com/alexa/wqa-contextual-qa
https://github.com/alexa/wqa-contextual-qa
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Figure 2: From left to right, the three approaches we evaluated in this work: context concatenation (Figure 2a),
context ensemble (Figure 2b), and multi-way attention (Figure 2c).

In the rest of this work, we will use Q to re-
fer to a question and D = {D1, . . . , Di, . . . , DN}
to indicate a collection of documents containing
potential answers for Q. Each document Di is
comprised of an ordered sequence of sentences
Di = 〈Ci,1, . . . , Ci,j , . . . , Ci,M 〉; each sentence
Ci,j could be used either as candidate answer, or
as context for another candidate.

2.1.1 Local Context
Similarly to previous work (Tan et al., 2017;
Lauriola and Moschitti, 2021), we define lo-
cal context Lock(Ci,j) for candidate Ci,j as
the sentences immediately preceding and suc-
ceeding each answer candidate within a win-
dow of 2k + 1 sentences, i.e., Lock(Ci,j) =
〈Ci,j−k, . . . Ci,j−1, Ci,j+1 . . . Ci,j+k〉. In our ex-
periments, we tried constructing a local context of
up to six sentences; however, we observed dimin-
ishing return when using more than the previous
and next sentences (i.e., k = 1) at the expense of
more computational complexity. Therefore, the
results presented in this work use two adjacent sen-
tences as local context.

2.1.2 Global Context
Unlike local context, there are many potential ap-
proaches to extracting information that can be used
to understand relevancy of a candidate answer to a
question. We proposed and evaluated two different
techniques for extracting global context Gloh(Ci,j)
(examples for both are shown in Table 1).

N-gram Overlap Similarly, to Joshi et al.
(2020b), we experimented with selecting sentences
as global context based on their n-gram overlap
with question and candidates.

In detail, we first extract the set of all unigrams,
bigrams, and trigrams from question Q and can-

didate Ci,j , which we denote as Ng1,2,3(Q,Ci,j);
then, we repeat the same procedure for all
{Ci,p ⊂ D where p 6= j} to obtain Ng1,2,3(Ci,p).
Finally, we score each sentence as follows:

Scorengrams(Ci,p|Q,Ci,j) =

|Ng1,2,3(Ci,p) ∩ Ng1,2,3(Q,Ci,j)|
|Ng1,2,3(Q,Ci,j)|

(1)

and pick the top h sentences as global context.

Semantic Similarity N-grams overlap can only
extract spans of text that are lexically similar to
either the query or candidate. To better capture con-
text that is topically relevant to an answer, we also
propose to use cosine distance between sentence
embeddings to approximate semantic similarity.

Given a sentence encoder model2 M, we
first obtain a representations for the question-
answer pairM(Q ⊕ Ci,j) and context sentences
{M(Ci,p) for all p = {1, . . . ,M}, p 6= j; then we
pick the top h sentences maximizing the following
cosine similarity score as global context:

Scoresim(Ci,p|Q,Ci,j) =

M(Q⊕ Ci,j) • M(Ci,p)

||M(Q⊕ Ci,j)|| ||M(Ci,p)||
, (2)

where ⊕ indicates string concatenation.

2.2 Contextual AS2 Models

Once local context Lock(Ci,j) and global context
Gloh(Ci,j) are extracted for candidate Ci,j , we en-
code them in conjunction with candidate answer
and question to estimate the likelihood of Ci,j be-
ing a correct answer for Q. Our approaches (sum-
marized in Figure 2) consume up to h = 5 sen-

2In our experiments, we use non-finetuned RoBERTaBASE

model (Liu et al., 2019).
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Model P@1 MAP MRR Latency

No Context 0.596 0.685 0.706 5.49
(Garg et al., 2020)

Local Context 0.653 0.732 0.752 5.62
(Lauriola and Moschitti, 2021)

Global Context 0.622 0.698 0.722 5.67

Context Concat 0.631 0.726 0.743 5.76
Context Ensemble 0.668 0.743 0.765 7.41
MWA 0.661 0.742 0.758 5.82

Table 2: Results on the ASNQ Test Set. The latency
is reported in micro-seconds (µs) per sample (±0.1 µs
with 95% CI).

tences as global context so not to exceed 128 to-
kens. 3 Similarly, to other efforts in this area (e.g.,
(Garg et al., 2020)), we leverage state-of-the-art
transformer models to estimate said probability.
Specifically, we studied three approaches to encode
question and answer context. Although the meth-
ods we proposed can be easily combined with any
transformer architecture, all models described here
are initialized from a RoBERTaBASE checkpoint.

Context Concatenation A simple baseline (van
Aken et al., 2019; Joshi et al., 2020b) for encoding
multiple contexts is to concatenate each question,
candidate answer, and local/global context text and
feed them through transformer model (Fig. 2a); the
resulting encoding is then projected to a probability
distribution using a dense feed-forward layer. This
baseline relies on the transformer self-attention
mechanism to implicitly model relations between
local and global context.

Context Ensemble As mentioned in Section 1,
local and global contexts might capture different as-
pects of the source document of a candidate answer.
To empirically verify this hypothesis, we evaluated
an ensemble model that encodes local and global
contexts separately using two independent trans-
former models (Figure 2b). The two models are
independently trained for AS2; then, their encod-
ings are concatenated and passed to a feed-forward
layer to estimate relevance of candidate Ci,j for
question Q. The top 3 layers4 model is once again
fine tuned on the training set.

3Using up 5 sentences resulted in 3.02 (n-gram context)
and 2.85 (cosine context) sentences being selected on average
for the ASNQ dataset.

4We tested with approaches for gradual unfreezing of the
top k layers; k = 3 yielded the best validation scores.

Model P@1 MAP MRR

No Context baseline
Global Context +3.95% +2.52% +2.29%
Local Context +3.59% +2.89% +2.21%

Context Concat +1.52% +2.33% +1.34%
Context Ensemble +5.92% +4.10% +3.39%
MWA +5.56% +3.92% +3.08%

Table 3: Results on the WQA Test Set.

Multi-way Attention (MWA) While leveraging
independent encoders for local and global contexts
can lead to an improvement in performance com-
pared to using a single encoder, it also doubles
computational requirements. Therefore, we also
explored techniques that incorporate inductive bi-
ases into transformer models and achieve efficiency
comparable to the context concatenation approach.
One such approach is, as shown in Figure 2c, to
combine a transformer model with a multi-way at-
tention mechanism (Tan et al., 2018), which has
been shown to be effective for commonsense rea-
soning tasks (Huang et al., 2019). This approach
still uses a single transformer model to produce
an encoding for a sequence of question, candidate
answer, local context, and global context; however,
similarly to the ensemble model, the additional at-
tention mechanism forces the encoder to selectively
look at local and global contexts separately.

3 Experiments

3.1 Setup

In order to validate the effectiveness of the pro-
posed context modeling techniques, we evaluated
our results on two datasets: ASNQ and WQA.

ASNQ The Answer Sentence Natural Questions
dataset (Garg et al., 2020) is a large collection
of 59,914 questions and 24,732,396 candidate an-
swers. It was obtained by extracting sentence can-
didates from the Google Natural Question (NQ)
benchmark (Kwiatkowski et al., 2019b). We use
the train, development, and test splits proposed by
Soldaini and Moschitti (2020).

WQA The Web-based Question Answering is an
in-house dataset built by Alexa AI as part of the
effort of understanding and benchmarking QA sys-
tems. The creation process includes the following
steps: (i) Given a set of questions, a search engine
is used to retrieve up to 100 web pages from an
index containing hundreds of million pages. (ii)
From the set of retrieved documents, all candidate
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Technique P@1 MAP MRR

N-gram Overlap 0.638 0.725 0.746
Cosine Similarity 0.661 0.742 0.758

Table 4: Comparison of global context extraction tech-
niques on the ASNQ test set when used with MWA.

sentences are extracted and ranked using AS2 mod-
els from Garg et al. (2020); and (iii) at least 25 can-
didates for each question are annotated by humans.
Overall, the version of WQA we used contains
6,962 questions and 283,855 candidate answers.
We reserved 3,000 questions for evaluation, 808
for development, and used the rest for training 5.

Models were trained on a single machine with 8
NVIDIA Tesla V100 GPUs with 32 GB of memory
each. We used model implementations from the
Transformers library when available (Wolf et al.,
2020). All our experiments were computed using
mixed precision through NVIDIA apex6. Latency
was measured on single GPU with a fixed batch size
of 128. Tokenization and time to transfer tensors
to the GPU was not included in the latency values.

3.2 Results and Discussion

Results on the ASNQ and WQA are summarized
in tables 2 and 3, respectively. Overall, we observe
that the context ensemble model achieves the best
performance; however, as observed in Section 2.2,
this model is twice as large as a RoBERTaBASE

model, thus it is a rather expensive solution.
Among our baselines, we note that local context

outperforms the model leveraging the global con-
text. This observation suggests that local informa-
tion carries more importance in understanding the
semantic relationship between question and candi-
date answers. Surprisingly, we observe that simply
concatenating local and global contexts achieves
worse performance of local context alone, and it
even underperforms the global context method on
WQA. This suggests that, without any additional
structure, the self-attention mechanism of the trans-
former cannot effectively distinguish and leverage
information from the local and global contexts.

We note that MWA achieves near identical per-
formance to the ensemble model on both datasets,

5The public version of WQA will be released in the
short-term future. Please search for a publication with ti-
tle WQA: A Dataset for Web-based Question Answering Tasks
on arXiv.org.

6https://github.com/NVIDIA/apex

suggesting that a controlled attention mechanism
can overcome limitations in the representation for
vanilla transformers, while reducing latency by
21.5% and memory usage by 89%. MWA also
matches the latency of the context concatenation
model, while improving it by 4.8% and 3.9% in
P@1 on ASNQ and WQA, respectively.

Finally, we study the effect of our proposed
global extraction techniques in Table 4. We observe
that, among the two proposed algorithms, the co-
sine similarity approach significantly outperforms
the N-gram based method. This confirms that pre-
trained language models can better select context
semantically related to question and candidates.

We note n-gram overlap is less computationally
taxing, as it can be efficiently implemented as a set
of sparse operations over bag of word representa-
tions of the question and answer candidates. On
the other hand, for cosine similarity, it is necessary
to compute Scoresim(Ci,p|Q,Ci,j) for all context
sentences using a transformer model. Recently in-
troduced transformer architecture variants could
be used to either speed up this similarity computa-
tion (Cao et al., 2020), or compute query and text
representation independently (Khattab and Zaharia,
2020). We leave the evaluation of these techniques
to future work.

4 Conclusions

For efficiency reasons, traditional AS2 models are
designed to estimate answer relevancy by only com-
paring question and candidates. In this work, we
described and evaluate several techniques to incor-
porate local and global contexts in the answer selec-
tion process. The results of our experiments show
that our proposed methods significantly outperform
non-contextual approaches; further, we empirically
demonstrate that local and global contexts can be
effectively combined to further improve ranking
performance.
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