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Abstract

GQA (Hudson and Manning, 2019) is a dataset
for real-world visual reasoning and compo-
sitional question answering. We found that
many answers predicted by the best vision-
language models on the GQA dataset do not
match the ground-truth answer but still are se-
mantically meaningful and correct in the given
context. In fact, this is the case with most exist-
ing visual question answering (VQA) datasets
where they assume only one ground-truth an-
swer for each question. We propose Alter-
native Answer Sets (AAS) of ground-truth
answers to address this limitation, which is
created automatically using off-the-shelf NLP
tools. We introduce a semantic metric based
on AAS and modify top VQA solvers to sup-
port multiple plausible answers for a ques-
tion. We implement this approach on the GQA
dataset and show the performance improve-
ments.

1 Introduction

One important style of visual question answering
(VQA) task involves open-ended responses such as
free-form answers or fill-in-the-blanks. The possi-
bility of multiple correct answers and multi-word
responses makes the evaluation of open-ended
tasks harder, which has forced VQA datasets to
restrict answers to be a single word or a short
phrase. Despite enforcing these constraints, from
our analysis of the GQA dataset (Hudson and Man-
ning, 2019), we noticed that a significant portion
of the visual questions have issues. For example,
a question “Who is holding the bat?” has only
one ground truth answer “batter” while other rea-
sonable answers like “batsman”, “hitter” are not
credited. We identified six different types of issues
with the dataset and illustrated them in Table 1.

A large-scale human-study conducted by (Gurari
and Grauman, 2017) on VQA (Antol et al., 2015)

and VizWiz (Gurari et al., 2019) found that almost
50% questions in these datasets have multiple pos-
sible answers. datasets had similar observations.
The above evidence suggests that it is unfair to pe-
nalize models if their predicted answer is correct
in a given context but does not match the ground
truth answer.

With this motivation, we leverage existing
knowledge bases and word embeddings to generate
Alternative Answer Sets (AAS) instead of consider-
ing visual questions to have fixed responses. Since
initially obtained AAS are generated from multiple
sources and observed to be noisy, we use textual
entailment to verify semantic viability of plausi-
ble answers to make alternative answer sets more
robust. We justify the correctness and quality of
the generated AAS by human evaluation. We in-
troduce a semantic metric based on AAS and train
two vision-language models LXMERT (Tan and
Bansal, 2019) and ViLBERT (Lu et al., 2019) on
two datasets. The experimental results show that
the AAS metric evaluates models’ performances
more reasonably than the old metric. Lastly, we in-
corporate AAS in the training phase and show that
it further improves on the proposed metric. Figure
2 gives an overview of our work.

2 Related Works

We discuss related works from two aspects, dataset
creation and evaluation.

Dataset Creation-Level Large-scale VQA
datasets are often curated through crowd-sourcing,
where open-ended ground-truths are determined
by majority voting or annotator agreement.
The subjectivity in crowd-sourced datasets is
well-studied in human-computer interaction
literature- (Gurari and Grauman, 2016, 2017;
Yang et al., 2018) etc. Ray et al. (2018) suggested
creating a semantically-grounded set of questions
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Issue Type Definition %

[1] Synonym and Hypernym
Synonym or hypernym of the ground-truth can also be
considered as a correct answer for a given question-image pair.

9.1

[2] Singular/Plural
Singular or plural of the ground-truth can also be considered
as a correct answer for a given question-image pair.

1.0

[3] Ambiguous Objects
Question refers to an object but the image contains multiple
such objects that can lead to different possible answers.

5.8

[4] Multiple Correct Answers
If a given image-question pair is not precise, annotators might
have different opinion which leads to multiple correct answers

7.0

[5] Missing Object(s) Object referred in the question is not clearly visible in image. 4.3
[6] Wrong Label The ground-truth answer to a question-image pair is incorrect. 6.7

Table 1: Six types of issues observed in the GQA dataset, their definition and their distribution observed in manual
review of 600 samples from testdev balanced split. For example of each issue type, refer Figure 1.

for consistent answer predictions. (Bhattacharya
et al., 2019) analyzed VQA and VizWiz datasets
to present 9-class taxonomy of visual questions
that suffer from subjectivity and ambiguity. Our
analysis on GQA partially overlaps with this study.
GQA dataset only provides one ground truth for
each question; thus, we propose AAS to extend
answers by phrases with close semantic meaning
as the ground-truth answer.

Evaluation-Level For open-ended VQA tasks,
the standard accuracy metric can be too stringent
as it requires a predicted answer to exactly match
the ground-truth answer. To deal with different
interpretations of words and multiple correct an-
swers, (Malinowski and Fritz, 2014) defined a
WUPS scoring from lexical databases with Wu-
Palmer similarity (Wu and Palmer, 1994). (Ab-
delkarim et al., 2020) proposed a soft match-
ing metric based on wordNet (Miller, 1998) and
word2vec (Mikolov et al., 2013). Different from
them, we incorporate more advanced NLP re-
sources tools to generate answer sets and rely on
textural entailment to validate semantics for ro-
bustness. We propose a new metric to evaluate a
system’s response.

3 Analysis of GQA Dataset

GQA is a dataset for real-world visual reasoning
and compositional question answering. Instead
of human annotation, answers to the questions in
GQA are generated from the scene graphs of im-
ages. We found that automatic creation leads to
flaws in the dataset; thus, we manually analyze 600
questions from the testdev balanced split of GQA
dataset, and identify six issues shown in Table 1.

Figure 1 shows examples of each type of issue.

These issues are caused by (not limited to) three
reasons. First, the dataset assumes only one ground
truth so that other answers with semantic closed
meaning are ignored. We propose AAS to address
this issue to some extent and describe AAS in the
next section. Second, some questions referring to
multiple objects cause ambiguous meaning. We
leverage scene graphs to address this issue and
found 2.92% and 2.94% ambiguous questions in
balanced training split and balanced validation split,
respectively. These ambiguous questions can be
removed from the dataset. Third, there are incor-
rect scene graph detections so that some questions
and/or labels do not match with the given images.
We plan to address these issues in our future work.

4 Alternative Answer Set

To credit answers with semantically close mean-
ing as the ground-truth, we propose a workflow
that can be visualized from Figure 2. Each item
in VQA dataset consists of <I, Q, GT>, where I
is an image, Q is a question, and GT is a ground-
truth answer. We define an Alternative Answer Set
(AAS) as a collection of phrases {A1, A2, A3,..,
An} such that Ai replaced with GT is still a valid
answer to the given Image-Question pair. We con-
struct AAS for each unique ground-truth automati-
cally from two knowledge bases: Wordnet (Miller,
1998) and ConcpetNet (Liu and Singh, 2004), two
word embeddings: BERT (Devlin et al., 2018) and
counter-fitting (Mrkšić et al., 2016). We assign a se-
mantic score to each alternative answer by textural
entailment and introduce the AAS metric.
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[1] Synonym and Hypernym

Question: Who is holding the bat?
Ground-truth: batter
Explanation: ‘batsman’ is a synonym of ’batter’
SU-AAS: batter, batsman, hitter, ballplayer, player

[2] Singular/Plural

Question: Who is wearing the dress?
Ground-truth: women
Explanation: singular form ‘woman’ is also correct
(there is only one woman in the picture)
SU-AAS: women, female, woman, people, adult female

[3] Ambiguous Objects

Question: Does the person in front of the cabinets
have brunette color?
Ground-truth: Yes
Explanation: there are two people in front of the cabinet
and it is not clear which person is being referred to
SU-AAS: yes

[4] Multiple Correct Answers

Question: Which place is it?
Ground-truth: road
Explanation: some person might answer ‘road’ and
some might answer ‘street’
SU-AAS: road, street, roadway, paved

[5] Missing Object(s)

Question: Does the marker look narrow?
Ground-truth: Yes
Explanation: the ‘marker’ is missing from the image
SU-AAS: yes

[6] Wrong Label

Question: Do the door and the logo have the same color?
Ground-truth: Yes
Explanation: the correct answer is ‘no’ as the door is
white and logo is green.
SU-AAS: yes

Figure 1: Examples from GQA dataset for each issue type and SU-AAS i.e. AAS of ground-truth based on semantic union
approach. SU-AAS can resolve Synonym and Hypernym, Singular/Plural, and Multiple Correct Answers for a given problem.

4.1 Semantic Union AAS

We take a union of four methods to find all alter-
native answers. For example, “stuffed animal” is
semantic similar to “teddy bear”, which appears
in the AAS based on BERT but not in WordNet.
However, the union might include phrases that we
want to distinguish from the label like “man” is in
the AAS of “woman” when using the BERT-based
approach. For this reason, we employ the textural
entailment technique to compute a semantic score
of each alternative answer. For each label, we first
obtain 50 sentences containing the ground-truth la-
bel from GQA dataset. We take each sentence as
a premise, replace the label in this sentence with
a phrase in its AAS as a hypothesis to generate
an entailment score between 0-1. Specifically, we
use publicly available RoBERTa (Liu et al., 2019)
model trained on SNLI (Stanford Natural Language
Inference) (Bowman et al., 2015) dataset for entail-
ment computation. The semantic score of the alter-
native answer is the average of 50 entailment scores.
If the semantic score is lower than the threshold of
0.5, then this alternative answer is thrown out. We
choose 0.5 since it is the middle of 0 and 1.

Lastly, we sort the AAS by semantic score and
keep the top K in the semantic union AAS, anno-
tated by SU-AAS. We experiment with different
values of K from 2 to 10, and decide K to be 6, a

trade-off between accuracy and robustness. Note
that the performance of textual entailment model
is a contributing factor in obtaining quality AAS.
Therefore, we recommend using the state-of-the-
art entailment model when our proposed method is
applied on other VQA datasets.

4.2 Evaluation Metric Based on AAS
We propose AAS metric and semantic score: given
a question Qi, an image Ii, the alternative answer
set of GTi denoted by SGTi , the prediction of model
Pi is correct if and only if it is found in SGTi , and
the score of Pi is SGTi(Pi), where SGTi(Pi) is the
semantic score of Pi. Mathematically,

Acc(Qi, Ii, SGTi , Pi) =

{
SGTi(Pi) if Pi ∈ SGTi

0 else

5 Experiments

In this section, we first show that the performance
of vision-language models on two datasets is im-
proved based on the AAS metric. Then, we de-
scribe our experiment to incorporate AAS with one
model on GQA dataset. Last, we verify the correct-
ness of AAS by human evaluation.

5.1 Baseline Methods
We select two top Vision-and-Language models,
ViLBERT (Lu et al., 2019) and LXMERT (Tan
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Figure 2: (top) The workflow for generating Alternative Answer Set (AAS) for VQA datasets (bottom) An example
from GQA dataset showing semantically valid AAS for the answer ‘batter’ generated using above workflow

and Bansal, 2019) and evaluate their performances
based on the AAS metric. From Table 2, we see that
for the GQA dataset, LXMERT and ViLBERT have
4.49%, 4.26% improvements on union AAS metric
separately. For VQA2.0 dataset, LXMERT and
ViLBERT have 0.82%, 0.53% improvements on
union AAS metric separately. It is expected that the
improvement on VQA2.0 dataset is less than GQA
since the former dataset already provides multiple
correct answers. Figure 3 shows the impacts of the
value K of Union AAS on the scores. From the
figure, we see that when K increases from 2 to 6,
the score gets increased significantly, and slightly
when k increases from 6 to 9, but not increases
more after K is 9. Since values 7 and 8 do not
significantly improve the score, and the value 9
introduces noise, we take the top 6 as the SU-AAS.
5.2 Training with AAS

We incorporate SU-AAS of ground truth in training
phase, so the model learns that more than one an-
swer for a given example can be correct. We train
LXMERT on GQA dataset with this objective.

Table 3 shows the results of LXMERT trained
with AAS compared with the baseline. Not sur-
prisingly, the performance evaluated on the origi-
nal method drops because the model has a higher

Figure 3: Union AAS score of different value of K

chance to predict answers in AAS, which are differ-
ent from the ground truth, and thus the performance
evaluated on SU-AAS metric increases.

Dataset
Exact Matching Accuracy SU-AAS Accuracy

LXMERT LXMERTAAS LXMERT LXMERTAAS

GQA(testdev) 60.06 59.02 64.55 65.22

Table 3: Incorporate AAS in the training phase of LXMERT
(LMXERTAAS) on GQA dataset.

5.3 Evaluation of AAS

To validate the correctness of AAS, we measure
the correlation between human judgment and AAS.
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Dataset Model Original Metric WordNet BERT CounterFit ConceptNet Union
GQA LXMERT 60.06 61.79 62.69 62.75 63.58 64.55
(testdev) ViLBERT 60.13 61.90 62.69 62.74 63.67 64.39
VQA LXMERT 69.98 70.21 70.54 70.33 70.52 70.80
(valid) ViLBERT 77.65 77.82 78.10 77.93 78.06 78.28

Table 2: The evaluation of two models on GQA and VQA with original metric and AAS based metrics.

Specifically, for each label of GQA, we take the
SU-AAS and ask three annotators to justify if al-
ternative answers in AAS can replace the label. If
the majority of annotators agree upon, we keep the
answer in the AAS, remove otherwise. In this way,
we collect the human-annotated AAS. We compare
the human-annotated AAS with each automatically
generated AAS. We take the intersection over union
(IoU) score to evaluate the correlation between au-
tomatic approach and human annotation: a higher
IoU score means stronger alignment.

Method WordNet BERT CounterFit ConceptNet Union

IoU% 48.25 56.18 58.95 58.39 80.5

Table 4: The IoU scores between human annotations and
AAS based on five approaches.

6 Discussion and Conclusion

To evaluate a model from a semantic point of view,
we define an alternative answer set (AAS). We de-
velop a workflow to automatically create robust
AAS for ground truth answers in the dataset using
Textual Entailment. Additionally, we did human
verification to assess the quality of automatically
generated AAS. The high agreement score indi-
cates that entailment model is doing a careful job
of filtering relevant answers. From experiments on
two models and two VQA datasets, we show the
effectiveness of AAS-based evaluation using our
proposed metric.

AAS can be applied to other tasks, for example,
machine translation. BLEU(Papineni et al., 2002)
score used to evaluate machine translation models
incorporates an average of n-gram precision but
does not consider the synonymy. Therefore, ME-
TEOR (Banerjee and Lavie, 2005) was proposed
to overcome this problem. However, METEOR
only relies on the synset of WordNet to get the syn-
onyms. Our proposed AAS has the advantage of
both knowledge base and word embeddings, which
would help better evaluate translation tasks.
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