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Abstract
We evaluate neural model robustness to adver-
sarial attacks using different types of linguistic
unit perturbations – character and word, and
propose a new method for strategic sentence-
level perturbations. We experiment with dif-
ferent amounts of perturbations to examine
model confidence and misclassification rate,
and contrast model performance with differ-
ent embeddings BERT and ELMo on two
benchmark datasets SQuAD and TriviaQA.
We demonstrate how to improve model perfor-
mance during an adversarial attack by using
ensembles. Finally, we analyze factors that af-
fect model behavior under adversarial attack,
and develop a new model to predict errors dur-
ing attacks. Our novel findings reveal that (a)
unlike BERT, models that use ELMo embed-
dings are more susceptible to adversarial at-
tacks, (b) unlike word and paraphrase, char-
acter perturbations affect the model the most
but are most easily compensated for by adver-
sarial training, (c) word perturbations lead to
more high-confidence misclassifications com-
pared to sentence- and character-level pertur-
bations, (d) the type of question and model an-
swer length (the longer the answer the more
likely it is to be incorrect) is the most pre-
dictive of model errors in adversarial setting,
and (e) conclusions about model behavior are
dataset-specific.

1 Introduction

Deep neural models have recently gained popular-
ity, leading to significant improvements in many
Natural Language Understanding (NLU) tasks
(Goldberg, 2017). However, the research com-
munity still lacks in-depth understanding of how
these models work and what kind of linguistic in-
formation is actually captured by neural networks
(Feng et al., 2018). Evaluating model robustness
to manipulated inputs and analyzing model behav-
ior during adversarial attacks can provide deeper

Context: One of the most famous people born in War-
saw was Maria Skłodowska-Curie, who achieved inter-
national recognition for her research on radioactivity and
was the first female recipient of the Nobel Prize.
Question: What was Maria Curie the first female recipi-
ent of?
Answer: Nobel Prize

Table 1: Example MC question from SQuAD.

insights into how much language understanding
models actually have (Hsieh et al., 2019; Si et al.,
2020). Moreover, as has been widely discussed,
models should be optimized not only for accuracy
but also for other important criteria such as relia-
bility, accountability and interpretability (Lipton,
2018; Doshi-Velez and Kim, 2017; Ribeiro et al.,
2016; Goodman and Flaxman, 2017).

In this work, we evaluate neural model robust-
ness on machine comprehension (MC), a task de-
signed to measure a system’s understanding of text.
In this task, given a context paragraph and a ques-
tion, the machine is tasked to provide an answer.
We focus on span-based MC, where the model
selects a single contiguous span of tokens in the
context as the answer (Tab. 1). We (1) quantita-
tively measure when and how the model is robust to
manipulated inputs, when it generalizes well, and
when it is less susceptible to adversarial attacks,
(2) demonstrate that relying on ensemble models
increases robustness, and (3) develop a new model
to predict model errors during attacks. Our novel
contributions shed light on the following questions:

• Which embeddings are more susceptible to
noise and adversarial attacks?

• What types of text perturbation lead to the
most high-confidence misclassifications?

• How does the amount of text perturbation ef-
fect model behavior?

• What factors explain model behavior under
perturbation?

• Are the above dataset-specific?
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Broader Implications We would like to stress
the importance of this type of work to ensure diver-
sity and progress for the computational linguistics
community. We as a community know how to
build new models for language understanding, but
we do not fully understand how these models work.
When we deploy these models in production, they
fail to perform well in real-world conditions, and
we fail to explain why they fail; the reason being
we have not performed through evaluation of model
performance under different experimental condi-
tions. Neural model evaluation and thorough error
analysis, especially for tasks like machine compre-
hension, are critical to make progress in the field.
We have to ensure our research community goes
beyond F1 scores and incremental improvements
and gains deeper understanding of models decision
making processes to drive revolutionary research
rather than evolutionary.

2 Background

There is much recent work on adversarial NLP, sur-
veyed in Belinkov and Glass (2019) and Zhang
et al. (2019). To situate our work, we review rele-
vant research on the black-box adversarial setting,
in which one does not have access or information
about the model’s internals, only the model’s out-
put and its confidence about the answer.1

In an adversarial setting, the adversary seeks to
mislead the model into producing an incorrect out-
put by slightly tweaking the input. Recent work has
explored input perturbations at different linguistic
levels: character, word, and sentence-level. For
character-level perturbations, NLP systems gener-
ally do not take into account the visual characteris-
tics of characters. Researchers have explored the ef-
fects of adding noise by randomizing or swapping
characters and examining its effect on machine
translation (MT) (Heigold et al., 2018; Belinkov
and Bisk, 2018), sentiment analysis and spam de-
tection Gao et al. (2018), and toxic content detec-
tion Li et al. (2018). Eger et al. (2019) replaced
with similar looking symbols, and developed a sys-
tem to replace characters with nearest neighbors
in visual embedding space. For word-level pertur-
bations, Alzantot et al. (2018) used a genetic algo-
rithm to replace words with contextually similar
words, evaluating on sentiment analysis and textual
entailment. For sentence-level perturbations, Iyyer

1For other settings (e.g. white-box), we refer the reader to
the above surveys.

et al. (2018) generated adversarial paraphrases by
controlling the syntax of sentences and evaluating
on sentiment analysis and textual entailment tasks.
Hu et al. (2019) found that augmenting the training
data with paraphrases can improve performance
on natural language inference, question answering,
and MT. Niu and Bansal (2018) use adversarial
paraphrases for dialog models.

Other related work includes Zhao et al. (2018);
Hsieh et al. (2019), who generated natural look-
ing adversarial examples for image classification,
textual entailment, and MT. Specifically for MC,
Jia and Liang (2017) added a distractor sentence
to the end of the context, Ribeiro et al. (2018)
extracted sentence perturbation rules from para-
phrases created by translating to and then from a
foreign language and then manually judged for se-
mantic equivalence, and (Si et al., 2020) focused
on evaluating model robustness for MC.

Unlike earlier work, we empirically show how
neural model performance degrades under multiple
types of adversarial attacks by varying the amount
of perturbation, the type of perturbation, model
architecture and embedding type, and the dataset
used for evaluation. Moreover, our deep analysis
examines factors that can explain neural model
behavior under these different types of attacks.

Concurrent with the development of our paper,
there has also been a slew of relevant work tack-
ling robustness in neural NLP models, including
Adversarial Robustness Toolbox (Nicolae et al.,
2018), Advertorch (Ding et al., 2019), Foolbox
(Rauber et al., 2020), Advbox (Goodman et al.,
2020), OpenAttack (Zeng et al., 2020), TEAPOT
(Michel et al., 2019), TextAttack (Morris et al.,
2020), TextFooler (Jin et al., 2020), and Robust-
ness Gym (Goel et al., 2021).

3 Methods

We perform comprehensive model evaluation for
machine comprehension over several dimensions:
the amount of perturbation, perturbation type,
model and embedding variation, and datasets.

3.1 Perturbation Type

We examine how changes to the context paragraph
(excluding the answer span) affect the model’s per-
formance using the following perturbations:

• Character-level. In computer security, this is
known as a homograph attack. These attacks
have been investigated to identify phishing
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Original The connection between macroscopic nonconservative forces and microscopic conservative forces is
described by detailed treatment with statistical mechanics.

Character The connection between macroscopic nonconservative forces and microscopic conservative forces is
described by detailed treatment with statistical mechanics.

Word The connection between macroscopic nonconservative forces and insects conservative troops is referred
by detailed treatment with statistical mechanics.

Sentence The link between macroscopic non-conservative forces and microscopic conservative forces is described
in detail by statistical mechanics.

Table 2: Examples of character, word and sentence-level perturbations (bold indicates perturbed text).

and spam (Fu et al., 2006b,a; Liu and Stamm,
2007) but to our knowledge have not been
applied in the NLP domain. We replace 25%
of characters in the context paragraph with
deceptive Unicode characters2 that to a human
are indistinguishable from the original.

• Word-level. We randomly replace 25% of
the words in the context paragraph with their
nearest neighbor in the GLoVe (Pennington
et al., 2014) embedding space.3

• Sentence-level. We use Improved ParaBank
Rewriter (Hu et al., 2019), a machine trans-
lation approach for sentence paraphrasing, to
paraphrase sentences in the context paragraph.
We perform sentence tokenization, paraphrase
each sentence with the paraphraser, then re-
combine the sentences.

For character and word perturbations, we use
25% as this is where the performance curve in
Heigold et al. (2018) flattens out.4 Regardless of
the type of perturbation, we do not perturb the
context that contains the answer span, so that the
answer can always be found in the context unper-
turbed. Because paraphrasing is per sentence, we
only modify sentences that do not contain the an-
swer span. An example of each perturbation type
is shown in Tab. 2.

3.2 Amount of Perturbation

For each perturbation type, we experiment with
perturbing the training data at differing amounts.
All models are tested on fully perturbed test data.

• None: clean training data.
• Half: perturb half the training examples.
• Full: perturb the entire train set.

2From https://www.unicode.org/Public/
security/12.1.0/intentional.txt

3Several alternative embedding techniques could be used to
find the nearest neighbors e.g., Word2Vec or FastText. We use
GLoVe for consistency with previous work (Li et al., 2018).

4Belinkov and Bisk (2018) perturbed text at 100% while
Heigold et al. (2018) experimented with 5–30% perturbations.

• Both: append the entire perturbed data to the
entire clean data.5

• Ens: ensemble model that relies on none, half
and full perturbed data; we rely on ensem-
ble voting and only include the word in the
predicted answer if any two models agree.

3.3 Model Architecture and Embeddings

BiDAF model with ELMo (Seo et al., 2017; Pe-
ters et al., 2018). ELMo is a deep, contextualized,
character-based word embedding method using a
bidirectional language model. The Bi-Directional
Attention Flow model is a hierarchical model with
embeddings at multiple levels of granularity: char-
acter, word, and paragraph. We use pre-trained
ELMo embeddings in the BiDAF model imple-
mented in AllenNLP (Gardner et al., 2018).

BERT (Devlin et al., 2019). BERT is another
contextualized embedding method that uses Trans-
formers (Vaswani et al., 2017). It is trained to
recover masked words in a sentence as well as
on a next-sentence prediction task. The output
layer of BERT is fed into a fully-connected layer
for the span classification task. Pre-trained em-
beddings can be fine-tuned to a specific task, and
we use the Huggingface PyTorch-Transformers
package, specifically bert-large-cased-whole-word-
masking-finetuned-squad model. We fine-tune for
two epochs in each experimental settings.

3.4 Benchmark Datasets

We experiment on two benchmark MC datasets:

SQuAD (Rajpurkar et al., 2016). The Stanford
Question Answering Dataset is a collection of over
100K crowdsourced question and answer pairs.
The context containing the answer is taken from
Wikipedia articles.

5This has twice the amount of data as other settings so is
not directly comparable, but many papers show that doing this
can improve a model’s performance.

https://www.unicode.org/Public/security/12.1.0/intentional.txt
https://www.unicode.org/Public/security/12.1.0/intentional.txt
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Figure 1: Number of errors by perturbation type and amount of perturbation (higher = worse model performance,
or more successful attacks). Baseline indicates model errors whose training and testing data were not perturbed.
For cross-model/embedding comparison, compare (a) and (b). For cross-dataset comparison, compare (a) and (c).
The ens training setting is an ensemble of results from the none, half, and full settings.

TriviaQA (Joshi et al., 2017). A collection of
over 650K crowdsourced question and answer
pairs, where the context is from web data or
Wikipedia. The construction of the dataset differs
from SQuAD in that question answer pairs were
first constructed, then evidence was found to sup-
port the answer. We utilize the Wikipedia portion
of TriviaQA, whose size is comparable to SQuAD.
To match the span-based setting of SQuAD, we
convert TriviaQA to the SQuAD format using the
scripts in the official repo and remove answers with-
out evidence.

4 Evaluation Results

Fig. 1 summarizes our findings on how model be-
havior changes under noisy perturbations and ad-
versarial attacks. Here, we briefly discuss how
perturbation type, perturbation amount, model, and
embeddings affect model misclassification rate. In
addition, we contrast model performance across
datasets and report how to mitigate model error
rate using ensembling. Detailed analyses are pre-
sented in Sec. 5. Key findings are italicized.

The effect of perturbation type To assess
whether perturbations changed the meaning, we
ran a human study on a random sample of 100
perturbed contexts from SQuAD. We found (as
expected) that the two annotators we employed
could not distinguish char-perturbed text from the
original. For word perturbations, the meaning of
the context remained in 65% of cases, but annota-
tors noted that sentences were often ungrammatical.
For sentence-level perturbations, the meaning re-
mained in 83% of cases.

For a model trained on clean data, character
perturbations affect the model the most, followed

by word perturbations, then paraphrases. To a ma-
chine, a single character perturbation results in a
completely different word; handling this type of
noise is important for a machine seeking to beat
human performance. Word perturbations are con-
text independent and can make the sentence un-
grammatical.6 Nevertheless, the context’s meaning
generally remains coherent. Paraphrase perturba-
tions are most ideal because they retain meaning
while allowing more drastic phrase and sentence
structure modifications. In Sec. 4.2, we present a
more successful adversarially targeted paraphras-
ing approach.

The effect of perturbation amount Perturbed
training data improves the model’s performance
for character perturbations (1st column of Fig. 1a),
likely due to the models’ ability to handle unseen
words: BiDAF with ELMo utilizes character em-
beddings, while BERT uses word pieces. Our re-
sults corroborate Heigold et al. (2018)’s findings
(though on a different task) that without adversarial
training, models perform poorly on perturbed test
data, but when models are trained on perturbed
data, the amount of perturbed training data does
not make much difference. We do not see statisti-
cally significant results for word and paraphrase
perturbations (2nd and 3rd columns in each heatmap
in Fig. 1). We conclude that perturbing 25% of the
words and the non-strategic paraphrasing approach
were not aggressive enough.

The effect of model and embedding As shown
in Fig. 1a and b, the BERT model had less errors
than the ELMo-based model regardless of the per-
turbation type and amount on SQuAD data. While

6Future work will address this with language models.
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(a) Across models and embedding (b) Across perturbation types

Figure 2: The effect of perturbation types and embeddings on model behavior measured as high vs. low confidence
misclassifications. More robust models should have less high-confidence error or rate (x-axis).

Train Test Model Answer

none char here”
half char Orientalism
full char Orientalism

none word Orientalism
half word behaviourism identities
full word The discourse of Orientalism

none char Orientalism
half char . . . the East as a negative
full char Orientalism

Table 3: Example result from response ensembling un-
der the SQuAD ELMo setting. The question is “What
was used by the West to justify control over eastern ter-
ritories?” The answer is “Orientalism”, and in all three
settings, the ensemble was correct.

the two models are not directly comparable, our
results indicate that the BERT model is more robust
to adversarial attacks compared to ELMo.

The effect of the data Holding the model con-
stant (Fig. 1b and c), experiments on TriviaQA
resulted in more errors than SQuAD regardless of
perturbation amount and type, indicating that Triv-
iaQA may be a harder dataset for MC and may
contain data bias, discussed below.

4.1 Adversarial Ensembles

Ensemble adversarial training has recently been
explored (Tramèr et al., 2018) as a way to ensure
robustness of ML models. For each perturbation
type, we present results ensembled from the none,
half, and full perturbed settings. We tokenize an-
swers from these three models and keep all tokens
that appear at least twice as the resulting answer
(Tab. 3). Even when all three model answers differ
(e.g. in the word perturbation case), ensembling
can often reconstruct the correct answer. Neverthe-
less, we find that this ensembling only helps for

TriviaQA, which has an overall higher error rate
(bottom row of each figure in Fig. 1).

4.2 Strategic Paraphrasing

We did not observe a large increase in errors with
paraphrase perturbations (Fig. 1), perhaps because
paraphrasing, unlike the char and word perturba-
tions, is not a deliberate attack on the sentence.
Here we experiment with a novel strategic para-
phrasing technique that targets specific words in
the context and then generates paraphrases that ex-
clude those words. We find the most important
words in the context by individually modifying
each word and obtaining the model’s prediction
and confidence, a process similar to Li et al. (2018).
Our modification consists of removing the word
and examining its effect on the model prediction.
The most important words are those which, when
removed, lower the model confidence of a correct
answer or increase confidence of an incorrect an-
swer. The Improved ParaBank Rewriter supports
constrained decoding, i.e. specifying positive and
negative constraints to force the system output to
include or exclude certain phrases. We specify the
top five important words in the context as negative
constraints to generate strategic paraphrases.7

We experimented on 1000 instances in the
SQuAD dev set as shown in Tab. 4. Our results
indicate that strategic paraphrasing with negative
constraints is a successful adversarial attack, low-
ering the F1-score from 89.96 to 84.55. Analysis
shows that many words in the question are impor-
tant and thus excluded from the paraphrases. We
also notice that paraphrasing can occasionally turn
an incorrect prediction into a correct one. Perhaps

7The number of constraints does not necessarily indicate
the number of words that are changed in the context.
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Original Paragraph Strategic Paraphrase

. . . Veteran receiver Demaryius Thomas led the team
with 105 receptions for 1,304 yards and six touchdowns,
while Emmanuel Sanders caught 76 passes for 1,135
yards and six scores, while adding another 106 yards
returning punts.

. . . The veteran earman Demaryius Thomas was leading
a team of 1,304 yards and six touchdowns, while Em-
manuel Sanders caught 76 passes for 1,135 yards and six
scores while he added another 106 yards of punts back.

Question: Who led the Broncos with 105 receptions?
Answer: Demaryius Thomas (correct)→ Emmanuel Sanders (incorrect)

Table 4: Example of strategic paraphrasing: red indicates the important words, which were used as negative
constraints in the paraphrasing; blue indicates changed words in the paragraph.

paraphrasing makes the context easier to under-
stand by removing distractor terms; we leave this
for future investigation.

4.3 Model Confidence
In a black-box setting, model confidence is one
of the only indications of the model’s inner work-
ings. The models we employed do not provide a
single confidence value; AllenNLP gives a prob-
ability that each word in the context is the start
and end span, while the BERT models only give
the probability for the start and end words. We
compute the model’s confidence using the normal-
ized entropy of the distribution across the context
words, where n is the number of context words,
and take the mean for both the start and end word:
1− Hn(s)+Hn(e)

2 , where s and e are probability dis-
tributions for the start and end words, respectively.
Low entropy indicates certainty about the start/end
location. Since the BERT models only provide
probabilities for the start and end words, we approx-
imate the entropy by assuming a flat distribution,
dividing the remaining probability equally across
all other words in the context.

Comparing confidence across models (Fig. 2a),
the BERT model has lower confidence for misclas-
sifications, which is ideal. A model should not
be confident about errors. Fig. 2b compares confi-
dence across perturbation type. In the none training
setting, character perturbations introduce the most
uncertainty compared to word or paraphrase pertur-
bations. This is expected, since character perturba-
tions result in unknown words. In the adversarial
training, word perturbations lead to the highest
number of high-confidence errors. Thus, to con-
vincingly mislead the model to be highly confident
about errors, one should use word perturbations.

5 Robustness Analysis

Here, we do a deeper dive into why models make
errors with noisy input. We investigate data charac-

teristics and their association with model errors by
utilizing CrossCheck (Arendt et al., 2020), a novel
interactive tool designed for neural model evalua-
tion. Unlike several recently developed tools for
analyzing NLP model errors (Agarwal et al., 2014;
Wu et al., 2019) and understanding ML model out-
puts (Lee et al., 2019; Poursabzi-Sangdeh et al.,
2018; Hohman et al., 2019), CrossCheck is de-
signed to allow rapid prototyping and cross-model
comparison to support experimentation.8

5.1 The Effect of Question Type, Question
and Context Lengths

We examine if models make more errors on spe-
cific types of questions in adversarial training, i.e.,
some questions could just be easier that others. We
first examine question type:9 who, what, which,
when, where, why, how, and other. The majority of
SQuAD questions are what questions, while most
TriviaQA questions are other questions, perhaps
indicating more complex questions (Fig. 4a). We
see that models usually choose answers appropri-
ate for the question type; even if they are incorrect,
answers to when questions will be dates or time
word spans, and answers to how many questions
will be numbers. Fig. 4a presents key findings
on differences in model misclassifications between
two datasets given specific question types. On the
SQuAD dataset, the model finds certain question
types, e.g. when and how, easiest to answer regard-
less of the perturbation type. Responses to these
questions, which generally expect numeric answers,
are not greatly affected by perturbations. For Triv-
iaQA, in general we observe more errors across
question types compared to SQuAD, i.e. more er-
rors in what, which and who questions.

8To reproduce our findings, we will release the tool and
interactive notebooks upon publication.

9Computed as the first word of the question. Many how
questions are how many or how much, rather than how in the
“in what manner” sense.
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Figure 4: Contrasting MC model errors by question type, and question and context length across datasets.

Regarding question length, SQuAD and Triv-
iaQA have similar distributions (Fig. 4b). Both
datasets have a mode answer length around 10
words; TriviaQA has a slightly longer tail in the
distribution. We did not find question length to im-
pact the error. Regarding context length, SQuAD
and TriviaQA have vastly differing context length
distributions (Fig. 4c), partly due to how the two
datasets were constructed (see Sec. 3.4 for details).
For both datasets, the error distribution mirrors the
context length distribution, and we did not find any
relation between model errors and context length.

5.2 The Effect of Answer Length

Our analysis shows that the length of the model’s
answer is a strong predictor of model error in the
adversarial setting: the longer the answer length,
the more likely it is to be incorrect. Fig. 3 plots
the proportion of correct to incorrect answers. We
notice a downward trend which is mostly consistent
across experimental settings. For both SQuAD

and TriviaQA, the models favored shorter answers,
which mirrors the data distribution.

5.3 The Effect of Complexity: Annotator
Agreement and Reading Level

Here, we examine the effect of task complexity
on model performance under adversarial training,
using inter-annotator agreement as a proxy for
question complexity and paragraph readability as a
proxy for context complexity.

Inter-annotator agreement represents a ques-
tion’s complexity: low agreement indicates that
annotators did not come to a consensus on the cor-
rect answer; thus the question may be difficult to
answer. We examine SQuAD, whose questions
have one to six annotated answers. In Fig. 5, we
present inter-annotator agreement (human confi-
dence) plotted against model confidence over the
four training perturbation amounts, looking only
at the incorrect predictions. The setting is SQuAD
BERT with character perturbation. We observe
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Data Correct Errors

SQuAD 12.9 13.0
TriviaQA 17.1 17.5

Table 5: Contrasting median readability scores for para-
graphs with and without errors across datasets.

that the models are generally confident even when
the humans are not, which is noticeable across all
perturbation amounts. However, we see interesting
differences in model confidence in adversarial train-
ing: models trained in the none and half settings
have confidence ranging between 0 and 1 compared
to the models trained in full and both setting with
confidence above 0.8, indicating training with more
perturbed data leads to more confident models.

To evaluate the effect of context complexity, we
use the Flesch-Kincaid reading level (Kincaid et al.,
1975) to measure readability. For questions the
model answered incorrectly, the median readability
score was slightly higher than the median score for
correct responses (Tab. 5), indicating that context
with higher reading level is harder for the model to
understand. TriviaQA contexts have higher reading
levels than SQuAD.

6 Predicting Model Errors

Our in-depth analysis reveals many insights on how
and why models make mistakes during adversar-
ial training. Using the characteristics we analyzed
above, we developed a binary classification model
to predict whether the answer would be an error,
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Figure 5: The effect of task complexity on model be-
havior measured as a joint distribution of errors from
BERT model on SQuAD using varied amounts of char
perturbations (none, half, full and both).

Embedding Pert. Majority F1 score

ELMo char 0.58 0.70 ± 0.003
ELMo word 0.54 0.56 ± 0.004
ELMo para 0.65 0.65 ± 0.008

BERT char 0.76 0.77 ± 0.008
BERT word 0.72 0.73 ± 0.006
BERT para 0.82 0.82 ± 0.006

Table 6: MC error prediction across datasets, embed-
dings, and perturbation types.
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Figure 6: Feature importance when predicting model
errors during adversarial attacks.

given the model’s answer and attributes of the con-
text paragraph. We one-hot-encode categorical fea-
tures (training amount, perturbation type, question
type) and use other features (question length, con-
text length, answer length, readability) as is. For
each setting of embedding and perturbation type on
SQuAD, we train an XGBoost model with default
settings with 10-fold cross validation (shuffled).

We present the model’s average F1 scores
(Tab. 6) and feature importance as computed by
the XGBoost model (Fig. 6). We see that perfor-
mance (micro F1) is better to slightly better than a
majority baseline (picking the most common class),
indicating that certain features are predictive of
errors. Specifically, we find that: for character per-
turbations, the fact that the training data is clean
is a strong predictor of errors; a model trained on
clean data is most disrupted by character pertur-
bations; for word and paraphrase perturbations,
question types are important predictors of errors.

7 Conclusion and Future Work

Our in-depth analysis of neural model robustness
sheds light on how and why MC models make
errors in adversarial training, and through our error
prediction model, we discovered features of the
data e.g., question types that are strongly predictive
of when a model makes errors during adversarial
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attacks with noisy inputs. Our results on evaluating
the effect of the data e.g., questions and context
length will not only explain model performance
in context of the data, but will also allow to build
future neural models more resilient to adversarial
attacks and advance understanding of neural model
behavior across a variety of NLU tasks and datasets
and its strengths and weaknesses.

For future work, we see many avenues for exten-
sion. We plan to experiment with more aggressive
and more natural perturbations, and deeper coun-
terfactual evaluation (Pearl, 2019). While recent
research has made great strides in increasing model
performance on various NLP tasks, it is still not
clear what linguistic patterns these neural models
are learning, or whether they are learning language
at all (Mudrakarta et al., 2018).

More broadly, as AI becomes more entrenched
in our lives, AI models need to be held to higher
standards including but not limited to accountabil-
ity (e.g. Wang et al., 2018, 2019, GENIE10), fair-
ness (e.g. Saleiro et al., 2018; Bellamy et al., 2018;
Bird et al., 2020; Ahn and Lin, 2020, 11;12;13), and
transparency (e.g. Lundberg and Lee, 2017; Nori
et al., 2019; Hooker et al., 2018; Kokhlikyan et al.,
2020; Lundberg et al., 2019; Tenney et al., 2020).
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