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Abstract

Cross-lingual transfer is a leading technique
for parsing low-resource languages in the ab-
sence of explicit supervision. Simple ‘direct
transfer’ of a learned model based on a multi-
lingual input encoding has provided a strong
benchmark. This paper presents a method
for unsupervised cross-lingual transfer that im-
proves over direct transfer systems by using
their output as implicit supervision as part of
self-training on unlabelled text in the target
language. The method assumes minimal re-
sources and provides maximal flexibility by
(a) accepting any pre-trained arc-factored de-
pendency parser; (b) assuming no access to
source language data; (c) supporting both pro-
jective and non-projective parsing; and (d) sup-
porting multi-source transfer. With English as
the source language, we show significant im-
provements over state-of-the-art transfer mod-
els on both distant and nearby languages, de-
spite our conceptually simpler approach. We
provide analyses of the choice of source lan-
guages for multi-source transfer, and the ad-
vantage of non-projective parsing. Our code
is available online.1

1 Introduction

Recent progress in natural language processing
(NLP) has been largely driven by increasing
amounts and size of labelled datasets. The ma-
jority of the world’s languages, however, are low-
resource, with little to no labelled data avail-
able (Joshi et al., 2020). Predicting linguistic labels,
such as syntactic dependencies, underlies many
downstream NLP applications, and the most ef-
fective systems rely on labelled data. Their lack
hinders the access to NLP technology in many
languages. One solution is cross-lingual model

∗Work done outside Amazon.
1https://github.com/kmkurn/
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Figure 1: Illustration of our technique. For a target
language sentence (xi), a source parser Pθ0 predicts a
set of candidate arcs Ã(xi) (subset shown in the fig-
ure), and parses Ỹ (xi). The highest scoring parse is
shown on the bottom (green), and the true gold parse
(unknown to the parser) on top (red). A target language
parser Pθ is then fine-tuned on a data set of ambigu-
ously labelled sentences {xi, Ỹ (xi)}.

transfer, which adapts models trained on high-
resource languages to low-resource ones. This pa-
per presents a flexible framework for cross-lingual
transfer of syntactic dependency parsers which can
leverage any pre-trained arc-factored dependency
parser, and assumes no access to labelled target
language data.

One straightforward method of cross-lingual
parsing is direct transfer. It works by training a
parser on the source language labelled data and
subsequently using it to parse the target language
directly. Direct transfer is attractive as it does not
require labelled target language data, rendering
the approach fully unsupervised.2 Recent work
has shown that it is possible to outperform direct
transfer if unlabelled data, either in the target lan-

2Direct transfer is also called zero-shot transfer or model
transfer in the literature.

https://github.com/kmkurn/ppt-eacl2021
https://github.com/kmkurn/ppt-eacl2021
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guage or a different auxiliary language, is avail-
able (He et al., 2019; Meng et al., 2019; Ahmad
et al., 2019b). Here, we focus on the former set-
ting and present flexible methods that can adapt a
pre-trained parser given unlabelled target data.

Despite their success in outperforming direct
transfer by leveraging unlabelled data, current
approaches have several drawbacks. First, they
are limited to generative and projective parsers.
However, discriminative parsers have proven more
effective, and non-projectivity is a prevalent
phenomenon across the world’s languages (de
Lhoneux, 2019). Second, prior methods are re-
stricted to single-source transfer, however, transfer
from multiple source languages has been shown
to lead to superior results (McDonald et al., 2011;
Duong et al., 2015a; Rahimi et al., 2019). Third,
they assume access to the source language data,
which may not be possible because of privacy or
legal reasons. In such source-free transfer, only a
pre-trained source parser may be provided.

We address the three shortcomings with an al-
ternative method for unsupervised target language
adaptation (Section 2). Our method uses high prob-
ability edge predictions of the source parser as
a supervision signal in a self-training algorithm,
thus enabling unsupervised training on the target
language data. The method is feasible for dis-
criminative and non-projective parsing, as well as
multi-source and source-free transfer. Building on
a framework introduced in Täckström et al. (2013),
this paper for the first time demonstrates their ef-
fectiveness in the context of state-of-the-art neu-
ral dependency parsers, and their generalizability
across parsing frameworks. Using English as the
source language, we evaluate on eight distant and
ten nearby languages (He et al., 2019). The single-
source transfer variant (Section 2.1) outperforms
previous methods by up to 11 % UAS, averaged
over nearby languages. Extending the approach
to multi-source transfer (Section 2.2) gives further
gains of 2 % UAS and closes the performance gap
against the state of the art on distant languages. In
short, our contributions are:

1. A conceptually simple and highly flexible
framework for unsupervised target language
adaptation, which supports multi-source and
source-free transfer, and can be employed
with any pre-trained state-of-the-art arc-
factored parser(s);

2. Generalisation of the method of Täckström

et al. (2013) to state-of-the-art, non-projective
dependency parsing with neural networks;

3. Up to 13 % UAS improvement over state-of-
the-art models, considering nearby languages,
and roughly equal performance over distant
languages; and

4. Analysis of the impact of choice of source
languages on multi-source transfer quality.

2 Supervision via Transfer

In our scenario of unsupervised cross-lingual pars-
ing, we assume the availability of a pre-trained
source parser, and unlabelled text in the target
language. Thus, we aim to leverage this data
such that our cross-lingual transfer parsing method
out-performs direct transfer. One straightforward
method is self-training where we use the predic-
tions from the source parser as supervision to train
the target parser. This method may yield decent
performance as direct transfer is fairly good to be-
gin with. However, we may be able to do better if
we also consider a set of parse trees that have high
probability under the source parser (cf. Fig. 1 for
illustration).

If we assume that the source parser can produce a
set of possible trees instead, then it is natural to use
all of these trees as supervision signal for training.
Inspired by Täckström et al. (2013), we formalise
the method as follows. Given an unlabelled dataset
{xi}ni=1, the training loss can be expressed as

L(θ) = − 1

n

n∑
i=1

log
∑

y∈Ỹ (xi)

Pθ(y|xi) (1)

where θ is the target parser parameters and Ỹ (xi)
is the set of trees produced by the source parser.
Note that Ỹ (xi) must be smaller than the set of
all trees spanning x (denoted as Y(xi) ) because
L(θ) = 0 otherwise. This training procedure is a
form of self-training, and we expect that the target
parser can learn the correct tree as it is likely to be
included in Ỹ (xi). Even if this is not the case, as
long as the correct arcs occur quite frequently in
Ỹ (xi), we expect the parser to learn a useful signal.

We consider an arc-factored neural dependency
parser where the score of a tree is defined as the
sum of the scores of its arcs, and the arc scoring
function is parameterised by a neural network. The
probability of a tree is then proportional to its score.
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Formally, this formulation can be expressed as

Pθ(y|x) =
exp sθ(x, y)

Z(x)
(2)

sθ(x, y) =
∑

(h,m)∈A(y)

sθ(x, h,m) (3)

where Z(x) =
∑

y∈Y(x) exp sθ(x, y) is the parti-
tion function, A(y) is the set of head-modifier arcs
in y, and sθ(x, y) and sθ(x, h,m) are the tree and
arc scoring function respectively.

2.1 Single-Source Transfer
Here, we consider the case where a single pre-
trained source parser is provided and describe how
the set of trees is constructed. Concretely, for ev-
ery sentence x = w1, w2, . . . , wt in the target lan-
guage data, using the source parser, the set of high
probability trees Ỹ (x) is defined as the set of de-
pendency trees that can be assembled from the high
probability arcs set Ã(x) =

⋃t
m=1 Ã(x,m), where

Ã(x,m) is the set of high probability arcs whose
dependent is wm. Thus, Ỹ (x) can be expressed
formally as

Ỹ (x) = {y|y ∈ Y(x) ∧A(y) ⊆ Ã(x)}. (4)

Ã(x,m) is constructed by adding arcs (h,m) in
order of decreasing arc marginal probability until
their cumulative probability exceeds a threshold
σ (Täckström et al., 2013). The predicted tree from
the source parser is also included in Ỹ (x) so the
chart is never empty. This prediction is simply the
highest scoring tree. This procedure is illustrated
in Fig. 1.

Since Y(x) contains an exponential number of
trees, efficient algorithms are required to com-
pute the partition function Z(x), arc marginal
probabilities, and the highest scoring tree. First,
arc marginal probabilities can be computed ef-
ficiently with dynamic programming for projec-
tive trees (Paskin, 2001) and Matrix-Tree Theo-
rem for the non-projective counterpart (Koo et al.,
2007; McDonald and Satta, 2007; Smith and Smith,
2007). The same algorithms can also be em-
ployed to compute Z(x). Next, the highest scoring
tree can be obtained efficiently with Eisner’s al-
gorithm (Eisner, 1996) or the maximum spanning
tree algorithm (McDonald et al., 2005; Chu and
Liu, 1965; Edmonds, 1967) for the projective and
non-projective cases, respectively.

The transfer is performed by initialising the tar-
get parser with the source parser’s parameters and

then fine-tuning it with the training loss in Eq. (1)
on the target language data. Following previous
works (Duong et al., 2015b; He et al., 2019), we
also regularise the parameters towards the initial pa-
rameters to prevent them from deviating too much
since the source parser is already good to begin
with. Thus, the final fine-tuning loss becomes

L′(θ) = L(θ) + λ||θ − θ0||22 (5)

where θ0 is the initial parameters and λ is a hy-
perparameter regulating the strength of the L2 reg-
ularisation. This single-source transfer strategy
was introduced as ambiguity-aware self-training
by Täckström et al. (2013). A difference here is
that we regularise the target parser’s parameters
against the source parser’s as the initialiser, and
apply the technique to modern lexicalised state-of-
the-art parsers. We refer to this transfer strategy as
PPT hereinafter.

Note that the whole procedure of PPT can be
performed even when the source parser is trained
with monolingual embeddings. Specifically, given
a source parser trained only on monolingual em-
beddings, one can align pre-trained target language
word embeddings to the source embedding space
using an offline cross-lingual alignment method
(e.g., of Smith et al. (2017)), and use the aligned
target embeddings with the source model to com-
pute Ỹ (x). Thus, our method can be used with any
pre-trained monolingual neural parser.

2.2 Multi-Source Transfer

We now consider the case where multiple pre-
trained source parsers are available. To extend
PPT to this multi-source case, we employ the
ensemble training method from Täckström et al.
(2013), which we now summarise. We define
Ã(x,m) =

⋃
k Ãk(x,m) where Ãk(x,m) is the

set of high probability arcs obtained with the k-th
source parser. The rest of the procedure is exactly
the same as PPT. Note that we need to select one
source parser as the main source to initialise the
target parser’s parameters with. Henceforth, we
refer to this method as PPTX.

Multiple source parsers may help transfer better
because each parser will encode different syntactic
biases from the languages they are trained on. Thus,
it is more likely for one of those biases to match that
of the target language instead of using just a single
source parser. However, multi-source transfer may
also hurt performance if the languages have very
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different syntax, or the source parsers are of poor
quality, which can arise from poor quality cross-
lingual word embeddings.

3 Experiments

3.1 Setup

We run our experiments on Universal Dependency
Treebanks v2.2 (Nivre et al., 2018). We reimple-
ment the self-attention graph-based parser of Ah-
mad et al. (2019a) that has been used with suc-
cess for cross-lingual dependency parsing. Aver-
aged over 5 runs, our reimplementation achieves
88.8 % unlabelled attachment score (UAS) on En-
glish Web Treebank using the same hyperparame-
ters,3 slightly below their reported 90.3 % result.4

We select the run with the highest labelled attach-
ment score (LAS) as the source parser. We ob-
tain cross-lingual word embeddings with the of-
fline transformation of Smith et al. (2017) applied
to fastText pre-trained word vectors (Bojanowski
et al., 2017). We include the universal POS tags as
inputs by concatenating the embeddings with the
word embeddings in the input layer. We acknowl-
edge that the inclusion of gold POS tags does not
reflect a realistic low-resource setting where gold
tags are not available, which we discuss more in
Section 3.3. We evaluate on 18 target languages
that are divided into two groups, distant and nearby
languages, based on their distance from English as
defined by He et al. (2019).5

During the unsupervised fine-tuning, we com-
pute the training loss over all trees regardless of
projectivity (i.e. we use Matrix-Tree Theorem to
compute Eq. (1)) and discard sentences longer than
30 tokens to avoid out-of-memory error. Following
He et al. (2019), we fine-tune on the target lan-
guage data for 5 epochs, tune the hyperparameters
(learning rate and λ) on Arabic and Spanish us-
ing LAS, and use these values6 for the distant and
nearby languages, respectively. We set the thresh-
old σ = 0.95 for both PPT and PPTX following
Täckström et al. (2013). We keep the rest of the
hyperparameters (e.g., batch size) equal to those
of Ahmad et al. (2019a). For PPTX, unless other-

3Reported in Table 4.
4UAS and LAS are reported excluding punctuation tokens.
5We exclude Japanese and Chinese based on Ahmad et al.

(2019a), who reported atypically low performance on these
two languages, which they attributed to the low quality of
their cross-lingual word embeddings. In subsequent work they
excluded these languages (Ahmad et al., 2019b).

6Reported in Table 5.

wise stated, we consider a leave-one-out scenario
where we use all languages except the target as the
source language. We use the same hyperparame-
ters as the English parser to train these non-English
source parsers and set the English parser as the
main source.

3.2 Comparisons
We compare PPT and PPTX against several re-
cent unsupervised transfer systems. First, HE is
a neural lexicalised DMV parser with normalis-
ing flow that uses a language modelling objective
when fine-tuning on the unlabelled target language
data (He et al., 2019). Second, AHMAD is an ad-
versarial training method that attempts to learn
language-agnostic representations (Ahmad et al.,
2019b). Lastly, MENG is a constrained inference
method that derives constraints from the target cor-
pus statistics to aid inference (Meng et al., 2019).
We also compare against direct transfer (DT) and
self-training (ST) as our baseline systems.7

3.3 Results
Table 1 shows the main results. We observe that
fine-tuning via self-training already helps DT, and
by incorporating multiple high probability trees
with PPT, we can push the performance slightly
higher on most languages, especially the nearby
ones. Although not shown in the table, we also
find the PPT has up to 6x lower standard deviation
than ST, which makes PPT preferrable to ST. Thus,
we exclude ST as a baseline from our subsequent
experiments. Our results seem to agree with that of
Täckström et al. (2013) and suggest that PPT can
also be employed for neural parsers. Therefore, it
should be considered for target language adaptation
if unlabelled target data is available. Comparing
to HE (He et al., 2019), PPT performs worse on
distant languages, but better on nearby languages.
This finding means that if the target language has a
closely related high-resource language, it may be
better to transfer from that language as the source
and use PPT for adaptation. Against AHMAD (Ah-
mad et al., 2019b), PPT performs better on 4 out of
6 distant languages. On nearby languages, the av-
erage UAS of PPT is higher, and the average LAS
is on par. This result shows that leveraging unla-
belled data for cross-lingual parsing without access
to the source data is feasible. PPT also performs

7ST requires significantly less memory so we only discard
sentences longer than 60 tokens. Complete hyperparameter
values are shown in Table 5.
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Target UAS LAS

DT ST PPT PPTX HE AHMAD MENG DT ST PPT PPTX AHMAD

fa 37.5 38.0 39.5 53.6 63.2 — — 29.2 30.5 31.6 44.5 —
ar† 37.6 39.2 39.5 48.3 55.4 39.0 47.3 27.3 30.0 29.9 38.5 27.9
id 51.6 49.9 50.3 71.9 64.2 51.6 53.1 45.2 44.4 44.7 59.0 45.3
ko 35.1 37.1 37.5 34.6 37.0 34.2 37.1 16.6 18.2 18.0 16.1 16.1
tr 36.9 38.1 39.2 38.4 36.1 — 35.2 18.5 19.5 19.0 20.6 —
hi 33.7 34.7 34.0 36.4 33.2 37.4 52.4 25.4 26.6 26.4 28.3 28.0
hr 62.0 63.4 63.8 71.9 65.3 63.1 63.7 51.9 54.2 54.2 61.2 53.6
he 56.6 59.2 60.5 64.2 64.8 57.2 58.8 47.6 50.5 51.1 53.9 49.4

average 43.9 45.0 45.5 52.4 52.4 — — 32.7 34.2 34.4 40.3 —

bg 77.7 80.0 81.2 81.9 73.6 79.7 79.7 66.2 68.9 70.0 70.2 68.4
it 77.9 79.7 81.4 83.7 70.7 80.7 82.0 71.1 74.0 75.5 77.7 75.6
pt 74.1 76.3 77.1 81.0 66.6 77.1 77.5 65.1 67.6 68.3 70.6 67.8
fr 74.8 77.5 78.6 80.6 67.7 78.3 79.1 68.1 71.7 72.8 74.5 73.3

es† 72.5 74.9 75.2 78.3 64.3 74.1 75.8 63.8 66.5 67.0 69.2 65.8
no 77.9 80.4 81.2 80.0 65.3 81.0 80.4 69.1 71.9 72.7 71.8 73.1
da 75.3 76.0 77.3 76.6 61.1 76.3 76.6 66.3 67.4 68.6 67.9 68.0
sv 78.9 80.5 82.1 81.0 64.4 80.4 80.5 71.1 72.7 74.2 72.7 76.7
nl 68.0 68.9 69.9 74.4 61.7 69.2 67.6 59.5 60.7 61.5 65.4 60.5
de 66.8 69.9 69.5 74.1 69.5 71.1 70.8 56.4 60.0 59.7 63.5 61.8

average 74.4 76.4 77.4 79.1 66.5 76.8 77.0 65.7 68.1 69.0 70.3 69.1

Table 1: Test UAS and LAS (avg. 5 runs) on distant (top) and nearby (bottom) languages, sorted from most distant
(fa) to closest (de) to English. PPTX is trained in a leave-one-out fashion. The numbers for HE, AHMAD, and
MENG are obtained from the corresponding papers, direct transfer (DT) and self-training (ST) are based on our
own implementation. † indicates languages used for hyper-parameter tuning, and thus have additional supervision
through the use of a labelled development set.

better than MENG (Meng et al., 2019) on 4 out of 7
distant languages, and slightly better on average on
nearby languages. This finding shows that PPT is
competitive to their constrained inference method.

Also reported in Table 1 are the ensemble results
for PPTX, which are particularly strong. PPTX out-
performs PPT, especially on distant languages with
the average UAS and LAS absolute improvements
of 7 % and 6 % respectively. This finding suggests
that PPTX is indeed an effective method for multi-
source transfer of neural dependency parsers. It
also gives further evidence that multi-source trans-
fer is better than the single-source counterpart.
PPTX also closes the gap against the state-of-the-
art adaptation of He et al. (2019) in terms of aver-
age UAS on distant languages. This result suggests
that PPTX can be an option for languages that do
not have a closely related high-resource language
to transfer from.

Treebank Leakage The success of our cross-
lingual transfer can be attributed in part to tree-
bank leakage, which measures the fraction of de-
pendency trees in the test set that are isomorphic
to a tree in the training set (with potentially differ-
ent words); accordingly these trees are not entirely
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Leakage

0.2

0.4

0.6

0.8

1.0

LA
S

ar

bgdade
es

fa

fr

he

hi

hr id

it

ko

nl
nopt sv

tr

Figure 2: Relationship between treebank leakage and
LAS for PPTX. Shaded area shows 95 % confidence in-
terval. Korean and Turkish (in red) are excluded when
computing the regression line.

unseen. Such leakage has been found to be a par-
ticularly strong predictor for parsing performance
in monolingual parsing (Søgaard, 2020). Fig. 2
shows the relationship between treebank leakage
and parsing accuracy, where the leakage is com-
puted between the English training set as source
and the target language’s test set. Excluding out-
liers which are Korean and Turkish because of their
low parsing accuracy despite the relatively high
leakage, we find that there is a fairly strong posi-
tive correlation (r = 0.57) between the amount of



2912

leakage and accuracy. The same trend occurs with
DT, ST, and PPT. This finding suggests that cross-
lingual parsing is also affected by treebank leakage
just like monolingual parsing is, which may present
an opportunity to find good sources for transfer.

Use of Gold POS Tags As we explained in Sec-
tion 3.1, we restrict our experiments to gold POS
tags for comparison with prior work. However, the
use of gold POS tags does not reflect a realistic
low-resource setting where one may have to resort
to automatically predicted POS tags. Tiedemann
(2015) has shown that cross-lingual delexicalised
parsing performance degrades when predicted POS
tags are used. The degradation ranges from 2.9 to
8.4 LAS points depending on the target language.
Thus, our reported numbers in Table 1 are likely to
decrease as well if predicted tags are used, although
we expect the decline is not as sharp because our
parser is lexicalised.

3.4 Parsimonious Selection of Sources for
PPTX

In our main experiment, we use all available lan-
guages as source for PPTX in a leave-one-out set-
ting. Such a setting may be justified to cover as
many syntactic biases as possible, however, train-
ing dozens of parses may be impractical. In this
experiment, we consider the case where we can
train only a handful of source parsers. We inves-
tigate two selections of source languages: (1) a
representative selection (PPTX-REPR) which cov-
ers as many language families as possible and (2)
a pragmatic selection (PPTX-PRAG) containing
truly high-resource languages for which quality pre-
trained parsers are likely to exist. We restrict the
selections to 5 languages each. For PPTX-REPR,
we use English, Spanish, Arabic, Indonesian, and
Korean as source languages. This selection covers
Indo-European (Germanic and Romance), Afro-
Asiatic, Austronesian, and Koreanic language fam-
ilies respectively. We use English, Spanish, Ara-
bic, French, and German as source languages for
PPTX-PRAG. The five languages are classified as
exemplary high-resource languages by Joshi et al.
(2020). We exclude a language from the source if it
is also the target language, in which case there will
be only 4 source languages. Other than that, the
setup is the same as that of our main experiment.8

We present the result in Fig. 3 where we also
include the results for PPT, and PPTX with the

8Hyperparameters are tuned; values are shown in Table 5.

leave-one-out setting (PPTX-LOO). We report only
LAS since UAS shows a similar trend. We ob-
serve that both PPTX-REPR and PPTX-PRAG
outperform PPT overall. Furthermore, on nearby
languages except Dutch and German, both PPTX-
REPR and PPTX-PRAG outperform PPTX-LOO,
and PPTX-PRAG does best overall. In contrast,
no systematic difference between the three PPTX
variants emerges on distant languages. This finding
suggests that instead of training dozens of source
parsers for PPTX, training just a handful of them
is sufficient, and a “pragmatic” selection of a small
number of high-resource source languages seems
to be an efficient strategy. Since pre-trained parsers
for these languages are most likely available, it
comes with the additional advantage of alleviating
the need to train parsers at all, which makes our
method even more practical.

Analysis on Dependency Labels Next, we
break down the performance of our methods based
on the dependency labels to study their failure and
success patterns. Fig. 4 shows the UAS of DT, PPT,
and PPTX-PRAG on Indonesian and German for
select dependency labels.

Looking at Indonesian, PPT is slightly worse
than DT in terms of overall accuracy scores (Ta-
ble 1), and this is reflected across dependency la-
bels. However, we see in Fig. 4 that PPT outper-
forms DT on amod. In Indonesian, adjectives fol-
low the noun they modify, while in English the
opposite is true in general. Thus, unsupervised tar-
get language adaptation seems able to address these
kinds of discrepancy between the source and target
language. We find that PPTX-PRAG outperforms
both DT and PPT across dependency labels, espe-
cially on flat and compound labels as shown
in Fig. 4. Both labels are related to multi-word
expressions (MWEs), so PPTX appears to improve
parsing MWEs in Indonesian significantly.

For German we find that both PPT and PPTX-
PRAG outperform DT on most dependency labels,
with the most notable gain on nmod, which ap-
pear in diverse, and often non-local relations in
both languages many of which do not structurally
translate, and fine-tuning improves performance as
expected. Also, we see PPTX-PRAG significantly
underperforms on compound while PPT is bet-
ter than DT. German compounds are often merged
into a single token, and self-training appears to
alleviate over-prediction of such relations. The
multi-source case may contain too much diffuse
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Figure 3: Comparison of selection of source languages for PPTX on distant and nearby languages, sorted from
most distant (fa) to closest (de) to English. PPTX-LOO is trained in a leave-one-out fashion. PPTX-REPR uses
the representative source language set, while PPTX-PRAG is adapted from five high-resource languages. A source
language is excluded from the source if it is also the target language.
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Figure 4: Comparison of direct transfer (DT), PPT, and
PPTX-PRAG on select dependency labels of Indone-
sian (top) and German (bottom).

signal on compound and thus the performance
is worse than that of DT. We find that PPT and
PPTX improves over DT on mark, likely because
markers are often used in places where German
deviates from English by becoming verb-final (e.g.,
subordinate clauses). Both PPT and PPTX-PRAG
seem able to learn this characteristic as shown by
their performance improvements. This analysis
suggests that the benefits of self-training depend
on the syntactic properties of the target language.

Model Target AVG
id hr fr nl

Non-projective

DT 45.2 51.9 68.1 59.5 56.2
PPT 44.7 54.2 72.8 61.5 58.3
PPTX-PRAG 57.4 62.2 77.9 66.4 66.0

Projective

DT 45.7 52.1 68.4 59.6 56.4
PPT 45.0 54.0 72.3 61.7 58.3
PPTX-PRAG 57.5 61.1 78.1 67.7 66.1

Table 2: Comparison of projective and non-projective
direct transfer (DT), PPT, and PPTX-PRAG. Scores are
LAS, averaged over 5 runs.

3.5 Effect of Projectivity

In this experiment, we study the effect of projectiv-
ity on the performance of our methods. We emulate
a projective parser by restricting the trees in Ỹ (x)
to be projective. In other words, the sum in Eq. (1)
is performed only over projective trees. At test
time, we search for the highest scoring projective
tree. We compare DT, PPT, and PPTX-PRAG,
and report LAS on Indonesian (id) and Croatian
(hr) as distant languages, and on French (fr) and
Dutch (nl) as nearby languages. The trend for UAS
and on the other languages is similar. We use the
dynamic programming implementation provided
by torch-struct for the projective case (Rush,
2020). We find that it consumes more memory than
our Matrix-Tree Theorem implementation, so we
set the length cutoff to 20 tokens.9

Table 2 shows result of our experiment, which
suggests that there is no significant performance dif-
ference between the projective and non-projective

9Hyperparameters are tuned; values are shown in Table 5.
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Model
Target

ar es

DT 28.1 64.1
PPT 30.8 67.3
PPTXEN5 30.9 66.3
PPTX-PRAGS 36.5 70.3
PPTX-PRAG 36.5 71.9

Table 3: Comparison of LAS on Arabic and Spanish on
the development set, averaged over 5 runs. PPTXEN5

is PPTX with 5 English parsers as source, each trained
on 1/5 size of the English corpus. PPTX-PRAGS is
PPTX with the pragmatic selection of source languages
(PPTX-PRAG) but each source parser is trained on the
same amount of data as PPTXEN5.

variant of our methods. This result suggests that
our methods generalise well to both projective and
non-projective parsing. That said, we recommend
the non-projective variant as it allows better parsing
of languages that are predominantly non-projective.
Also, we find that it runs roughly 2x faster than the
projective variant in practice.

3.6 Disentangling the Effect of Ensembling
and Larger Data Size

The effectiveness of PPTX can be attributed to at
least three factors: (1) the effect of ensembling
source parsers (ensembling), (2) the effect of larger
data size used for training the source parsers (data),
and (3) the diversity of syntactic biases from mul-
tiple source languages (multilinguality). In this
experiment, we investigate to what extent each of
those factors contributes to the overall performance.
To this end, we design two additional comparisons:
PPTXEN5 and PPTX-PRAGS .

PPTXEN5 is PPTX with only English source
parsers, where each parser is trained on 1/5 of the
English training set. That is, we randomly split the
English training set into five equal-sized parts, and
train a separate parser on each. These parsers then
serve as the source parsers for PPTXEN5. Thus,
PPTXEN5 has the benefit of ensembling but not
data and multilinguality compared with PPT.

PPTX-PRAGS is PPTX whose source language
selection is the same as PPTX-PRAG, but each
source parser is trained on the training data whose
size is roughly the same as that of the training data
of PPTXEN5 source parsers. In other words, the
training data size is roughly equal to 1/5 of the
English training set. To obtain this data, we ran-

domly sub-sample the training data of each source
language to the appropriate number of sentences.
Therefore, PPTX-PRAGS has the benefit of ensem-
bling and multilinguality but not data.

Table 3 reports their LAS on the development
set of Arabic and Spanish, averaged over five runs.
We also include the results of PPTX-PRAG that
enjoys all three benefits. We observe that PPT
and PPTXEN5 perform similarly on Arabic, and
PPTXEN5 has a slightly lower performance on
Spanish. This result suggests a negligable effect
of ensembling on performance. On the other hand,
PPTX-PRAGS outperforms PPTXEN5 remarkably,
with approximately 6 % and 4 % LAS improvement
on Arabic and Spanish respectively, showing that
multilinguality has a much larger effect on perfor-
mance than ensembling. Lastly, we see that PPTX-
PRAG performs similarly to PPTX-PRAGS on Ara-
bic, and about 1.6 % better on Spanish. This result
demonstrates that data size has an effect, albeit a
smaller one compared to multilinguality. To con-
clude, the effectiveness of PPTX can be attributed
to the diversity contributed through multiple lan-
guages, and not to ensembling or larger source data
sets.

4 Related Work

Cross-lingual dependency parsing has been ex-
tensively studied in NLP. The approaches can be
grouped into two main categories. On the one hand,
there are approaches that operate on the data level.
Examples of this category include annotation pro-
jection, which aims to project dependency trees
from a source language to a target language (Hwa
et al., 2005; Li et al., 2014; Lacroix et al., 2016;
Zhang et al., 2019); and source treebank reordering,
which manipulates the source language treebank to
obtain another treebank whose statistics approxi-
mately match those of the target language (Wang
and Eisner, 2018; Rasooli and Collins, 2019). Both
methods have no restriction on the type of parsers
as they are only concerned with the data. Transfer-
ring from multiple source languages with annota-
tion projection is also feasible (Agić et al., 2016).

Despite their effectiveness, these data-level
methods may require access to the source language
data, hence are unusable when it is inaccessible
due to privacy or legal reasons. In such source-free
transfer, only a model pre-trained on the source lan-
guage data is available. By leveraging parallel data,
annotation projection is indeed feasible without ac-
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cess to the source language data. That said, parallel
data is limited for low-resource languages or may
have a poor domain match. Additionally, these
methods involve training the parser from scratch
for every new target language, which may be pro-
hibitive.

On the other hand, there are methods that oper-
ate on the model level. A typical approach is direct
transfer (aka., zero-shot transfer) which trains a
parser on source language data, and then directly
uses it to parse a target language. This approach
is enabled by the shared input representation be-
tween the source and target language such as POS
tags (Zeman and Resnik, 2008) or cross-lingual em-
beddings (Guo et al., 2015; Ahmad et al., 2019a).
Direct transfer supports source-free transfer and
only requires training a parser once on the source
language data. In other words, direct transfer is
unsupervised as far as target language resources.

Previous work has shown that unsupervised tar-
get language adaptation outperforms direct trans-
fer. Recent work by He et al. (2019) used a neu-
ral lexicalised dependency model with valence
(DMV) (Klein and Manning, 2004) as the source
parser and fine-tuned it in an unsupervised man-
ner on the unlabelled target language data. This
adaptation method allows for source-free transfer
and performs especially well on distant target lan-
guages. A different approach is proposed by Meng
et al. (2019), who gathered target language corpus
statistics to derive constraints to guide inference
using the source parser. Thus, this technique also
allows for source-free transfer. A different method
is proposed by Ahmad et al. (2019b) who explored
the use of unlabelled data from an auxiliary lan-
guage, which can be different from the target lan-
guage. They employed adversarial training to learn
language-agnostic representations. Unlike the oth-
ers, this method can be extended to support multi-
source transfer. An older method is introduced by
Täckström et al. (2013), who leveraged ambiguity-
aware training to achieve unsupervised target lan-
guage adaptation. Their method is usable for both
source-free and multi-source transfer. However, to
the best of our knowledge, its use for neural depen-
dency parsing has not been investigated. Our work
extends theirs by employing it for the said purpose.

The methods of both He et al. (2019) and Ah-
mad et al. (2019b) have several limitations. The
method of He et al. (2019) requires the parser
to be generative and projective. Their generative

parser is quite impoverished with an accuracy that
is 21 points lower than a state-of-the-art discrimi-
native arc-factored parser on English. Thus, their
choice of generative parser may constrain its po-
tential performance. Furthermore, their method
performs substantially worse than direct transfer
on nearby target languages. Because of the avail-
ability of resources such as Universal Dependency
Treebanks (Nivre et al., 2018), it is likely that a
target language has a closely related high-resource
language which can serve as the source language.
Therefore, performing well on nearby languages
is more desirable pragmatically. On top of that, it
is unclear how to employ this method for multi-
source transfer. The adversarial training method of
Ahmad et al. (2019b) does not suffer from the afore-
mentioned limitations but is unusable for source-
free transfer. That is, it assumes access to the
source language data, which may not always be
feasible due to privacy or legal reasons.

5 Conclusions

This paper presents a set of effective, flexible,
and conceptually simple methods for unsupervised
cross-lingual dependency parsing, which can lever-
age the power of state-of-the-art pre-trained neural
network parsers. Our methods improve over direct
transfer and strong recent unsupervised transfer
models, by using source parser uncertainty for im-
plicit supervision, leveraging only unlabelled data
in the target language. Our experiments show that
the methods are effective for both single-source
and multi-source transfer, free from the limitations
of recent transfer models, and perform well for
non-projective parsing. Our analysis shows that the
effectiveness of the multi-source transfer method
is attributable to its ability to leverage diverse syn-
tactic signals from source parsers from different
languages. Our findings motivate future research
into advanced methods for generating informative
sets of candidate trees given one or more source
parsers.
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A Hyperparameter values

Here we report the hyperparameter values for ex-
periments presented in the paper. Table 4 shows
the hyperparameter values of our English source
parser explained in Section 3.1. Table 5 reports the
tuned hyperparameter values for our experiments
shown in Table 1, Fig. 3, and Table 2.

Hyperparameter Value

Sentence length cutoff 100
Word embedding size 300
POS tag embedding size 50
Number of attention heads 10
Number of Transformer layers 6
Feedforward layer hidden size 512
Attention key vector size 64
Attention value vector size 64
Dropout 0.2
Dependency arc vector size 512
Dependency label vector size 128
Batch size 80
Learning rate 10−4

Early stopping patience 50

Table 4: Hyperparameter values of the source parser.
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Hyperparameter Value
Nearby Distant

ST

Sentence length cutoff 60 60
Learning rate 5.6 × 10−4 3.7 × 10−4

L2 coefficient (λ) 3 × 10−4 2.8 × 10−4

PPT

Learning rate 3.8 × 10−5 2 × 10−5

L2 coefficient (λ) 0.01 0.39

PPTX/PPTX-LOO

Learning rate 2.1 × 10−5 5.9 × 10−5

L2 coefficient (λ) 0.079 1.2 × 10−4

PPTX-REPR

Learning rate 1.7 × 10−5 9.7 × 10−5

L2 coefficient (λ) 4 × 10−4 0.084

PPTX-PRAG

Learning rate 4.4 × 10−5 8.5 × 10−5

L2 coefficient (λ) 2.7 × 10−4 2.8 × 10−5

Projective PPT

Sentence length cutoff 20 20
Learning rate 10−4 10−4

L2 coefficient (λ) 7.9 × 10−4 7.9 × 10−4

Projective PPTX-PRAG

Sentence length cutoff 20 20
Learning rate 9.4 × 10−5 9.4 × 10−5

L2 coefficient (λ) 2.4 × 10−4 2.4 × 10−4

Table 5: Hyperparameter values of ST, PPT, PPTX,
PPTX-REPR, PPTX-PRAG, projective PPT, and pro-
jective PPTX-PRAG. Sentence length cutoff for PPT,
PPTX, PPTX-REPR, and PPTX-PRAG is 30, as ex-
plained in Section 3.1.


