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Abstract
Tables in Web documents are pervasive and
can be directly used to answer many of the
queries searched on the Web, motivating their
integration in question answering. Very often
information presented in tables is succinct and
hard to interpret with standard language rep-
resentations. On the other hand, tables often
appear within textual context, such as an arti-
cle describing the table. Using the information
from an article as additional context can po-
tentially enrich table representations. In this
work we aim to improve question answering
from tables by refining table representations
based on information from surrounding text.
We also present an effective method to com-
bine text and table-based predictions for ques-
tion answering from full documents, obtaining
significant improvements on the Natural Ques-
tions dataset.

1 Introduction

Tables are a common type of information repre-
sentation used across the Internet. With billions
of search queries a day,1 question answering on
tables is an important task that translates into a
large number of search queries every second about
information present in tables. In general, research
on Question Answering (QA) can be categorized
in terms of the resources that are used in answer-
ing the question: text documents (often referred
as unstructured text in the literature), tables, or a
structured knowledge base (KB). In our work we
are interested in the combination of text-based and
structured resources for question answering, par-
ticularly articles that contain both tables and text.
This is a natural next step for question answering
on tables, in that most tables are embedded in doc-
uments that discuss them, creating the challenge of

∗*Most of the work was done while the author was at the
University of Washington.

1https://www.internetlivestats.com

determining whether the answer is in the text or the
table (if anywhere). In addition, very often informa-
tion presented in tables is compact and abbreviated.
The associated text can potentially provide rich con-
text that can be used to enhance the representation
of the table for more robust question answering.

The main focus of this paper is to investigate
how to improve question answering on documents
that contain both text and tables. While recently
there has been a lot of interest in reading compre-
hension for both text and tables, little research has
been done in combining the two sources of infor-
mation. The only prior study we are aware of is by
Chen et al. (2020) who introduced a new dataset
for multi-hop QA over tabular and textual data. In
their work, the authors heavily rely on the assump-
tion that the questions would be unanswerable if
either text or table information is missing. Here
we investigate a more realistic scenario of natu-
rally occurring questions, where the answer can be
found in either text, tables, both, or none. We eval-
uate our approach on the Natural Questions corpus
(Kwiatkowski et al., 2019) which consists of real
anonymized queries issued to the Google search
engine and corresponding Wikipedia articles, sim-
ulating a real use case of such a system.

Prior work on the Natural Questions dataset
has treated text and tables uniformly, linearizing
tables and representing them and text segments
using the same contextual token representations
(for example, starting from pre-trained transform-
ers (Vaswani et al., 2017) like BERT (Devlin et al.,
2019)). However, representations developed for
text are sub-optimal for tables, since they do not
account for the special relationships between ta-
ble cells, defined by the row and column struc-
ture. In this work, we extend the BERT architec-
ture to account for inter-cell relationships in tables.
This approach is motivated by Graph Neural Net-
works with a transformer (Shaw et al., 2018) and is
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closely related to the one in Müeller et al. (2019).
In our work, we pretrain parameters for the new
relationships using a large table corpus extracted
from Wikipedia (Bhagavatula et al., 2013).

In addition, we present a novel approach that
refines table representations by attending to re-
lated representations of text in the surrounding arti-
cle. This allows information to propagate from the
text to table elements, improving the ability of the
model to interpret tables and find answers in them.

Overall, the main contributions of our work are
three-fold. First, to the best of our knowledge, this
is the first work that investigates how to effectively
combine text-based and table-based approaches in
a setting where it is unknown which, if any, of
these modalities contains an answer to a question.
Second, we introduce a novel mechanism to enrich
table representations based on text surrounding the
table, which improves the performance of a model
for question answering from tables. Finally, this
is the first model that uses the Natural Questions
corpus for question answering on tables, improving
the baseline in Alberti et al. (2019) that does not
distinguish between tables and text.

2 Related Work

Most work on QA with tables prior to BERT in-
volves first converting the table to a Knowledge
Graph (KG) where cell entries are entities with
row/column relations, then using entity linking to
identify spans in the question that match an entity in
the knowledge graph, and finally parsing the ques-
tion to generate a SQL query using some variant
of a sequence-to-sequence model (Krishnamurthy
et al., 2017). Due to the advances in contextualized
word embeddings, more recent work proposed a
modification of the BERT transformer architecture
to be used for representing tables. Hwang et al.
(2019) proposed the usage of additional [SEP] to-
kens between headers of the table to make a BERT
model more suitable for the tables. Recently, Yin
et al. (2020) introduced a pretraining procedure for
joint representation of tabular data paired with an
utterance, where the approach is to linearize the
structure of tables to be compatible with a BERT
model. Our approach for table encoding is most
similar to that of Müeller et al. (2019), where the au-
thors generalized the BERT architecture similarly
to Shaw et al. (2018) with new types of relations
to encode table-specific relationships. The main
differences between our table representation and

Müeller et al. (2019) is that in our representation
we use 5 types of relations, cell-column, cell-row,
in-cell, cross-column and cross-row (more details
in Section 3.1), while in their work the authors use
cell-column and cell-row relations only for the ta-
ble representation, but in addition use question-cell
relations for marking matches between tokens in
the question and corresponding cell values. Finally,
the two most recent works on table representation
learning, TaPaS (Herzig et al., 2020) and GraPPa
(Yu et al., 2020), also use pretraining on the Wikita-
bles dataset (Bhagavatula et al., 2013) that we use
in our work. Therefore, our table representations
based on transformers and our pretraining method
are comparable to those in recent and concurrent
work.

Leveraging tables is a hard problem. However,
most studies on table-based QA omit an impor-
tant additional information source: the text in the
article discussing the table. Prior attempts at inte-
grating a KB and text use early fusion of document
text and KG information (Sun et al., 2018), where
they integrate text and a KG sub-graph in a single
graph, from which an entity is selected to answer
the question. Structured KGs are often easier to
interpret than tables, which have a wide variety of
possible schemas. InfoTabS (Gupta et al., 2020)
introduced a dataset for the natural language infer-
ence task based on premises that are tables, where
the authors explore multiple table representations,
including a key-value approach and linearized rep-
resentations with table rows corresponding to ”sen-
tences.” Hypothesis representations are calculated
separately. Recently, TaBERT (Yin et al., 2020)
introduced a joint table-utterance representation ap-
proach, where a table row is concatenated with a
short text utterance, such as the query in question
answering, and passed as an input to a BERT-based
model. Such an approach relies on the initial table
representation to select the table rows most rele-
vant to the query. In contrast, we enrich the table
representation using an attention mechanism with
the representations of the most relevant parts of the
context of the article in which the table appears.

The Natural Questions is a large corpus that con-
tains real user queries along with their correspond-
ing Wikipedia articles, which may or may not con-
tain an answer anywhere in the article. Alberti et al.
(2019) provided a BERT-based baseline that treats
both table and text segments like text: a sequence
of tokens with word and position embeddings. Re-

[SEP]
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cently, Liu et al. (2020) improved this baseline
by using dynamic dual-attention over paragraphs
and cascade answer predictor. In another direction,
Ravula et al. (2020) used an extended transformer
architecture that models extra-long documents with
limited propagation of information among different
segments. All three approaches did not distinguish
between text and table input, treating tables as text
while not taking into account table structure. To
the best of our knowledge, this is the first work that
focuses on table-based QA for the real user queries
in the Natural Questions corpus, and shows that
table-based and overall QA performance can be im-
proved by building on state-of-the-art pre-trained
representations of table structure, additionally en-
riched via attention to related article text.

3 Methods

This section describes two methods that improve
table representations for QA from tables: an exten-
sion of the BERT architecture for table encoding to
better capture the relationships between table ele-
ments, and a mechanism that incorporates related
unstructured text of an article as context to further
improve the table representation. We then describe
an approach for question answering from both text
and tables that combines predictions from text QA
and table QA models using a late fusion approach.

3.1 Table Encoding
Our table encoding is a generalization of the trans-
former architecture (Vaswani et al., 2017), with
the self-attention sub-layer extended to incorpo-
rate relations between structural components in ta-
bles, similar to the one introduced by Müeller et al.
(2019). This approach is motivated by Graph Neu-
ral Networks (GNNs) with a transformer (Shaw
et al., 2018, 2019) where the authors generalize
the transformer by introducing multiple types of
relations between inputs.

3.1.1 GNNs with a Transformer
In the original transformer, the multi-head self-
attention for head h is calculated using query (Q),
key (K) and value (V) projections as follows:

Att(Q,K, V ) =

softmax(
(WQ

h Q)T (WK
h K)√

dk
)W V

h V

where WQ
h , WK

h and W V
h are learned parameters,

and dk is the query/key dimension. By calculating

the dot product between query and key projections,
a transformer captures the interaction between each
pair of inputs xi and xj (e.g. wordpieces in BERT)
at positions i and j for 0 ≤ i, j ≤ N . This interac-
tion can be generalized to account for relation type
t between xi and xj by biasing the key projection
using rtij :

shij =
(WQ

h xi)
T (WK

h xj + rt,hij )
√
dk

and then scaling using softmax across all inputs
0 ≤ j ≤ N . Thus, the standard transformer can be
considered as a special case with rij = 0. Similarly,
the value projection can also be updated with the
corresponding relation type represented using the
bias term ρtij , with the overall attention head h
calculated as follows:

αh
ij = softmax(

shij∑
j s

h
ij

)

wh
i =

∑
j

αh
ij(W

V
h xj + ρt,hij )

The parameters rt,h and ρt,h are head- and layer-
specific.

3.1.2 Table Encoding using GNN
Table structure can be encoded using the model
described above to account for special relations in
the table. Here, we use the following relation types:

• token cell - token column header relation

• token cell - token row header relation

• in-cell token relations

• cross-column header relations

• cross-row header relations

For each of these table-specific types of relations
we learn different type-specific biases rt and ρt

for each layer and head, while for the rest of the
relations we use the original BERT configuration
with zero bias. Figure 1 shows an example of a
table with the table relations used in this work.

Our table encoding is similar to the one inde-
pendently proposed by Müeller et al. (2019) with
the main difference of having relations on a token
level rather than cell level. Also, in their approach,
the authors use only cell-column and cell-row rela-
tion, while in our work we also use cross-column
header, cross-row header and in-cell relations. The
above mentioned paper includes additional rela-
tions based on n-gram matches with the question,
and special processing of numerical values.



2898

Figure 1: Example of a table encoding with relations: (green, dashed) token cell - token column header relations;
(blue, solid) token cell - token row header relations; (violet, bold) in-cell token relations; (red, dash-dotted) cross-
column header relations; (orange, dotted) cross-row header relations.

3.1.3 Pretraining

The main motivation for applying the original
BERT model to table encoding is to use contex-
tualized embeddings that are pretrained on a large
amount of data. The new relation biases incorpo-
rated as part of the proposed table encoding are
randomly initialized, starting from a standard trans-
former model pre-trained on text. Since these pa-
rameters are added for each layer, they can sig-
nificantly change the activations of the pretrained
model. In order to derive a better initialization
point for the additional bias terms, we pretrain a
GNN model with the masked LM objective used in
BERT on the Wikitables dataset (Bhagavatula et al.,
2013), which contains 1.6M tables from English
Wikipedia. In order to limit the amount of overfit-
ting on that table set, we freeze all original BERT
parameters while updating only the bias terms in-
troduced in the GNN. We tune the model using
perplexity on a subset of the Wikitables dataset.

3.2 Context-aware Table Representation

We hypothesize that text in the article of a Web
page containing a table can help build an improved
representation of the table for QA. Recent work
has explored building encoders over large input se-
quences. Ravula et al. (2020) scaled input sequence
length to more than 8,000 tokens for the NQ dataset.
However, to make the model efficient, encodings
of individual text or table segments communicate
through single-vector global memories. Here, we
take the approach of using asymmetric attention
from table token representations to a small number
of relevant text token representations, that are pre-
computed independently. Our approach is more
similar to the handling of prior segment context

in Transformer-XL (Dai et al., 2019), but relevant
context is selected based on word overlap and not
contiguity.

The two components of our approach, described
next, include the definition of relevant text context
for table elements and the mechanism for using
contextualized embeddings of the relevant text to
enrich the table token representations.

3.2.1 Table-Textual Context Linking

Let a table cell that contains a sequence of input
tokens be defined as (ut0 . . . u

t
K), with the corre-

sponding s sub-word units (wordpiecies in BERT
or byte-pair encodings in RoBERTa) for the k-th
word to be defined as (xt,k0 . . . xt,kSk

), and let the tex-
tual context of the article surrounding the table be
defined as (uc0 . . . u

c
N ), with the corresponding sub-

word units for the n-th word be as (xc,n0 . . . xc,nSn
).

For each word in the table uti, we find the corre-
sponding context in the text using the exact match
of the lower-case sequence of tokens, starting with
the trigram matches, following with bigram and un-
igram matches.2 For example, a trigram match for a
word uti is α3(u

t
i) = ucj if a lower-case expression

(uti, u
t
i+1, u

t
i+2) equals to the lower-case expression

(ucj , u
c
j+1, u

c
j+2). For each of the table tokens utk

we collect up to 6 corresponding matches from the
text, ucs1 . . . u

c
s6, and extract their sub-word embed-

dings represented by the last layer of pretrained
RoBERTa, e(xc,s10 ) . . . e(xc,s6s ). Then, we stack all
the sub-word unit embeddings associated with utk
to get a text-aware representation for word k in the

2Function words are frequent in multi-word expressions.
To avoid exact match of expressions solely consisting of func-
tion words, matching expressions must contain at least one
non-frequent word, defined based on the 200 most frequent
words in the training set and the NLTK stop-word list.
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table e(utk) = [e0(x
c,s1
0 ); . . . ; er(x

c,s6
s )] ∈ Rr×d,

with d being the size of the hidden RoBERTa em-
bedding and r being the total number of sub-word
units corresponding to ucs1 . . . u

c
s6. For simplicity

of implementation, we use r = 12, where we prune
any extra word-piecies or use padding for the cases
where r 6= 12.

3.2.2 Enriching Table Representations
In order to incorporate text context e(uti) into a
table representation of xt,is , we use a slightly mod-
ified version of self-attention in the transformer,
with the goal of generating an additional text con-
text head, concatenated with the rest of the atten-
tion heads across multiple transformer layers that
would be aware of the broader text context.

In the original transformer, self-attention is cal-
culated between an input at position i using a query
projection WQxi and the rest of the inputs in posi-
tions j ∈ 0 . . . N using key and value projections,
WKxj and W V xj , correspondingly. Now, when
calculating a text-aware head for each of the sub-
word units xt,ki , we use attention between a query
of xt,ki and all of the sub-word units of the cor-
responding text context e(utk) using the key and
value projections WK

e e(u
t
k) and W V

e e(u
t
k), corre-

spondingly:

Att(Qe,Ke, Ve) =

softmax(
(WQ

e Q)T (WK
e e(K))√

dk
)W V

e e(V )

Then, we concatenate the new text-aware head
with the rest of the heads in the layer h, resulting in
a total of m+1 heads (m = 16 for RoBERTalarge),
each of a size k = 64. In addition, we extend the
current projection layer from a size km × km to
k(m+ 1)× km in order to fit the additional head,
randomly initializing the additional k× km param-
eters. For computational efficiency, we incorporate
the text-aware representation only at layers 12, 16,
20 and 24.

3.3 Combining Text and Table Answer
Predictions

In question answering, both text and table contexts
can be used to support meeting the user information
need. Question answering systems should therefore
be able to consider both sources of information to
present the most suitable answer. So far we have
presented enriched table representations that can be
used for question answering from tables. We now

consider approaches for the full document-level
QA task, where an answer may be found in either
or none of the two modalities.

Since a text-based QA model would not benefit
from the architecture and pre-training extensions
for our table representations, we use a standard text-
based representation for QA from text. We com-
bine predictions from two separate models for the
full document-level QA task. Specifically, we train
a generic model for full article question answer-
ing following (Alberti et al., 2019). This model
assigns scores to candidate answers in both text
and tables using a standard pre-trained text rep-
resentation (RoBERTa). We also train a separate
model which uses enriched table representations
and pre-training, and focuses on predicting answers
in tables. The two model predictions are combined
using a late fusion approach detailed below.

3.3.1 Calculating Prediction and Confidence
Scores

We follow Alberti et al. (2019) to define a loss
function for training and an answer span prediction
method. More specifically, at inference time the
scores that correspond to the start and end of a
possible answer span are defined as follows:

g(c, s, e) = fstart(s, c; θ) + fend(e, c; θ)

− fstart(s = [CLS], c; θ)

− fend(e = [CLS], c; θ)

where c is a context of 512 sub-word unit ID’s
(including question and document tokens), s, e ∈
{0, 1, ..., 511} are inclusive indices pointing to the
start and end of the target answer span, θ is our
model parameters, and fstart, fend are two differ-
ent outputs derived from the last layer of our model
using linear projections. Following this work, the
[CLS] token is used at training time to predict no
answer instances, making g(c, s, e) the log-odds
of the likelihood of an answer span and the [CLS]

span. All the contexts from each document are
scored and document spans (s, e) are ranked to re-
turn the highest scoring span that does not exceed
30 tokens. We denote the highest scoring span for
the generic model as gc, and the highest scoring
span for table model as gt.

In addition to the prediction score, we also cal-

[CLS]
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culate a confidence score κ for each span:

κ(c, s, e) = log(
exp(fstart(s, c; θ))∑
s′ exp(fstart(s

′, c; θ))
)

+ log(
exp(fend(e, c; θ))∑
e′ exp(fend(e

′, c; θ))
)

3.3.2 Combining Predictions
To combine the scores of the generic model gc and
the table model gt, we use grid search on three
parameters: a scaling factor α, a bias β, and a con-
fidence threshold γ associated with the confidence
of the table prediction κt:

g =

max
t,c

(gc, α · gt + β) if glc ∈ t, κt > γ

gc otherwise

where glc ∈ t indicates whether the long answer
span that is predicted by the generic model points
to a table. The search for parameters α, β, and γ is
done on a validation set.

4 Experiments

We evaluate our model on the Natural Questions
(NQ) corpus (Kwiatkowski et al., 2019) that con-
sists of questions and paired Wikipedia pages, with
the task of finding the exact location of the answer
that is present in the article, if any. The NQ dataset
is large (300k training samples) and answers (if
present) can appear in either or both text and tables.
NQ contains one human annotation for every ques-
tion in the training set, and 5 annotations for every
question in the development and test sets. Based on
the statistics of the development set, around 14%
of questions contain a short answer in a table. Only
48% of the questions have a long answer annota-
tion (a paragraph or a table that contains an answer),
while only 33% contain a short answer annotation
(an exact location of a short answer phrase). In
this work we first evaluate our models on a subset
of questions that contain at least one short answer
in tables, referred as NQTables, and then further
evaluate the model on the full dataset, referred as
FullNQ.

For the questions in NQTables, we further evalu-
ate in two settings: (i) NQTablesTab, where systems
are limited to predict answer spans only from ta-
bles, and (ii) NQTables, where systems can predict
answer spans from both text and tables. Note that
although all questions in NQTables have at least
one answer in a table, they might also have answers

in text, and systems operating in the full NQTables
setting have more chances to arrive at a correct an-
swer than systems in NQTablesTab setting. While
our primary focus in this work is on improving the
short answer prediction, we also report the long an-
swer prediction results for our best model used for
the full NQ dataset, according to official metrics.

The development set (DEV) for NQTables used
in this work contains 1118 questions where the
short answer can be found in a table. Since the
official test set of the corpus is not public, all our
experiments use the official development set as our
test set, while splitting the training set into train-
ing (90%) and 2 validation sets (each contains 4%
of the data). The first validation set (VAL-1) is
used for tuning the parameters of the table-based
models, while the second validation set (VAL-2)
is used for tuning the parameters to combine text-
based and table-based models. For clarity, in all
the experiment variations we use the notation de-
fined above where NQTablesTab-Dev/Val-1/Val-2
is limited to predict answer spans only from tables,
and NQTables-Dev/Val-1/Val-2 is able to predict
answer spans from both text and tables.

The official evaluation script computes F1 scores
and considers any questions that have at least 2 an-
notated answers as being answerable, while ques-
tions with 1 or no answer are unanswerable. An F1
score is calculated on the ability to predict a span
that matches at least one of the annotations for
the answerable questions, and to correctly predict
unanswerable ones. Since the validation sets con-
tain only a single annotation, the F1 score measure
based on 5-way annotation cannot be used directly
on VAL-1 or VAL-2. Therefore, in the table-based
experiments on the VAL-1, we report both accuracy
(percent of correctly predicted answers) and modi-
fied F1 score (F1*), where modified F1 is based on
the match of the predicted answer to a single anno-
tation. Finally, we report a string-based F1 score
that accepts any exact string match of a predicted
span to an answer when combining text and table
models.

4.1 Table-based Results

First, we evaluate the proposed table representation
approaches on the NQTables subset. In this set of
experiments, we use the article’s tables as our input,
omitting direct usage of the article’s text except in
the form of context-aware updates of the model
used in Section 3.2. The results on NQTablesTab-
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Pretrained on VAL-1 DEV
Model WikiTables Finetuned on F1* Acc F1
RoBERTa baseline no FullNQ 49.1 48.2 53.3
RoBERTa tables no tables only 52.5 51.2 56.8
[SEP] encoding no tables only 53.2 51.1 57.5
GNN no tables only 52.6 51.2 55.0
GNN yes tables only 54.4 52.9 56.7
GNN yes FullNQ→ tables only 55.7 54.3 58.9
Context-aware + GNN yes FullNQ→ tables only 56.7 55.4 60.0

Table 1: Evaluation of the table encodings and context-aware table representation on NQTablesTab-Val1 (VAL-1)
and NQTablesTab-Dev (DEV) sets of NQTables that contains tables input exclusively.

Val1 and NQTablesTab-Dev are presented in Table
1. First, we evaluate our model using a RoBERTa
baseline, following (Alberti et al., 2019) with a
RoBERTa pretrained model instead of BERT (line
1). This baseline is trained using the FullNQ corpus
and contains both text and table inputs. We improve
this baseline by finetuning on the NQTables part
of the training dataset (line 2). Previous work on
table representations using BERT has shown im-
provement from using [SEP] tokens to highlight
cell boundaries (Hwang et al., 2019). This is the
additional baseline we report in line 3. Since this
baseline performs well, we combine the usage of
[SEP] tokens with our models for the rest of the
table-encoding experiments (lines 3-7). We eval-
uate our table representation in lines 4-6, where
results in lines 5 and 6 are obtained by initially
pretraining the additional weights introduced by
the GNN using WikiTables, as described in Sec-
tion 3.1.3. We also found that by finetuning on
the full NQ dataset first and further finetuning on
the NQTables subset, the results are substantially
improved (lines 6 and 7). Finally, our context-
aware model combined with the table encoding
from line 6 achieves the best result in this set of
experiments. The improvements of the GNN and
textual context-aware models are statistically sig-
nificant with p < 0.01 according to a Wilcoxon
signed-rank test. In the Appendix we provide two
examples — one where context-aware model pre-
diction improves, and the other one where adding
textual context hurts.

4.2 Combining Tables and Text

In this section, we describe experiments of com-
bining text and table predictions. Since the official
development set contains up to 5 annotations, some
of those annotations can be associated with tables,
while others are associated with text. Unlike in the

previous section, where text-related answers are
ignored, here we allow a match to either text- or
table-based answers. For this purpose, we need
to combine scores from the text-based and table-
based models. For text predictions, we use the
RoBERTa baseline that was trained on the FullNQ
dataset; for the table predictions we use our best
GNN model and the context-aware model (lines
6 and 7 in Table 1, respectively). Oracle analysis
on the development set suggests that a linear score
transformation in the case of the FullNQ is not ef-
fective. To combine the scores of the text model
gc and the table model gt, we use grid search, as
described in Section 3.3. The search for parameters
α, β, and γ is done on VAL-2 containing questions
with table answers, questions with text answers,
and questions without answers, using the string-
based F1 score instead of the span-based one to
compensate for the lack of multiple annotations in
the validation set. According to this metric, both
answers in tables and text are considered correct if
they have exact string match with the gold answer
span in a table annotated in VAL-2.

We evaluate those models on both the NQTables-
Dev and FullNQ-Dev, allowing both text and table
answers. The results are presented in Table 2. Re-
sults from our RoBERTa baseline that was trained
on FullNQ are shown in line 1. Then, as men-
tioned above, we combine this generic model with
table-only models (lines 2 and 3). Our experiments
suggest that our proposed best model that uses ta-
ble encoding improves the F1 score on NQTables
by 1.5 points. When the table+text model combi-
nation is used on the full NQ dataset, there is a
small improvement from both table models, but
the textual context attention model is comparable
to the GNN model, increasing recall at the cost of
reducing precision. This might be explained by
the relatively small fraction of questions that have

[SEP]
[SEP]
[SEP]
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NQTables (span) FullNQ (span) FullNQ (str)
Model F1 Prec Rec F1 Prec Rec F1 Prec Rec
Alberti et al. (2019)3 58.9 63.6 54.8 52.4 57.6 48.0 54.0 59.3 49.5
RoBERTa 62.5 65.0 60.2 54.4 60.3 49.6 56.2 62.3 51.2
GNN 63.1 64.6 61.7 54.6 60.2 50.0 56.6 62.3 51.8
Context-aware + GNN 64.0 65.5 62.6 54.6 59.4 50.6 56.6 61.5 52.4

Table 2: Results of combining text-based and table-based predictions from two models: F1, Precision, and Recall
scores reported on NQTables-Dev and FullNQ-Dev. (span) and (str) indicate span-based and string-based scores.

VAL-1
F1* Acc

all relations 55.7 54.3
− cell-col 54.9 53.7
− cell-row 55.0 53.7
− in-cell 56.0 53.8
− cross-col 55.7 54.3
− cross-row 55.7 54.7

Table 3: Importance of relation types.

answers only in tables (8% of all questions) and
the difficulty in calibrating answers from tables and
text against each other.

4.2.1 Impact of Relation Types
In order to investigate which of the five types of
table relations (defined in Section 3.1.2) help ta-
ble representation the most we perform an ablation
study where we use the baseline of the pretrained
GNN model (line 6), but remove each type of rela-
tion. The results are presented in Table 3. The abla-
tion study shows a clear importance of cell-column
and cell-row relation types, where the performance
of the model without each of those relations de-
grades. While the F1 score for the experiment
without in-cell relation is higher, the accuracy is
much lower. The cross-column relation does not
seem to contribute to the overall performance while
the cross-row relation degrades the accuracy.

4.2.2 Impact of Negative Sampling
In all our experiments using models finetuned on
tables only data (lines 2-7 in Table 1 and lines 2-3
in Table 2), during training we used an equal pro-
portion of positive and negative samples,4 where
all negative samples were taken from the articles
in NQTables-Train, which contain an answer in a
table. This approach is successful when models

4A sample is a table or a table fragment, together with an
indication of short answer span or NULL.

were evaluated on their ability to predict answers
in tables, for articles that are known to contain
such answers. On the other hand, when the table-
based models are asked to make predictions for
articles not known to contain answers in tables (or
any answers), they tended to be over-confident in
comparison to a generic text-based model, trained
with negative examples across all articles. This
over-confidence is evident from the extremely high
selected confidence parameters of γ = −0.005 for
GNN model (line 2 in Table 2) and γ = −0.0025
for context-aware model (line 3 in Table 2), sug-
gesting that only high-value and high-confidence
scores are considered from the table-based model.

To investigate the effect of the negative sam-
pling method we perform an ablation study that
compares three techniques: 1) sampling negative
samples from within articles that contain an answer
in tables, 2) random sampling of negatives across
all NQ articles, in the proportion used by Alberti
et al. (2019), and 3) sampling negatives with equal
proportion from articles that contain answer in ta-
bles, and articles that do not. The results for the
GNN model are shown in Table 4. While the first
sampling strategy works best when a table-based
model is used to predict answers from tables in
NQTables, sampling negatives from a more diverse
set of articles improves the overall FullNQ results
for the combination of text and table-based mod-
els, by allowing better calibration between text and
table models. The threshold values γ are seen to
be much lower in these cases. However, the sec-
ond and third strategies reduce performance on QA
from tables. When optimizing the random sam-
pling strategy for highest performance on FullNQ,
no benefit was found from contextual text attention
for table representations.

Finally, we compare the performance of our
model to other work on the Natural Questions on
both the short and long answer prediction tasks. In
our model, the long answer is predicted based on



2903

NQTables FullNQ
Sampling ( pos : neg within : neg outside) VAL-1 (F1) DEV (F1) γ

(1) Equal sampling within positive article (1:1:0) 55.7 54.6 -0.005
(2) Random sampling across all articles (0.63:0.28:0.72) 52.5 55.1 -3
(3) Equal sampling within and across articles (2:1:1) 54.0 54.9 -0.5

Table 4: The effect of negative sampling technique on table-only models and text+table model combinations.

Model Short F1 Long F1
Alberti et al. (2019) 52.7 64.7
Liu et al. (2020) 57.7 73.9
Ravula et al. (2020) 58.5 78.2
GNN, random sample (2) 55.1 65.9

Table 5: Comparison to other NQ models.

the segment that corresponds to the short answer
prediction. The results are presented in Table 5. As
we can see, our method obtains a substantial im-
provement over the baseline of Alberti et al. (2019)
in short answer F1, and a smaller improvement
in long answer F1. Advances in long answer F1
from state-of-the-art recent works are likely com-
plementary to our method and can be integrated for
additive gain.

5 Conclusion

Tables in Web documents are pervasive and can be
directly used to answer many search queries. In
this work, we presented an approach to enrich ta-
ble representations using information from article
text, and showed that it improves a state-of-the-art
pretrained structure-aware table representation for
question answering from tables. We also studied
how to effectively combine text-based and table-
based approaches. Finally, we performed the first
study focusing on table QA for the Natural Ques-
tions dataset, and showed that improved representa-
tions of tables lead to performance gains. In future
work, our methods can be applied to other QA
datasets, such as WikiTableQuestions (Pasupat and
Liang, 2015) and HybridQA (Chen et al., 2020).
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A Examples

Figure 2: Example where incorporating textual context helps. In red square the prediction was made by GNN
model without context attention (Table 1, line 6), in green square the prediction was made by context-aware GNN
(Table 1, line 7).

The correct answer ”Easter massasauga rattlesnake” was correctly predicted from the table when
context-aware attention was used. The same answer can be extracted based on the textual information
in the introduction paragraph. By propagating relevant information from the textual context to the table
entries, the model was able to predict correctly the answer from the table. On the other hand, the table-
only model which does not use the surrounding textual context incorrectly predicted ”Cnemidophorus
sexlineatus”.
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Figure 3: Example where incorporating textual context hurts. In red square the incorrect prediction was made by
context-aware GNN model (Table 1, line 7), in green square the correct prediction was made by GNN without
context attention (Table 1, line 6).

The correct answer ”Bowling for Soup” was correctly predicted from the table by the model that does
not use context attention, while the context-aware model predicts the answer that has higher number of
links to the textual context.


