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Abstract

Significant memory and computational re-
quirements of large deep neural networks re-
strict their application on edge devices. Knowl-
edge distillation (KD) is a prominent model
compression technique for deep neural net-
works in which the knowledge of a trained
large teacher model is transferred to a smaller
student model. The success of knowledge
distillation is mainly attributed to its train-
ing objective function, which exploits the soft-
target information (also known as “dark knowl-
edge”) besides the given regular hard labels
in a training set. However, it is shown in the
literature that the larger the gap between the
teacher and the student networks, the more
difficult is their training using knowledge dis-
tillation. To address this shortcoming, we
propose an improved knowledge distillation
method (called Annealing-KD) by feeding the
rich information provided by the teacher’s soft-
targets incrementally and more efficiently. Our
Annealing-KD technique is based on a gradual
transition over annealed soft-targets generated
by the teacher at different temperatures in an
iterative process, and therefore, the student is
trained to follow the annealed teacher output
in a step-by-step manner. This paper includes
theoretical and empirical evidence as well as
practical experiments to support the effective-
ness of our Annealing-KD method. We did
a comprehensive set of experiments on differ-
ent tasks such as image classification (CIFAR-
10 and 100) and NLP language inference with
BERT-based models on the GLUE benchmark
and consistently got superior results.

1 Introduction

Despite the great success of deep neural networks
in many challenging tasks such as natural language
processing (Vaswani et al., 2017; Liu et al., 2019),
computer vision (Wong et al., 2019; Howard et al.,
2017), and speech processing (Chan et al., 2016;

He et al., 2019), these state-of-the-art networks
are usually heavy to be deployed on edge devices
with limited computational power (Bie et al., 2019;
Lioutas et al., 2019). A case in point is the BERT
model (Devlin et al., 2018) which can be comprised
of more than a hundred million parameters.

The problem of network over-parameterization
and expensive computational complexity of deep
networks can be addressed by neural model com-
pression. There are abundant of neural model
compression techniques in the literature (Prato
et al., 2019; Tjandra et al., 2018; Jacob et al.,
2018), among which knowledge distillation (KD)
is one of the most prominent techniques (Hinton
et al., 2015). KD is tailored a lot to serve dif-
ferent applications and different network architec-
tures (Furlanello et al., 2018; Gou et al., 2020).
For instance, patient KD (Sun et al., 2019), Tiny-
BERT (Jiao et al., 2019), and MobileBERT (Sun
et al., 2020) are designed particularly for distilling
the knowledge of BERT-based teachers to a smaller
student.

The success of KD is mainly attributed to its
training objective function, which exploits the soft-
target information (also known as “dark knowl-
edge”) besides the given regular hard labels in the
training set (Hinton, 2012). Previous studies in the
literature (Lopez-Paz et al., 2015; Mirzadeh et al.,
2019) show that when the gap between the student
and teacher models increases, training models with
KD becomes more difficult. We refer to this prob-
lem as KD’s capacity gap problem in this paper.
For example, Mirzadeh et al. (2019) show that if
we gradually increase the capacity of the teacher,
first the performance of student model improves for
a while, but after a certain point, it starts to drop.
Therefore, although increasing the capacity of a
teacher network usually boosts its performance, it
does not necessarily lead to a better teacher for the
student network in KD. In other words, it would
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be more difficult for KD to transfer the knowledge
of this enhanced teacher to the student. A similar
scenario happens when originally the gap between
the teacher and student network is large.

Mirzadeh et al. (2019) proposed their TAKD so-
lution to this problem which makes the KD process
more smooth by filling the gap between the teacher
and student networks using an intermediate aux-
iliary network (referred to as “teacher assistant”).
The size of this TA network is between the size
of the student and the teacher; and it is trained by
the teacher first. Then, the student is trained using
KD when the TA network is playing the role of its
teacher. This way, the training gap (between the
teacher and the student) would be less significant
compared to the original KD. However, TAKD
suffers from the high computational complexity
demand since it requires training the TA network
separately. Moreover, the training error of the TA
network can be propagated to the student during
the KD training process.

In this paper, we want to solve the KD capac-
ity gap problem from a different perspective. We
propose our Annealing-KD technique to bridges
the gap between the student and teacher models by
introducing a new KD loss with a dynamic tem-
perature term. This way, Annealing-KD is able
to transfer the knowledge of the teacher smoothly
to the student model via a gradual transition over
soft-labels generated by the teacher at different tem-
peratures. We can summarize the contributions of
this paper in the following:

1. We propose our novel Annealing-KD solu-
tion to the KD capacity gap problem based on
modifying the KD loss and also introducing
a dynamic temperature function to make the
student training gradual and smooth.

2. We provide a theoretical and empirical justifi-
cation for our Annealing-KD approach.

3. We apply our technique to ResNET8 and plain
CNN models on both CIFAR-10 and CIFAR-
100 image classification tasks, and the natural
language inference task on different BERT
based models such as DistilRoBERTa, and
BERT-Small on the GLUE benchmark and
achieved the-state-of-the art results.

4. Our technique is simple, architecture agnostic,
and can be applied on top of different variants
of KD.

2 Related Work

2.1 Knowledge Distillation

In the original Knowledge distillation method
by Hinton et al. (2015), which is referred to as KD
in this paper, the student network is trained based
on two guiding signals: first, the training dataset or
hard labels, and second, the teacher network pre-
dictions, which is known as soft labels. Therefore,
KD is trained based on a linear combination of two
loss functions: the regular cross entropy loss func-
tion between the student outputs and hard labels,
and the KD loss function to minimize the distance
between the output predictions of the teacher and
student networks at a particular temperature, T ,
on training samples:

L = (1− λ)LCE + λLKD

LCE = HCE

(
y, (σ(zs(x))

)
LKD = T 2KL

(
σ(
zt(x)

T
), σ(

zs(x)

T
)
) (1)

where HCE(.) and KL(.) are representing the
cross entropy and KL divergence respectively,
zs(x) and zt(x) are the output logits from the stu-
dent and teacher networks, T is the temperature
parameter, σ(.) is the softmax function and λ is
a coefficient between [0,1] to control the contri-
bution of the two loss functions. The above loss
function minimizes the distance between the stu-
dent model and both the underlying function and
the teacher model assuming the teacher is a good
approximation of the underlying function of the
data.

A particular problem with KD, that we would
like to address in this paper, is that the larger the
gap between the teacher and the student networks,
the more difficult is their training using knowledge
distillation (Lopez-Paz et al., 2015; Mirzadeh et al.,
2019).

2.2 Teacher Assistant Knowledge Distillation
(TAKD)

To address the capacity gap problem between the
student and teacher networks in knowledge distil-
lation, TAKD (Mirzadeh et al., 2019) proposes to
train the student (of small capacity) with a pre-
trained intermediate network (of moderate capac-
ity) called teacher assistance. In this regard, we
first train the TA with the guidance of the teacher
network by using the KD method. Then, we can
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use the learned TA network to train the student net-
work. Here, since the capacity of the TA network is
between the capacity of the teacher and the student
networks, therefore it can fill the gap between the
teacher and student and enhance the complexity
of the teacher and transfer its knowledge to the
student network.

As it is mentioned in (Mirzadeh et al., 2019), a
better idea could be using TAKD in a hierarchical
way. So in this case, we can have several TAs with
different levels of capacity from large capacities
close to the teacher model to small capacities close
to the student model. Then we could train these
TAs consecutively from large capacities to small
capacities in order to have a more smooth transfer
of teacher’s knowledge to the student model. But
it will be difficult. Because, first, since we need to
train a new model each time, it is computationally
expensive. Second, in this way we will have addi-
tive error in each step. Each TA after training will
have an approximation error and these errors will
accumulate and transfer to the next TA. In the next
section, we will propose a simple method to realize
this idea and avoid the mentioned problems.

2.3 Annealing in Knowledge Distillation

Clark et al. (2019) proposed an annealing idea in
their Born-Again Multi-task (BAM) paper , to train
a multitask student network using distillation from
some single-task teachers. They introduce a so-
called teacher annealing scheme to distill from a
dynamic weighted mixture of the teacher predic-
tion and the ground-truth label. In this regard, the
weight of teacher’s prediction is gradually reduced
compared to the weight of ground-truth labels dur-
ing training. Therefore, early in training, the stu-
dent model mostly learns from the teacher and later
on, it learns mostly from target labels. However,
our Annealing-KD is different from Clark et al.
(2019) in different aspects. First, the introduced an-
nealing term in BAM is conceptually different from
our annealing. While in BAM, teacher annealing
controls the contribution of the teacher dark knowl-
edge compared to the ground-truth labels during
training, our Annealing-KD is only applied to the
teacher output in the KD loss to solve the capac-
ity gap problem between the teacher and student
networks. Second, the way we do annealing in our
technique is through the temperature parameter and
not by controlling the contribution of the teacher
and ground-truth labels. Third, BAM falls into

another category of knowledge distillation which
focuses on improving the performance of the stu-
dent model and not compressing it. Our method is
described in the next section.

3 Method: Annealing Knowledge
Distillation

In this section, we describe our Annealing-KD tech-
nique and show the rationale behind it. First, we
start by formulating the problem and visualizing
our technique using an example for a better pre-
sentation. Then, we use VC-dimension theory to
understand why our technique improves knowledge
distillation. We wrap up this section by visualizing
the loss landscape of Annealing KD for a ResNet
network in order to investigate the impact of our
method on the KD loss function.

KD defines a two-objective loss function (i.e.
the LKD and LCE terms in Equation 1) to mini-
mize the distance between student predictions and
soft labels and hard labels simultaneously. With-
out adding to the computational needs of the KD
algorithm, our Annealing-KD model breaks the
KD training into two stages: Stage I, gradually
training the student to mimic the teacher using our
Annealing-KD loss LAnnealing

KD ; Stage II, fine-tuning
the student with hard labels using LCE . We can
define the loss function of our method as following.

L =

{
LAnnealing

KD (i), Stage I: 1 ≤ Ti ≤ τmax

LCE , Stage II: Tn = 1

(2)

In the above equation, i indicates the epoch index
in the training process with the max epoch number
of n for stage I, Ti represents the temperature value
at ith epoch, LCE is unchanged from Equation 1,
and at each epoch (i), LAnnealing

KD (i) is defined as
following:

LAnnealing
KD (i) = ||zs(x)− zt(x)× Φ(Ti)||22

Φ(T ) = 1− T − 1

τmax
, 1 ≤ T ≤ τmax, T ∈ N

(3)

In Equation 2, LAnnealing
KD is defined as an MSE

loss between the logits of the student (zs(x)) and
an annealed version of the teacher logits (zt(x)),
obtained by multiplying the logits by the anneal-
ing function Φ(T ). The annealing function Φ(T )
can be replaced with any monotonically decreasing
function Φ : [1, τmax] ∈ N→ [0, 1] ∈ R. In stage I
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of our training, initially we set T1 = τmax (which
leads to the most softened version of the teacher
outputs because Φ(T1) = 1

τmax
) and decrease the

temperature during training as the epoch number
grows (that is T → 1 while i → n). Training in
stage I continues until i = n, T = 1, for which
Φ(Tn) = 1 and we get the sharpest version of zt
without any softening. The intuition behind using
the MSE loss in stage I is that matching the logits
of the teacher and student models is a regression
task and MSE is one of the best loss functions for
this task. We also did an ablation study to compare
the performance of MSE and KL-divergence loss
function in stage I, and the results of this study
support our intuition. For more details, please refer
to table 10 of the appendices.

Therefore, our Annealing-KD bridges the gap
between the student and teacher models by intro-
ducing the dynamic temperature term (that is the
annealing function Φ(T )) in the stage I of train-
ing. This way our Annealing-KD method is able
to smoothly transfer the teacher’s knowledge to the
student model via a gradual transition over soft-
labels generated by the teacher at different temper-
atures.

To summarize, our Annealing-KD technique is
different from KD in following aspects:

• Annealing-KD does not need any λ hyper-
parameter to weigh the contribution of the
soft and hard lable losses, because it does the
training of each loss in a different stage.

• Our Annealing-KD loss LAnnealing
KD uses ||.||22

loss instead of the KL divergence.

• Moreover, our technique uses a dynamic tem-
perature by defining the annealing function
Φ(T ) in the Annealing-KD loss instead of
using a fixed temperature in KD.

• Our empirical experiments showed that it is
best to take the network logits instead of the
softmax outputs in LAnnealing

KD . Furthermore, in
contrast to KD, we do not add the temperature
term to student output.

Algorithm 1 explains the proposed method in
more detail.

In this section, we proposed an approach to al-
leviate the gap between the teacher and student
models as well as reducing the sharpness of the KD
loss function. In our model, instead of pushing the

student network to learn a complex teacher func-
tion from scratch, we start training the student from
a softened version of the teacher and we gradually
move toward the original teacher outputs through
our annealing process.

Algorithm 1
1: function ANNEALING-KD(S,T ,X , k, Tmax,
n)

2:

. stage I
3: for T = τmax to 1 do
4: Φ← 1− T −1τmax
5: for i = 1 to k do
6: TRAIN-ANNEALING(S,T , X ,Φ)
7: SAVE-BEST-CHECKPOINT(S)
8: end for
9: end for

10: S ← LOAD-BEST-CHECKPOINT . stage
II

11: for i = 1 to n do
12: TRAIN-FINE-TUNE(S, X)
13: SAVE-BEST-CHECKPOINT(S)
14: end for
15: S ← LOAD-BEST-CHECKPOINT

16: return S
17: end function

3.1 Example
For better illustration of our proposed method, we
designed a simple example to visualize different
parts of our Annealing-KD algorithm. In this re-
gard, we defined a simple regression task using a
simple 2D function. This function is a liner com-
bination of three sinusoidal functions with differ-
ent frequencies f(x) = sin(3πx) + sin(6πx) +
sin(9πx). We randomly sample some points from
this function to form our dataset (Figure 2-(a)).
Next, we fit a simple fully connected neural net-
work with only one hidden layer and the sigmoid
activation function to the underlying function of the
defined dataset. The teacher model is composed
of 100 hidden neurons and trained with the given
dataset. After training, the teacher is able to get
very close to training data (see the green curve in
Figure 2-(a)). We plot the annealed output of the
teacher function in 10 different temperatures in Fig-
ure. 2-(b). Then, a student model with 10 hidden
neurons is trained once with regular KD (Figure 2-
(f)) and once with our Annealing-KD (Figures. 2-(c,
d, e) depicts the student output at temperatures 10,
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Figure 1: Illustrating the Stage I of the Annealing-KD technique. Given a pre-trained teacher network, we can
derive the annealed output of the teacher at different temperature using the annealing function Φ(T )

. We start training of the student from T = τmax and go to T = 1.

5, and 1 during the Annealing-KD training). As
it is shown in these figures, Annealing-KD guides
the student network gradually until it gets to a good
approximation of the underlying function and it can
match the teacher output better than regular KD.

3.2 Rationale Behind Annealing-KD

Inspired by (Mirzadeh et al., 2020), we can lever-
age the VC-dimension theory and visulaizing loss
landscape to justify why Annealing-KD works bet-
ter than original KD.

3.2.1 Theoretical Justification
In VC-dimension theory (Vapnik, 1998), the error
of classification can be decomposed as:

R(fs)−R(f) ≤ O(
|Fs|c
Nαs

) + εs (4)

where R(.) is the expected error, fs ∈ Fs is
the learner belongs to the function class Fs. f
is the underlying function. |.|c is some function
class capacity measure. O(.) is the estimation error
of training the learner and εs is the approximation
error of the best estimator function belonging to the
Fs class (Mirzadeh et al., 2019). Moreover, N is
the number of training samples, and 1

2 ≤ α ≤ 1 is
a parameter related to the difficulty of the problem.
α is close to 1

2 for more difficult problems (slow
learners) and α is close to 1 for easier problems or
fast learners (Lopez-Paz et al., 2015).

In knowledge distillation, we have three main
factors: the student (our learner), the teacher, and
the underlying function. Based on (Lopez-Paz
et al., 2015; Mirzadeh et al., 2019), we can rewrite
Equation 4 for knowledge distillation as following:

R(fs)−R(ft) ≤ O(
|Fs|c
nαst

) + εst (5)

where the student function fs is following ft. To
define similar inequality for our Annealing-KD
technique, we need to consider the effect of the
temperature parameter on the three main functions
in KD first. For this purpose, we can define fTs , fTt ,
and fT as the annealed versions of student, teacher,
and underlying functions. Furthermore, let RT (.)
to be the expected error function w.r.t the annealed
underlying function at temperature T . Hence, for
Annealing-KD we have

RT (fTs )−RT (fTt ) ≤ O(
|Fs|c
nα

T
st

) + εTst. (6)

Note that in T = 1, f1t = ft, f1s = fs, f1 =
f , and R1(.) = R(.). Therefore, we can rewrite
Equation 6 at T = 1 as:

R1(f
1
s )−R1(f

1
t ) ≤ O(

|Fs|c
nα

1
st

) + ε1st. (7)

That being said, to justify that our Annealing-KD is
working better than original KD, we can compare
Equations 7 and 5 to show the following inequality
holds.

O(
|Fs|c
nα

1
st

) + ε1st ≤ O(
|Fs|c
nαst

) + εst (8)

Since in Annealing-KD, the student network at
each temperature is initialized with the trained stu-
dent network at fT −1s , the student is much closer to
the teacher compared with the original KD method,
where the student starts from random a initializa-
tion. In other words, in annealing KD, the student
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(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) Data samples and trained teacher. (b) An-
nealed teacher in different temperatures. (c) Student
after matching to annealed teacher in T = 10. (d) Stu-
dent after matching to annealed teacher in T = 5. (e)
Student after matching to T = 1. (f) Student trained
without KD.

network can learn the annealed teacher at temper-
ature T faster than the case it starts from a ran-
dom initial point. Therefore, we can conclude that
αst ≤ αTst. This property also holds for the last step
of annealing KD where T = 1. It means we have
αst ≤ α1

st. Furthermore, bear in mind that since
the approximation error depends on the capacity of
the learner and in annealing KD we do not change
the structure of the student, then we expect to have
εst = εTst. Therefore, based on these two evidence
( αst ≤ αTst and εst = εTst), we can conclude that
Equation 8 holds.

3.2.2 Empirical Justification
Because of the non-linear nature of neural net-
works, the loss functions of these models are non-
convex. This property might prevent a learner from
a good generalization. There are some beliefs in the
community of machine learning, this phenomena
can be harsher in the sharp loss functions than the
flat loss functions (Chaudhari et al., 2019; Hochre-
iter and Schmidhuber, 1997). Although, there are
some arguments around this belief (Li et al., 2018),
for the case of knowledge distillation it seems flat-
ter loss functions are related to higher accuracy

Figure 3: Visualization of annealing KD loss function
in stage I for ResNet 8 student during the training on
CIFAR-10 dataset in different temperatures

(Mirzadeh et al., 2019; Zhang et al., 2018; Hinton
et al., 2015). One of the advantages of annealing
the teacher function during training is reducing the
sharpness of annealing loss function in the early
steps of stage I. In other words, the sharpness of the
loss function in annealing KD changes dynamically.
In the early steps of annealing when the tempera-
ture is high, the loss function is flatter. This helps
the student to train the teacher network’s behaviour
faster and easier.

In order to compare the effect of different tem-
peratures, the loss landscape visualization method
in (Li et al., 2018) is used to plot the loss behaviour
of CIFAR-10 experiment with ResNet 8 student in
Figure. 3. Here as it is shown, by decreasing the
temperature during the training, the sharpness of
the loss function increases. So the student network
can avoid many of the bad local minimums in the
early stages of the algorithm when the temperature
is high. Then in the final stages of the algorithm,
when the loss function is sharper, the network starts
from a much better initialization.

4 Experiments

In this section, we describe the experimental evalu-
ation of our proposed Annealing KD method. We
evaluate our technique on both image classifica-
tion and natural language inference tasks. In all
of our experiments, we compare the annealing KD
results with TAKD, standard KD, and training stu-
dent without KD results.

4.1 Datasets
For image classification, we assess Annealing-KD
on CIFAR-10 and CIFAR-100 datasets (Krizhevsky
et al., 2009) which are image datasets containing
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32 × 32 color images with 10 and 100 classes
respectively. For the natural language inference
task, we employ the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2018), which is a collection of nine differ-
ent tasks for training, evaluating, and analyzing
natural language understanding models. GLUE
consists of Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2017), Quora Ques-
tion Pairs (QQP) (Chen et al., 2018), Question
Natural Language Inference (QNLI) (Rajpurkar
et al., 2016), Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013), Corpus of Linguistic Ac-
ceptability (COLA) (Warstadt et al., 2019), Seman-
tic Textual Similarity Benchmark (STS-B) (Cer
et al., 2017), Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005), Recog-
nizing Textual Entailment (RTE) (Bentivogli et al.,
2009), Winograd NLI (WNLI) (Levesque et al.,
2012).

4.2 Experimental Setup for Image
Classification Tasks

For image classification experiments, we used
CIFAR-10 and CIFAR-100 datasets with the same
experimental setup in the TAKD method (Mirzadeh
et al., 2020). In these experiments, we used ResNet
and plain CNN networks as the teacher, student,
and also the teacher assistant for the TAKD base-
line. For the ResNet experiments, we used ResNet-
110 as the teacher and ResNet-8 as the student.
For plain CNN experiments, we used CNN net-
work with 10 layers as teacher and 2 layers as the
student according to TAKD. Also, for the TAKD
baseline, we used ResNet-20 and CNN with 4 lay-
ers as the teacher assistant. Tables 1 and 2 compare
the annealing KD performance with other base-
lines over CIFAR-10 and CIFAR-100 datasets re-
spectively. For the ResNet experiments in both
tables 1 and 2, the teacher ResNet-110 is trained
from scratch and a ResNet-20 TA is trained by the
teacher using KD. Then we would like to train a
ResNet-8 student using different techniques and
compare their performance against our Annealing
KD method. In this regard, we evaluate the perfor-
mance of training the student from scratch, training
with the large ResNet-110 teacher using KD, train-
ing with TA as the teacher and using our Annealing-
KD approach. The results of this experiment with
ResNet show that our Annealing-KD outperforms
all other baselines and TAKD is the second-best

performing student without significant distinction
compared to KD. More details about the training
hyper-parameters are added to the appendix A.

Table 1: Comparing the test accuracy of annealing KD,
TAKD, regular KD, and student without teacher on
CIFAR-10 dataset with both ResNet and CNN models

Model Type Training method Accuracy

ResNet

Teacher(110) from scratch 93.8
TA(20) KD 92.39

Student(8) from scratch 88.44
Student(8) KD 88.45
Student(8) TAKD 88.47
Student(8) Annealing KD (ours) 89.44

CNN

Teacher(10) from scratch 90.1
TA(4) KD 82.39

Student(2) from scratch 72.75
Student(2) KD 72.43
Student(2) TAKD 72.62
Student(2) Annealing KD (ours) 73.17

Table 2: Comparing the test accuracy of annealing KD,
TAKD, regular KD, and student without teacher on
CIFAR-100 dataset with both ResNet and CNN mod-
els

Model Type Training method Accuracy

ResNet

teacher(110) from scratch 71.92
TA(20) KD 67.6

student(8) from scratch 61.37
student(8) KD 61.41
student(8) TAKD 61.82
student(8) Annealing KD (ours) 63.1

CNN

Teacher(10) from scratch 64.89
TA(4) KD 60.73

student(2) from scratch 51.35
student(2) KD 51.62
student(2) TAKD 51.85
student(2) Annealing KD (ours) 53.35

4.3 Experimental setup for GLUE tasks
For these set of experiments, we use the GLUE
benchmark which consists of 9 natural language un-
derstanding tasks. In the first experiment (Table 3),
we use RoBERTa-large (24 layers) as teacher, Dis-
tilRoBERTa (6 layers) as student, and RoBERTa-
base (12 layers) as the teacher assistant for the
TAKD baseline. For Annealing KD, we use a max-
imum temperature of 7, learning rate of 2e-5, and
train for 14 epochs in phase 1, and 6 epochs in
phase 2. In table 3 the Annealing KD and the
other baselines performances on dev set of GLUE
tasks are compared. Also, we compared the per-
formances of these methods on test set based on
the GLUE benchmark’s leaderboard results in ta-
ble 4. In the second experiment (Table 5), we use
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Table 3: DistilRoBERTa results for Annealing KD on dev set. F1 scores are reported for MRPC, pearson correla-
tions for STB-B, and accuracy scores for all other tasks.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI Score
Teacher 68.1 86.3 91.9 92.3 96.4 94.6 91.5 90.22/89.87 56.33 85.29

From scratch 59.3 67.9 88.6 88.5 92.5 90.8 90.9 84/84 52.1 79.3
Vanilla KD 60.97 71.11 90.2 88.86 92.54 91.37 91.64 84.18/84.11 56.33 80.8

TAKD 61.15 71.84 89.91 88.94 92.54 91.32 91.7 83.89/84.18 56.33 80.85
Annealing KD 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34/84.6 56.33 81.42

Table 4: Performance of DistilRoBERTa trained by annealing KD on the GLUE leaderboard compared with Vanilla KD and
TAKD. We applied the standard tricks to all 3 methods and fine-tune RTE, MRPC and STS-B from trained MNLI student model.

KD Method CoLA MRPC STS-B SST-2 MNLI-m MNLI-mm QNLI QQP RTE WNLI Score
Vanilla KD 54.3 86/80.8 85.7/84.9 93.1 83.6 82.9 90.8 71.9/89.5 74.1 65.1 78.9

TAKD 53.2 86.7/82.7 85.6/84.4 93.2 83.8 83.2 91 72/89.4 74.2 65.1 79
Annealing KD 54 88.0/83.9 87.0/86.6 93.6 83.8 83.9 90.8 72.6/89.7 73.7 65.1 79.5

Table 5: BERT-Small results for Annealing KD on dev set. F1 scores are reported for MRPC, pearson correlations
for STS-B, and accuracy scores for all other tasks.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI Score
Teacher 65.8 71.48 89.38 89.2 92.77 92.82 91.45 86.3/86.4 60.56 82.19

Vanilla KD 33.5 57 86 72.3 88.76 83.15 87 72.62/73.19 54.92 70.58
TAKD 34.24 59.56 85.23 71.1 89.1 82.62 87 72.32/72.45 54.92 70.76

Annealing KD 35.98 61 86.2 74.54 89.44 83.14 86.5 73.85/74.84 54.92 71.68

BERT-large (24 layers) as teacher, BERT-small (4
layers) as student, and BERT-base (12 layers) as
the teacher assistant of TAKD. We use a maximum
temperature of 7 for MRPC, SST-2, QNLI, and
WNLI, and 14 for all other tasks. The number of
epochs in phase 1 is twice the maximum temper-
ature, and 6 in phase 2. We use the learning rate
of 2e-5 for all tasks except RTE and MRPC which
use 4e-5. Table 5 compares the performance of
annealing KD and other baselines on dev set for
small-BERT experiments. For more details regard-
ing other hyper-parameters, refer to the appendix.
We also perform ablation on the choice of loss
function in phase 1, and choice of different max
temperature values, both of which can be found in
the appendix.

4.4 GLUE Results

We present our results in Tables 3, 4, and 5. We
see that Annealing KD consistently outperforms
the other techniques both on dev set as well as the
GLUE leaderboard. Furthermore, in table 5, when
we reduce the size of the student to a 4 layer model
(BERT-Small), we notice almost twice as big of
a gap in the average score over Vanilla KD when

compared with DistilRoBERTa (Table 3). We can
also observe TAKD improving slightly over Vanilla
KD, with the improvement being more significant
in the case of the smaller student (BERT-Small).

5 Discussion

In image classification experiments, the improve-
ment gap between the annealing KD results and
the other baselines in CIFAR-100 experiments is
larger than CIFAR-10 ones. We can observe sim-
ilar conditions for the NLP experiments between
BERT-small and DistilRoBERTa students (the per-
formance gap of BERT-small is larger). In both
of these cases, the problem for the student was
more difficult. CIFAR-100 dataset is more com-
plex than CIFAR-10 dataset. So the teacher has
learned a more complex function that should be
transferred to the student. In NLP experiments, on
the other hand, the tasks are the same but BERT-
small student has a smaller capacity in compare
with DistilRoBERTa. Therefore the problem is
more difficult for BERT-small. From this observa-
tion, we can conclude, whenever the gap between
the teacher and student is larger, the annealing KD
performs better than the other baselines and lever-
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age the acquired knowledge by the teacher to train
the student.

6 Conclusion and Future Work

In this work, we discussed that the difference be-
tween the capacity of the teacher and student mod-
els in knowledge distillation may hamper its per-
formance. On the other hand, in most cases, larger
neural networks can be trained better and get more
accurate results. If we consider better teachers can
train better students, then larger teachers with better
accuracy would be more favourable for knowledge
distillation training. In this paper, we proposed an
improved knowledge distillation method called an-
nealing KD to alleviate this problem and leverage
the knowledge acquired by more complex teach-
ers to guide the small student models better during
their training. This happened by feeding the rich
information provided by the teacher’s soft-targets
incrementally and more efficiently. Our Annealing-
KD technique was based on a gradual transition
over annealed soft-targets generated by the teacher
at different temperatures in an iterative process;
and therefore, the student was trained to follow the
annealed teacher output in a step-by-step manner.
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Appendices

A Experimental parameters of the image
classification tasks

In this section, we include more detail of our ex-
perimental settings of section 4.2 in the paper. For
the baseline experiments, we used the same exper-
imental setup as (Mirzadeh et al., 2019). We per-
formed two series of experiments based on ResNet
and plain CNN neural networks on CIFAR-10 and
CIFAR-100 datasets. Table 6 illustrates the hyper-
parameters used in these experiments. (BS = batch
size, EP1= number of epochs in phase 1 (for the
baselines, this is the number of training epochs),
EP2 = number of epochs in phase 2, LR = learning
rate, MO = momentum, WD = weight decay, τmax
= maximum temperature)

Table 6: Hyper-parameters of CIFAR-10 and CIFAR-
100 experiments

Model Type Training method BS EP1 EP2 LR MO WD τmax

ResNet

Teacher(110) from scratch 128 160 N/A 0.1 0.9 10−4 N/A
TA(20) KD 128 160 N/A 0.1 0.9 10−4 N/A

Student(8) from scratch 128 160 N/A 0.1 0.9 10−4 N/A
Student(8) KD 128 160 N/A 0.1 0.9 10−4 1
Student(8) TAKD 128 160 N/A 0.1 0.9 10−4 1
Student(8) Annealing KD (ours) 128 160 160 0.1 0.9 10−4 10

CNN

Teacher(10) from scratch 128 160 N/A 0.1 0.9 10−4 N/A
TA(4) KD 128 160 N/A 0.1 0.9 10−4 N/A

Student(2) from scratch 128 160 N/A 0.1 0.9 10−4 N/A
Student(2) KD 128 160 N/A 0.1 0.9 10−4 1
Student(2) TAKD 128 160 N/A 0.1 0.9 10−4 1
Student(2) Annealing KD (ours) 128 160 160 0.1 0.9 10−4 10

B BERT Experiments

In these experiments, RoBERTa-large (24 layers)
and DistilRoBERTa (6 layers) are used as the
teacher and student models respectively. Also,
RoBERTa-base (12-layer) is used as the teacher
assistant for the TAKD baseline. For Annealing
KD, we use the maximum temperature of 7 and the
learning rate of 2e-5 for all the tasks. We trained
the student model for 14 epochs in phase 1, and 6
epochs in phase 2. Table 8 illustrates the details
of the hyper-parameters of the experiments. Also,
Table 11 illustrates the hyper-parameter values of
BERT-small experiments in detail. Also, we did
two ablation studies. In the first one, we tried to
fine-tune the maximum temperature in annealing
KD and check the performance improvement com-
pared with using the general value of 7. As it is il-
lustrated in Table 9, we can get more improvement
with selecting the maximum temperature parame-
ter more carefully. The second ablation is about
comparing the effect of mean square error and KL-
divergence loss functions on the final results of the

experiments when they are used as the loss func-
tion of the first phase. Table 10 shows the results
of this ablation.

Table 7: Common Hyper-parameters for Distil-
RoBERTa and BERT-Small models on GLUE tasks

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Batch Size 32 32 32 32 32 32 32 32 32

Max Seq. Length 128 128 128 128 128 128 128 128 128
Vanilla KD Alpha 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Gradient Clipping 1 1 1 1 1 1 1 1 1

Table 8: Model specific Hyper-parameters for Distil-
RoBERTa on GLUE tasks

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Phase 1 epochs 14 14 14 14 14 14 14 14 14
Phase 2 epochs 4 4 4 4 4 4 4 4 4

τmax 7 7 7 7 7 7 7 7 7
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Table 9: Ablation on DistilRoberta Annealing KD with temperature tuning

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI Avg
Annealing KD 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34/84.6 56.33 81.42
+ temp tuning 61.67 73.64 91.99 89.26 93.34 92 91.72 85.14/85.22 56.33 81.67

(max temperature) 7 7 8 14 14 11 14 14 7 -

Table 10: Ablation on DistilRoberta Annealing KD with different loss functions

KD Method and Loss CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI Avg
Annealing KD, MSE 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34/84.6 56.33 81.42

Annealing KD, KL-div 62.56 70.75 90.84 89.01 93 91.32 91.42 85/84.75 56.33 81.13

Table 11: Model specific Hyper-parameters for BERT-Small on GLUE tasks

Hyper-parameter CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI WNLI
Learning Rate 2e-5 4e-5 4e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Phase 1 epochs 28 28 14 28 14 14 28 28 14
Phase 2 epochs 6 6 6 6 6 6 6 6 6

τmax 14 14 7 14 7 7 14 14 7


