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Abstract

Most of the previous work on Event Detection
(ED) has only considered the datasets with a
small number of event types (i.e., up to 38
types). In this work, we present the first study
on fine-grained ED (FED) where the evalua-
tion dataset involves much more fine-grained
event types (i.e., 449 types). We propose a
novel method to transform the Semcor dataset
for Word Sense Disambiguation into a large
and high-quality dataset for FED. Extensive
evaluation of the current ED methods is con-
ducted to demonstrate the challenges of the
generated datasets for FED, calling for more
research effort in this area.

1 Introduction

Understanding events in text is an important aspect
of Natural Language Processing (NLP). Toward
this end, Event Detection (ED), a task of Informa-
tion Extraction (IE), aims to identify event triggers
in sentences and classify them into some prede-
fined types of interest. Event triggers represent the
most important words (usually single verbs or nom-
inalizations) in the sentences that evoke the events.
The current state-of-the-art methods for ED feature
the deep learning models where many new network
architectures are introduced in the last couple of
years (Nguyen and Grishman, 2015; Chen et al.,
2015; Liu et al., 2017, 2019a; Lai et al., 2020b).

Among others, the rapid development of the
deep learning models for ED can be partly at-
tributed to the availability of the large datasets to
evaluate the models (e.g., the ACE 2005 and TAC
KBP 2015 datasets (Walker et al., 2006; Mitamura
et al., 2015)). Unfortunately, a major issue in these
existing datasets for ED is that they tend to only
focus on a limited set of event types. For example,
the popular ACE 2005 dataset is only annotated
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for 33 event subtypes (e.g., Attack, Start-Position,
Elect) while the number of events in the TAC KBP
dataset (Mitamura et al., 2015) is 38. On the one
hand, the limited numbers of types are unable to
cover a wide range of possible events in practice
(Araki and Mitamura, 2018). On the other hand, the
small label sets often amount to the coarse-grained
event types in the existing datasets that cannot cap-
ture the slightly different nuances (i.e., fine-grained
distinction) of the events. For instance, both the
words “quit” and “fired” in the two sentences “He
decided to quit the job.” and “He was fired due to
a policy violation.” (respectively) would be consid-
ered as the trigger words of the same event type of
End-Position in the ACE 2005 dataset. However,
the nuances in these two events are quite different
(i.e., in term of the willingness of the job termi-
nation) and the ability to characterize such subtle
distinction would be useful for the downstream
applications (Choi et al., 2018).

In order to address these problems, we propose
to explore the problem of Fine-grained Event De-
tection (FED) that seeks to solve ED with much
larger and finer-grained sets of event types (moti-
vated by the fine-grained entity typing task (Ling
and Weld, 2012; Choi et al., 2018)). To our knowl-
edge, this is the first work to explicitly study FED
in the literature. A major challenge in this research
direction is the creation of the evaluation datasets
to enable effective model development and analysis.
In particular, it is non-trivial to design a large set of
fine-grained event types to be applied to annotate
the datasets. In addition, with such a large number
of fine-grained event types (i.e., 449 in this work),
the traditional labeling procedure with human in-
volvement might be too expensive and error-prone
when it comes to the generation of large datasets
for FED. To this end, we introduce a novel method
to address these challenges and produce a large
dataset for FED based on WordNet and Word Sense
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Disambiguation (WSD) datasets. Our method in-
volves two major steps where we first leverage the
synset typology in WordNet to formulate the fine-
grained event types and then convert the annotated
datasets for WSD to establish the datasets for our
FED problem. This novel data generation proce-
dure minimizes the human effort and allows us
to create a large and high-quality dataset with 449
fine-grained event types for FED. Finally, we exten-
sively evaluate the state-of-the-art ED models on
the proposed FED dataset. The experiments show
that the performance of the current ED models is
not yet satisfactory for FED and further research
is needed to advance the performance in this area.
We will publicly release the proposed dataset to
promote the future research on FED.

2 Data Generation Procedure

The goal of this section is to generate a large dataset
for ED with many fine-grained event types to eval-
uate the FED models. Our proposed procedure to
achieve this goal involves two major steps. First,
we identify the eventive synsets/senses in WordNet
3.0 (Miller, 1995) and group them into classes with
similar eventive meanings. These classes would
serve as the fine-grained event types in the resulting
FED dataset. As the result, we obtain a mapping
from the set of WordNet synsets to the set of the
fine-grained event types for our problem (some
WordNet synsets might not be mapped to any event
type in our case). Afterward, we leverage the Sem-
cor dataset for WSD (Miller et al., 1994) and map
the synsets annotated for the words in this dataset
into the event types in our setting. This conver-
sion process produces a dataset whose words are
assigned with the fine-grained event types in our
FED problem. As the Semcor dataset is manu-
ally annotated, the resulting FED dataset would be
large and have high quality if the synset-event type
mapping is constructed well.

In particular, for eventive synset/sense identifi-
cation, we first start with nouns. Following (Araki
and Mitamura, 2018), we assume that any synset
for a noun subsumed by one of the three following
synsets via the WordNet hyponyms would be con-
sidered as eventive: state2n (i.e., the way something
is with respect to its main attributes), process6n
(i.e., a sustained phenomenon or one marked by
gradual changes through a series of states), and
event1n (i.e., something that happens at a given
place and time). In this way, we find 13,166 even-

tive synsets over 82,115 synsets for nouns. We

Gloss: the act of changing location
from one place to another

Example: He would walk miles into
the campagna to visit with them, and
in particular to see their horses.

Gloss: a change of
position that does not
entail a change of location

Example: Styka shook his
head slowly.

event.n.01
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Figure 1: The synsets at different levels and the exam-
ples for some event types and their core synsets.

call these three general synsets as the eventive root
synsets in the following. Starting from these root
synsets, we traverse the synset graph in WordNet by
following the hyponym links. The graph traversal
procedure will generate three different trees whose
nodes are the eventive synsets and roots correspond
to the three selected synsets. For convenience, we
call the synsets in WordNet that can be reached by
one of the three synsets above after n hyponym
links as the synsets at the n-th level1 (so the root
synsets are at the zero level). In order to form
the fine-grained event types for FED, we select
the WordNet synsets at the 4th level as the core
meanings (called the core synsets) for the event
types in our dataset (there are 2,637 core eventive
synsets found in this way). We empirically choose
the synsets at the 4th level to balance two factors.
On the one hand, the synsets at the shallower levels
lead to too general event types that cannot achieve
the expected fine-grained property. On the other
hand, going deeper for the core event meanings
reduces the numbers of examples per event type in
the final FED dataset converted from Semcor.

Given a core synset A, we identify the other
synsets with similar meaning to A and combine
them to represent a fine-grained event type (called
E) in our dataset (i.e., the event type E will involve
several semantically similar synsets in WordNet).
In this work, we include two following classes of
synsets in the event type E for A:
• The synsets for nouns that can be reached from

A with the hyponym links: Intuitively, the synsets
subsumed by A would exhibit the general eventive

1It is possible that some eventive synsets in WordNet might
reside at more than one level as they can be reached from the
three root nodes with multiple paths. We resolve this conflict
by putting these synsets on the closet level to the roots.
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meanings of A with some certain distinctions.

• The synsets of the derivationally related forms
of the lemmas/senses l in A and their synset de-
scendants (via the hyponym links): In WordNet,
the derivationally related forms of a lemma l in the
synset A involve the lemmas from different syn-
tactic categories (e.g., verbs and adjectives) that
have the same root form as l and are semantically
related to l and A (e.g., destruction → destroy)
(Miller, 1995). Due to such semantic similarity,
we expect that the synsets of the derivationally re-
lated forms of the lemmas in A and their descen-
dants also express the same eventive meaning as
A, thereby enriching the synsets for E with the
syntactic categories beyond nouns.

Up to this point, we obtain a set of 2,637 event
types, each represented by a core synset and a set
of related synsets. We combine all the other synsets
(i.e., the ones that do not appear in any of the 2637
types) to create a single event type called Other as
in the traditional ED task. With these grouping in-
formation, we can now create a mapping from the
synsets/senses in WordNet to the 2638 established
event types for our dataset (called the M-WordNet-
Event mapping). Based on this mapping, we trans-
form each example in the WSD Semcor dataset,
which involves a sentence and a word of interest,
into an example in the new dataset for FED (called
FedSemcor) where the synset/sense label for the
word in the original example of Semcor is mapped
into the corresponding event type in FedSemcor.
As the final processing step, we remove from Fed-
Semcor any event types that have less than 10 ex-
amples to ensure that the event types are adequately
represented in our dataset. This step significantly
reduces the number of event types in FedSemcor,
leaving us 449 event types (not including Other)
with 34,666 examples. These are called the pos-
itive examples where we have 77.2 examples per
event type in average. As a result, the synsets for
the removed event types are also included in the
synset set for the Other type in the mapping. The
number of examples with the Other type in the final
FedSemcor dataset (called the negative examples)
is 98,309. Figure 1 illustrates the synset levels and
some examples for the event types.

Implementation Details: In the actual imple-
mentation of the data generation procedure for Fed-
Semcor, given a core synset A, we do not include
all the descendants of A and the synsets of the
derivationally related forms of A’s lemmas into the

ACE TAC KBP FedSemcor
# event types 33 38 449
# positive examples 4,907 11,975 34,666
# negative examples 104,217 126,934 98,309

Table 1: Statistics for the FedSemcor, ACE 2005 and
TAC KBP 2015 datasets. Negative examples refer to
the non-trigger words while positive examples are an-
notated trigger words for the event types of interest.

synset set for the correspdoning event type E for A.
Instead, we only include the descendants that are
at at most 2 hyponym links away from A and the
synsets of the derivationally related forms of A’s
lemmas in E. This is based on our empirical in-
vestigation of the data where the descendants with
more than 2 links away tend to have semantic drifts
from A, potentially introducing noise into the event
type E. For example with the core synset motion6

n

(i.e., the act of changing location from one place to
another) at the 4th level, the descendants at the 5th,
6th and 7th levels include: level 5: approach2n (i.e.,
the act of drawing spatially closer to something),
level 6: access6n (i.e., the act of approaching or
entering), and level 7: back door6n (i.e., a secret or
underhand means of access (to a place or a posi-
tion)). As we can see, while the synsets at the 5th

and 6th levels are related to the original core synset,
the synset at the 7th level already involves some
semantic departure from the one at the 4th level
that should be avoided to improve the precision.

Dataset Statistics: Table 1 reports some statis-
tics for FedSemcor and some prior popular datasets
for ED (i.e., ACE 2005 (Walker et al., 2006) and
TAC KBP 2015 (Mitamura et al., 2015)) to facili-
tate the comparison. As we can see from the table,
FedSemcor has more positive examples, but less
negative examples than ACE 2005 and TAC KBP
2015, making FedSemcor a more balanced dataset
than the other two. In addition, we show the distri-
bution of 50 event types with the highest numbers
of examples in FedSemcor in Figure 2. Finally,
Figure 3 illustrates the distribution of the sentence
lengths for the examples in FedSemcor.

Evaluation of FedSemCor: As we rely on the
manual annotation in Semcor for the synsets for
the words, the main bottleneck in the data genera-
tion procedure is the mapping from the WordNet
synsets to the 450 event types in FedSemCor (in-
cluding Other). In order to evaluate the quality of
this mapping, we sample 500 synsets from Word-
Net that are different from the core synsets of the
449 positive event types. Two experienced NLP re-
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Figure 2: The distribution of the 50 event types with the highest numbers of examples/instances in FedSemcor.
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Figure 3: The distribution of the sentence lengths for
the examples in FedSemcor.

searchers then independently examine each of these
500 sampled synsets to determine the appropriate
event type for it (among the 450 types). In doing so,
they examined the glossaries of the synsets as well
as the examples provided by WordNet. The two
annotators achieved 79.8% agreement for which
the synsets with conflicts are resolved by a third
NLP researcher. Afterward, we apply the synset-
event type mapping obtained in the data generation
procedure to annotate the 500 sampled synsets for
the event types. The event types provided by the
mapping are then compared with those from the
annotators, leading to 83.6%, 78.6% and 81.0% as
the precision, recall, and F1 scores respectively.

3 Evaluation

Models and Data: In order to understand the com-
plexity of the FedSemcor dataset for FED, this
section evaluates the performance of the state-of-
the-art models for the traditional ED problem on
this dataset. In particular, we first split FedSem-
cor into the training, development and test data

Dataset Training Development Test
#Pos #Neg #Pos #Neg #Pos #Neg

FedSemcor 20,799 58,985 5,546 21,038 8,321 18,286

Table 2: The size of the dataset portions.

using the 6:2:2 ratio over the entire dataset. Table
2 presents the statistics about these data portions.
Note that similar to some prior ED work (Nguyen
and Grishman, 2015; Chen et al., 2015), our FED
problem is formulated as a word classification prob-
lem where given a word in an input sentence, the
models need to predict the event type for the word.

Afterward, we consider the following represen-
tative models for ED: CNN (Nguyen and Grish-
man, 2015), DMCNN (Chen et al., 2015), SupAtt
(Liu et al., 2017) (i.e., supervised attention), GCN
(Nguyen and Grishman, 2018), and MOGANED
(Yan et al., 2019) (i.e., a Multi-Order Graph Con-
volution model). MOGANED is the state-of-the-
art model with uncontextualized word embeddings
in traditional ED (i.e., on ACE 2005). For these
models, we use both the traditional word embed-
dings word2vec and the recent contextualized
word embeddings BERT (i.e., the uncased base
model) (Devlin et al., 2019) as the pre-trained word
embeddings. For BERT, we further evaluate the ED
models in (Wang et al., 2019) (called DMBERT)
and (Yang et al., 2019) (called BERT-ED) that
have the best-reported performance on ACE 2005
for ED.

For the experiments in this work, we re-tune
the hyper-parameters of the models on the devel-
opment set of FedSemcor. In particular, depend-
ing on which components each model has, we use
the following bounds to search for the hyperpa-
rameters: [100, 200, 300, 400, 500] for the dimen-
sionality of the hidden vectors in the layers of all
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the feed-forward, BiLSTM, and GCN networks,
[1, 2, 3] for the numbers of layers for BiLSTM and
GCN, [16, 32, 64] for the mini-batch size, [1e-5,
1e-4, 1e-3, 1e-2, 1e-1] for the learning rate of the
Adam optimizer, and [10, 20, 30, 40, 50] for the di-
mensions of the feature embeddings, i.e., position
embeddings in CNN (Nguyen and Grishman, 2015;
Chen et al., 2015).

Finally, in order to demonstrate the benefit of
the conversion of Semcor (i.e., a WSD dataset)
into FedSemcor for FED, we consider a WSD-
based baseline for FED where the state-of-the-art
WSD model in (Hadiwinoto et al., 2019) is trained
on the training data of FedSemcor. As this is a
WSD model, instead of using the mapped event
types as the labels for the examples (i.e., the 450
types) in the training data, we employ the original
word senses of the words as the labels to train this
WSD model. Afterward, we apply the trained WSD
model on the test data of FedSemcor, producing a
word sense for each example. In the last step, the
mapping M-WordNet-Event is utilized to convert
the predicted word senses for the test set examples
into the event types for FedSemcor that would be
evaluated to obtain the FED performance for this
baseline (called WSD-based). Note that this WSD
model also uses the BERT embeddings.
Results: Table 3 shows the performance of the
models on the test set of FedSemcor. From the
table, we see that GCN has the best performance
among the models with word2vec while BERT-
ED outperforms all the BERT-based models. How-
ever, the best performance on FedSemcor (i.e.,
65.0% F1 score with BERT-ED) is still far behind
the typical performance (i.e., up to 80.7% in (Yang
et al., 2019)) of the models on the traditional ED
datasets (i.e., ACE 2005). This suggests the more
challenging nature of FedSemcor and FED over tra-
ditional ED, presenting a challenge for the future
research in this area. Importantly, the performance
of the ED models (i.e., with the BERT embeddings)
is significantly better than the WSD-based baseline
(i.e., up to 9% performance gap with BERT-ED),
clearly testifying to the advantages of the conver-
sion from Semcor into FedSemcor for FED.

4 Related Work

ED has been studied extensively in the last decade,
featuring feature-based models (Ahn, 2006; Ji and
Grishman, 2008; Li et al., 2013, 2015), deep learn-
ing models (Chen et al., 2015; Nguyen et al.,

Model word2vec BERT
P R F1 P R F1

WSD-based - - - 47.2 68.7 56.0
CNN 48.8 53.6 51.1 52.8 69.8 60.1
DMCNN 43.7 51.6 47.4 56.9 71.5 63.4
SupAtt 58.5 46.0 51.5 59.5 71.1 64.8
GCN 53.7 60.0 56.7 58.9 71.5 64.6
MOGANED 48.6 61.8 54.4 55.8 71.2 62.6
DMBERT - - - 57.7 63.2 60.3
BERT-ED - - - 59.2 72.1 65.0

Table 3: The performance on the FedSemcor test set.

2016b,a; Nguyen and Grishman, 2016; Chen et al.,
2017; Liu et al., 2018; Yan et al., 2019; Ngo et al.,
2020; Lai et al., 2020b), and few/zero-shot learning
models (Huang et al., 2018; Lai and Nguyen, 2019;
Lai et al., 2020a). The rapid development of such
models has been facilitated by the availability of
the ED datasets in different domains, including the
general domain with the popular ACE and TAC
KBP datasets (Walker et al., 2006; Mitamura et al.,
2015, 2016), the biomedical domain (Kim et al.,
2009, 2011), literature (Sims et al., 2019), cyberse-
curity (Satyapanich et al., 2020; Man Duc Trong
et al., 2020), and the open domain (Araki and Mi-
tamura, 2018; Liu et al., 2019b). However, these
datasets only involve a small number of event types
and none of them has considered ED with many
fine-grained event types as we do.

Our FED task is also related to fine-grained en-
tity typing that aims to classify entity mentions
into a fine-grained set of types (Karn et al., 2017;
Shimaoka et al., 2016; Lin and Ji, 2019). The tech-
niques to generate datasets for fine-grained entity
typing include distant supervision (Ling and Weld,
2012; Abhishek et al., 2017) and manual annota-
tion (Murty et al., 2018; Choi et al., 2018). Notably,
(Del Corro et al., 2015) also uses WordNet to estab-
lish the fine-grained entity types, applying different
entity mention extractors over external corpus. Our
work is different as we focus on fine-grained event
types using the manually annotated corpus Semcor
to generate data.

5 Conclusion

We study a new task of FED, featuring 449 fine-
grained event types in the dataset for ED. A novel
method to generate the evaluation dataset for FED
is introduced, leveraging manually annotated WSD
datasets (i.e., Semcor) and the eventive synsets in
WordNet. We evaluate the state-of-the-art ED mod-
els on the new dataset to show the opportunities for
the future research on FED.
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