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Abstract

Written language contains stylistic cues that
can be exploited to automatically infer a vari-
ety of potentially sensitive author information.
Adversarial stylometry intends to attack such
models by rewriting an author’s text. Our re-
search proposes several components to facili-
tate deployment of these adversarial attacks in
the wild, where neither data nor target mod-
els are accessible. We introduce a transformer-
based extension of a lexical replacement at-
tack, and show it achieves high transferabil-
ity when trained on a weakly labeled corpus—
decreasing target model performance below
chance. While not completely inconspicuous,
our more successful attacks also prove notably
less detectable by humans. Our framework
therefore provides a promising direction for fu-
ture privacy-preserving adversarial attacks.

1 Introduction

The widespread use of machine learning on con-
sumer devices and its application to their data has
sparked investigation of security and privacy re-
searchers alike in correctly handling sensitive infor-
mation (Edwards and Storkey, 2016; Abadi et al.,
2016b). Natural Language Processing (NLP) is
no exception (Fernandes et al., 2019; Li et al.,
2018); written text can contain a plethora of author
information—either consciously shared or infer-
able through stylometric analysis (Rao et al., 2000;
Adams, 2006). This characteristic is fundamental
to author profiling (Koppel et al., 2002), and while
the field’s main interest pertains to the study of
sociolinguistic and stylometric features that under-
pin our language use (Daelemans, 2013), herein
simultaneously lie its dual-use problems. Author
profiling can, often with high accuracy, infer an ex-
tensive set of (sensitive) personal information, such
as age, gender, education, socio-economic status,
and mental health issues (Eisenstein et al., 2011;

Alowibdi et al., 2013; Volkova et al., 2014; Plank
and Hovy, 2015; Volkova and Bachrach, 2016). It
therefore potentially exposes anyone sharing writ-
ten online content to unauthorized information col-
lection through their writing style. This can prove
particularly harmful to individuals in a vulnerable
position regarding e.g., race, political affiliation, or
mental health.

Privacy-preserving defenses against such infer-
ences can be found in the field of adversarial1 sty-
lometry. Our research2 concerns the obfuscation
subtask, where the aim is to rewrite an input text
such that the style changes, and stylometric predic-
tions fail. It is part of a growing body of research
into adversarial attacks on NLP (Smith, 2012),
which various modern models have proven vulnera-
ble to; e.g., in neural machine translation (Ebrahimi
et al., 2018), summarization (Cheng et al., 2020),
and text classification (Liang et al., 2018).

Adversarial attacks on NLP are predominantly
aimed at demonstrating vulnerabilities in existing
algorithms or models, such that they might be fixed,
or explicitly improved through adversarial training.
Consequently, most related work focuses on white
or black-box settings, where all or part of the target
model is accessible (e.g., its predictions, data, pa-
rameters, gradients, or probability distribution) to
fit an attack. The current research, however, does
not intend to improve the targeted models; rather,
we want to provide the attacks as tools to protect
online privacy. This introduces several constraints
over other NLP-based adversarial attacks, as it calls
for a realistic, in-the-wild scenario of application.

Firstly, authors seeking to protect themselves
from stylometric analysis cannot be assumed to be

1These are adversarial attacks on models making stylomet-
ric predictions, not to be confused with adversarial learning.

2All code, data, and materials to fully reproduce the ex-
periments are openly available at https://github.com/
cmry/reap.

https://github.com/cmry/reap
https://github.com/cmry/reap
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knowledgeable about the target architecture, nor to
have access to suitable training data (as the target
could have been trained on any domain). Hence,
we cannot optimally tailor attacks to the target,
and need an accessible method of mimicking it to
evaluate the obfuscation success. To facilitate this,
we use a so-called substitute model, which for our
purposes is an author profiling classifier trained in
isolation (with its own data and architecture) that
informs our attacks. Attacks fitted on substitute
models have been shown to transfer their success
when targeting models with different architectures,
or trained on other data, in a variety of machine
learning tasks (Papernot et al., 2016). The effec-
tiveness of an attack fitted on a substitute model
when targeting a ‘real’ model is then referred to as
transferability, which we will measure for the ob-
fuscation methods proposed in the current research.

Secondly, for an obfuscation attack to work
in practice (e.g., given a limited post history), it
should suggest relevant changes –to– the author’s
writing on a domain of their choice. This implies
the substitute models should be fitted locally, and
therefore need to meet two criteria: reliable access
to labeled data, and being relatively fast and easy
to train. To meet the first criterion, the current
research focuses on gender prediction, as: i) Twit-
ter corpora annotated with this variable are by far
the largest (and most common), ii) author profil-
ing methods typically use similar architectures for
different attributes; therefore, the generalization of
attacks to other author attributes can be assumed
to a large extent, and, most importantly, iii) Beller
et al. (2014) and Emmery et al. (2017) have shown
that through distant labeling, a representative cor-
pus for this task can be collected in under a day.
This allows us to measure transferability of attacks
fitted using realistically collected distant corpora
to models using high-quality hand labeled corpora.

As for the attacks, we focus on lexical substitu-
tion of content words strongly related to a given
label, as those have been shown to explain a signif-
icant portion of the accuracy of stylometric models
(see e.g., Rao et al., 2000; Burger et al., 2011; Sap
et al., 2014; Rangel et al., 2016). To that effect, we
extend the substitution attack of Jin et al. (2020)
and apply it to author attribute obfuscation. Specif-
ically, we explore the potential of training a simple
(as to meet the speed criterion), non-neural substi-
tute model f ′ to indicate relevant words to perturb,
where retaining the original meaning is prioritized.
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Figure 1: Obfuscation scenario: model f ′ trains on
tweet batches, an omission score is used to determine
and rank the words according to their classification con-
tribution. These are then passed to either TextFooler,
Masked BERT, or Dropout BERT to suggest top-k re-
placement candidates. From these, a selection is made
based on their class probability change on f ′(D). Fi-
nally, f is evaluated on the perturbed tweets DADV.

Two transformer-based models are introduced to
the framework to propose and rank lexical substitu-
tions towards a change in the predictions of f ′. We
evaluate if the attacks on f ′ transfer across corpora,
architectures, and a separately trained target model
f (see Figure 1). Finally, we measure the qual-
ity of changes using automatic evaluation metrics,
and conduct an human evaluation that focuses on
detection accuracy of the attacks.

2 Related Work

Stylometry, the study of (predominantly) writing
style, dates back several decades (Mosteller and
Wallace, 1963), and has seen increased accessibil-
ity through the introduction of statistical models
(see surveys by Holmes, 1998; Neal et al., 2017)
and machine learning (e.g., Matthews and Merriam,
1993; Merriam and Matthews, 1994). Computa-
tional stylometry distinguishes several subtasks
such as determining (Baayen et al., 2002) and ver-
ifying author identity (Koppel and Schler, 2004),
and author profiling (Argamon et al., 2005); e.g.,
predicting demographic attributes. Adversarial sty-
lometry (as conceptualized by Brennan et al., 2012)
intends to subvert these inferences by changing an
author’s text through imitation, or, as pertains to
our research, the obfuscation of writing style (Kac-
marcik and Gamon, 2006; Caliskan et al., 2018; Le
et al., 2015; Xu et al., 2019).

These changes, or perturbations, can be pro-
duced in several ways, and the task is therefore of-
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ten conflated with paraphrasing (Reddy and Knight,
2016), style transfer (Kabbara and Cheung, 2016),
and generating adversarial samples or triggers
(Zhang et al., 2020b). Regardless of the employed
method, the main challenge of obfuscation lies in
retaining the original meaning of an input text; its
written language medium limits any perturbations
to discrete outputs, and unnatural discrepancies
are significantly better discernible by humans than,
say, a few pixel changes in an image. An addi-
tional, persistent limitation is the absence of eval-
uation metrics that guarantee complete preserva-
tion of the original meaning of the input whilst
changes remain unnoticed (Potthast et al., 2016).
This not only inhibits automatic evaluation of ob-
fuscation, but all natural language generation re-
search (Novikova et al., 2017)—placing an empha-
sis on human evaluation (van der Lee et al., 2019).

It is perhaps for this reason that most obfus-
cation work uses heuristically-driven, controlled
changes such as splitting or merging words or sen-
tences, removing stop words, changing spelling,
punctuation, or casing (see e.g., Karadzhov et al.,
2017; Eger et al., 2019). These specific attacks are
typically easier to mitigate through preprocessing
(Juola and Vescovi, 2011). Obfuscation through
lexical substitution (Mansoorizadeh et al., 2016;
Bevendorff et al., 2019, 2020) provides a middle
ground of control, semantic preservation and attack
effectiveness; however, they might prove less effec-
tive against models relying on deeper stylistic fea-
tures (e.g. word order, part-of-speech (POS) tags,
or reading complexity scores). End-to-end systems
have been employed for similar purposes (Shetty
et al., 2018; Saedi and Dras, 2020), or to rewrite en-
tire phrases (Emmery et al., 2018; Bo et al., 2019)
using (adversarially-driven) autoencoders. Such at-
tacks seem less common, and provide less control
over the perturbations and semantic consistency.

Our work does not assume the attacks to run
end-to-end, but with a hypothetical human in the
loop. We further opt for techniques that are more
likely to find strong semantic mirrors to the original
text while making minimal changes. A substitute
model (the algorithm, hyper-parameters, and out-
put of which an author can manipulate as desired) is
employed to indicate candidate replacement words,
and our attacks suggest and rank those against this
substitute. Moreover, prior work typically attacks
adversaries trained on the same data, whereas we
add a transferability measure. Lastly, while au-

thor identification has been investigated in the wild
(Stolerman et al., 2013), our work is, to our knowl-
edge, the first to make a conscious effort towards
realistic applicability of obfuscation techniques.

3 Method

Our attack framework extends TextFooler (TF, Jin
et al., 2020) in several ways. First, a substitute gen-
der classifier is trained, from which the logit output
given a document is used to rank words by their
prediction importance through an omission score
(Section 3.1). For the top most important words,
substitute candidates are proposed, for which we
add two additional techniques (Section 3.2). These
candidates can be checked and filtered on consis-
tency with the original words (by their POS tags,
for example), accepted as-is, or re-ranked (Sec-
tion 3.3). For the latter, we add a scoring method.
Finally, the remaining candidates are used for itera-
tive substitution until TF’s stopping criterion is met
(i.e., the prediction changes, or candidates run out).

3.1 Target Word Importance

We are given a target classifier f , substitute clas-
sifier f ′, a document D consisting of tokens Di,
and a target label y. Here, f ′ is trained on some
corpus X , and receives an author’s new input text
D, where the author provides label y. We denote
a class label as ȳ if f ′(D) predicts anything but
y. Our perturbations form adversarial input DADV,
that intends to produce f ′(DADV) = ȳ, and thereby
implicitly f(DADV) = ȳ. Note that we only submit
D to f for evaluating the attack effectiveness, and
it is never used to fit the attack itself.

To create DADV, a minimum number of edits
is preferred, and thus we rank all words in D by
their omission score (similar to e.g., Kádár et al.,
2017) according to f ′ (omission score in Al-
gorithm 1). Let D\i denote the document after
deleting Di, and oy(D) the logit score by f ′. The
omission score is then given by oy(D)− oy(D\i),
and used in an importance score I of token Di, as:

IDi =


oy(D)− oy(D\i),

if f ′(D) = f ′(D\i) = y.

oy(D)− oy(D\i) + oȳ(D)− oȳ(D\i),

if f ′(D) = y, f ′(D\i) = ȳ, y 6= ȳ.
(1)

With IDi calculated for all words in D, the top k
ranked tokens are chosen as target words T .
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ALGORITHM 1: Obfuscation by lexical replacement.

Input : f ′– substitute model
D = {w0, w1, . . . , wn} – document
y – target label
checks – apply checks (bool)
k – target max k-amount words

Output : DADV – obfuscated document

1 for Di ∈ D do
// via Equation 1

2 IDi ← omission score(f ′, y)

3 T ← top k(argsort desc(D, IDi scores), k)

4 DADV = D
5 for t ∈ T do

// substitution attack on t
6 Ct ←candidates(t)
7 A = (DADV1:i−1, Ct,j , DADVi+1:n)1≤j≤|Ct|
8 Ā = filter/rank(D, A; t, checks)

// test attack success on f ′

9 for D′ ∈ Ā do
10 if arg max oy(D′) 6= y then
11 return DADV = D′

12 else if oy(D′) < oy(DADV) then
13 t in DADV is replaced with c from D′

14 return DADV

3.2 Lexical Substitution Attacks

Four approaches to perturb a target word t ∈ T are
considered in our experiments. These operations
are referred to as candidates in Algorithm 1.

Synonym Substitution (WS) This TF-based
substitution embeds t as t using a pre-trained em-
bedding matrix V . Ct is selected by computing the
cosine similarity between t and all available word-
embeddings w ∈ V . We denote cosine similarity
with Λ(t,w). A threshold δ is used to keep only
reliable candidates Λ(t,w) > δ.

Masked Substitution (MB) The embedding-
based substitutions can be replaced by a language
model predicting the contextually most likely to-
ken. BERT (Devlin et al., 2019)—a bi-directional
encoder (Vaswani et al., 2017) trained through
masked language modeling and next-sentence
prediction—makes this fairly trivial. By replac-
ing t with a mask, BERT produces a top-k most
likely Ct for that position. Implementing this in TF
does imply each previous substitution of t might
be included in the context of the current one. This
method of contextual replacement has two draw-
backs: i) semantic consistency with the original
word is not guaranteed (as the model has no knowl-
edge of t), and ii) the replaced context means se-
mantic drift can occur, as all subsequent substitu-
tions follow the new, possibly incorrect context.

Dropout Substitution (DB) A method to cir-
cumvent the former (i.e., BERT’s masked pre-
diction limitations for lexical substitution), was
presented by Zhou et al. (2019). They apply
dropout (Srivastava et al., 2014) to BERT’s inter-
nal embedding of target word t before it is passed
to the transformer—zeroing part of the weights
with some probability. The assumption is that Ct

(BERT’s top-k) will contain candidates closer to
the original t than the masked suggestions.

Heuristic Substitution To evaluate the relative
performance of the techniques we described before,
we employ several heuristic attacks as baselines. In
the order of Table 3: 1337-speak: converts charac-
ters to their leetspeak variants, in a similar vein to
e.g. diacritic conversion (Belinkov and Bisk, 2018).
Character flip: inverts two characters in the middle
of a word, which was shown to least affect readabil-
ity (Rayner et al., 2006). Random spaces: splits a
token into two at a random position.

3.3 Candidate Filtering and Re-ranking

Given Ct, either all, or only the highest ranked can-
didate can be accepted as-is. Alternatively, all D′

can be filtered by submitting them to checks, or re-
ranked based on their semantic consistency with D.
These operations are referred to as rank/filter
in Algorithm 1—both of which can be executed.

Part-of-Speech and Document Encoding TF
employs two checking components: first, it re-
moves any c that has a different POS tag than t.
If multiple D′ exist so that f ′(D′) = ȳ, it selects
the document D′ which has the highest cosine sim-
ilarity to the Universal Sentence Encoder (USE)
embedding (Cer et al., 2018) of the original docu-
ment D. If not, the D′ with the lowest target word
omission score is chosen (as per TF’s method).

BERT Similarity Zhou et al. (2019) use the con-
catenation of the last four layers in BERT as a
sentence’s contextualized representation h. We ap-
ply this in both Masked (MB) and Dropout (DB)
BERT to re-rank all possible D′ by embedding
them. Given document D, target t, and perturba-
tion candidate document D′, Ct would be ranked
via an embedding similarity score:

SIM
(
D,D′; t

)
=

n∑
i

wi,t×Λ
(
h (Di|D) ,h(D′

i|D′)
)

(2)
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AUTHORS TWEETS FEMALE MALE TRAIN TEST TOKENS TYPES AVG SIZE

Huang et al. 37,929 47,211 26,758 20,453 30,602 7,651 935,062 46,600 28
Emmery et al. 6,610 16,788,612 61,736 32,900 75,918 18,718 146,736,657 9,942,399 301
Volkova et al. 4,620 12,226,859 32,376 26,708 47,298 11,777 67,186,535 7,836,539 269

Table 1: Corpus statistics indicating the number of authors, tweets, female and male labels, the size of the train and
test splits, number of types (unique words) and tokens (total words), and average tokens per document (avg size).

where h (Di|D) is BERT’s contextualized repre-
sentation of the ith token in D, and wi,t is the av-
erage self-attention score of all heads in all layers
ranging from the ith token with respect to t in D.3

4 Experiment

4.1 Data

We use three author profiling sets (see Table 1 for
statistics) that are annotated for binary gender clas-
sification (male or female): first, that of Volkova
et al. (2015) which was collected through anno-
tating 5,0004 English Twitter profiles by crowd-
sourcing via Mechanical Turk. This can be consid-
ered a ‘random’ sample of Twitter profiles, and is
therefore the most unbiased set of the three. Hence,
we consider it the most representative of an author
profiling set, and employ this as training split (80%)
for f , and test split for our attacks (20%).

The second is the English portion of the Multi-
lingual Hate Speech Fairness corpus of Huang et al.
(2020), which was collected with a different ob-
jective than author profiling. It was aggregated
from existing hate speech corpora (by Waseem
and Hovy, 2016; Waseem, 2016; Founta et al.,
2018)—which were largely bootstrapped with look-
up terms, selection of frequently abusive users,
etc.—and annotated post-hoc with demographic
information. The collection did not focus on pro-
files, and most authors are only associated with a
single tweet. This can cause a significant domain
shift compared to general author profiling. How-
ever, it can be seen as freely available (noisy) data.

Lastly, we include a weakly labeled author pro-
filing corpus by Emmery et al. (2017), collected
through English keyword look-up for self-reports—
similar to Beller et al. (2014). This corpus likely
includes incorrect labels, but was collected in less
than a day, making it an ideal candidate for realistic
access to (new) data to fit the substitute model.

3Zhou et al. (2019) additionally use a proposal score for
finding T that we replaced with the omission score.

4Profile counts in the current work differ due to collection
limitations (e.g., removed accounts).

Preprocessing & Sampling All three corpora
were tokenized using spaCy5 (Honnibal and Mon-
tani, 2017). Other than lowercasing, allocating spe-
cial tokens to user mentions and hashtags (# and
text were split), and URL removal, no additional
preprocessing steps were applied. Every author
timeline was divided into chunks for a maximum
of 100 tweets (i.e., some contain less) to form our
documents, implying a maximum of 25 instances
per author (some contain one, 2,500 is the API his-
tory limit). From the test set, the last6 200 instances
were sampled for the attack (110 male, 90 female).
While fairly small, this sample does reflect a realis-
tic attack duration and timeline size, as they would
be executed for a single profile.

4.2 Attacks

For the extension of TF, we re-implemented code7

by Jin et al. (2020) to work with Scikit-learn8 (Pe-
dregosa et al., 2011). For their synonym substitu-
tion component, we similarly used counter-fitted
embeddings by Mrkšić et al. (2016) trained on
Simlex-999 (Hill et al., 2015). The USE (Cer
et al., 2018) implementation uses TensorFlow9

(Abadi et al., 2016a) as back-end, and all BERT-
variants were implemented in Hugging Face’s10

Transformers library (Wolf et al., 2020) with Py-
Torch11 (Paszke et al., 2019) as back-end.

We adopt the same parameter settings as Jin et al.
(2020) throughout our TF experiments: they set
N (considered synonyms) and δ (cosine similarity
minimum) empirically to 50 and 0.7 respectively.
For MB and DB, we capped T at 50 and top-k at
10 (to improve speed). For DB, we follow Zhou
et al. (2019) and set the dropout probability to 0.3.

5https://spacy.io
6As the datasets are not shuffled to avoid overfitting on

author-specific features, a few documents of the same author
might spill from the train into the test split; this avoids incor-
porating those in our attack sample.

7https://github.com/jind11/TextFooler
8https://scikit-learn.org/
9https://tensorflow.org/

10https://huggingface.co/
11https://pytorch.org/

https://spacy.io
https://github.com/jind11/TextFooler
https://scikit-learn.org/
https://tensorflow.org/
https://huggingface.co/
https://pytorch.org/
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data Huang, Emmery, Volkova
importance Omission score
attack Heuristics, TextFooler, Masked BERT,

Dropout BERT
model Logistic Regression, N-GrAM
ranking None, POS + USE, BERT Sim

Table 2: Grid of possible experimental configurations.

4.3 Models

For f and f ′ we require (preferably fast) pipelines
that achieve high accuracy on author profiling tasks,
and are sufficiently distinct to gauge how well our
attacks transfer across architectures, rather than
solely across corpora. As state-of-the-art algo-
rithms have not yet proven to be sufficiently ef-
fective for author profiling (Joo et al., 2019) we opt
for common n-gram features and linear models.

Logistic Regression Logistic Regression (LR)
trained on tf·idf using uni and bi-gram features
proved a strong baseline in author profiling in prior
work. The simplicity of this classifier also makes it
a substitute model that can realistically be run by
an author. No tuning was performed: C is set to 1.

N-GrAM The New Groningen Author-profiling
Model (N-GrAM) from Basile et al. (2018), was
proposed as a highly effective—simple—model
that outperforms more complex (neural) alterna-
tives on author profiling with little to no tuning.
It uses tf·idf-weighted uni and bi-gram token fea-
tures, character hexa-grams, and sublinearly scaled
tf (1 + log(tf)). These features are then passed
to a Linear Support Vector Machine (Cortes and
Vapnik, 1995; Fan et al., 2008), where C = 1.

4.4 Experimental Setup

To summarize (and see Table 2), the experiment is
conducted as follows: the substitute target model
(f ′)—LR for all experiments—is fit on a given
corpus. The real target model (f , either LR or N-
GrAM) is always fit on the corpus of Volkova et al.
(2015). To evaluate the attacks, a 200-instance sam-
ple is used. Target words are ranked via omission
scores from f ′, fed to either our Heuristics, TF,
MB, or DB attacks. The heuristics directly change
the target words, while the rest outputs a ranked set
of replacement candidates. The latter can either be
evaluated against f ′ through the TF pipeline, or the
Top-1 candidate is returned. Filtering can be ap-
plied through POS/USE for semantic similarity and
POS compatibility checks (Check), or not (Check).

test = Volkova et al.

LR f ′→ Huang et al. Emmery et al. Volkova et al.

f → LR NG LR NG LR NG

none .885 .940 .885 .940 .885 .940

H
eu

ri
st

ic 1337 .770 .850 .775 .835 .715 .860
flip .900 .950 .885 .905 .840 .905

space .845 .925 .760 .870 .720 .850

To
p-

1 WS .825 .930 .805 .890 .750 .915
MB .655 .905 .595 .785 .145 .410
DB .625 .895 .575 .785 .210 .530

C
he

ck WS .540 .855 .355 .670 .000 .009
MB .415 .790 .120 .420 .000 .085
DB .430 .775 .175 .430 .000 .085

C
he

ck TF .705 .920 .780 .910 .375 .700
TF + MB .640 .880 .760 .890 .380 .725
TF + DB .650 .885 .755 .890 .435 .715

Table 3: Post-attack accuracy scores (below chance
(55%) = better) of f on a test sample from the Volkova
et al. corpus. Left, the attack conditions: heuris-
tics, top-1 synonym, applying POS and USE similarity
checks, or not applying those checks (Check). Splits
per training corpus are noted for f ′ (always Logistic Re-
gression (LR)). As target model, either LR, or N-GrAM
(NG) was used. The substitution attacks are TextFooler
(TF), Masked (MB) and Dropout BERT (DB). If TF’s
stopping criterion was used, TF + is noted. Word Simi-
larity (WS), reflects the TF pipeline without checks.

Note that we are predominantly interested in
transferability, and would therefore like to test as
many combinations of data and architecture access
limitations as possible. If we assume an author does
not have access to the data, the substitute classifier
is trained on any other data than the Volkova et al.
corpus. If we assume the author does not know
the target model architecture, the target model is
N-GrAM (rather than LR). A full model transfer
setting (in both data and architecture) will therefore
be, e.g.: data f ′ = Emmery et al., data f = Volkova
et al., f ′ = LR, and f = NGrAM. Finally, for com-
parison to an optimal situation, we test a setting
where we do have access to the adversary’s data.

4.5 Evaluation

Metrics The obfuscation success is measured
as any accuracy score below chance level perfor-
mance, which given our test sample is 55%. We
would argue that random performance is preferred
in scenarios where the prediction of the opposite
label is undesired. For the current task, however,
any accuracy drop to around or lower than chance
level satisfies the conditions for successful obfus-
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Volkova et al. → TRAIN TEST

T
R

A
IN Huang et al. 0.640 0.620

Emmery et al. 0.725 0.890

Table 4: Gender prediction accuracies of the substitute
models f ′ on train and test splits of f .

cation.12 To evaluate the semantic preservation of
the attacked sentences, we calculate both METEOR

(Banerjee and Lavie, 2005; Lavie and Denkowski,
2009) using nltk,13 and BERTScore (Zhang et al.,
2020a) between D and DADV. METEOR captures
flexible uni-gram token overlap including morpho-
logical variants, and BERTScore calculates similar-
ities with respect to the sentence context.

Human Evaluation For the human evaluation,
we sampled 20 document pieces (one or more
tweets) for each attack type in the best performing
experimental configuration. A piece was chosen if
it satisfied these criteria: i) contains changes for all
three attacks, ii) consists of at least 15 words (ex-
cluding emojis and tags), and iii) does not contain
obvious profanity.14 All 60 document pieces of
the three models were shuffled, and the 20 original
versions were appended at the end (so that ‘cor-
rect’ pieces were seen last). Each substitute model
therefore has 80 items for evaluation.

While in prior work it is common to rate se-
mantic consistency, fluency, and label a text (see
e.g., Potthast et al., 2016; Jin et al., 2020), our
Twitter data are too noisy (including many spelling
and grammar errors in the originals), and docu-
ment batches too long to make this a feasible task.
Instead, our six participants (three per substitute)
were asked to indicate if: a) a sentence was artifi-
cially changed, and if so, b) indicate one word that
raised their suspicion. This way, we can evaluate
which attack produces the most natural sentences,
and the least obvious changes to the input.

The items were rated individually; the human
evaluators did not know beforehand that different
versions of the same sentences were repeated, nor

12If an attack drops accuracy to 0%, this effectively flips
(in case of a binary label) the label. This label might also be
undesired by the author (e.g., being classified as having polar
opposite political views). This implies the target model being
maximally unsure about the classification is desirable.

13https://www.nltk.org/_modules/nltk/
translate/meteor_score.html

14To avoid exposing the raters to overly toxic content, bla-
tant examples were filtered using a keyword list. Some minor
examples remained, for which we added a disclaimer.

that the originals were shown at the end. All par-
ticipants have a university-level education, a high
English proficiency, and are familiar with the do-
main of the data. Several example ratings of the
same sentence can be found in Table 6.

5 Results

5.1 Domain Shift

As we alluded to in Section 4.1, both corpora used
to train our substitute models were in fact not refer-
ence corpora for author profiling, and can therefore
be considered as suboptimal, disjoint domains. The
Huang et al. corpus in particular shows a strong
domain shift (see Table 4) for both training and test
sets. The distantly labeled Emmery et al. corpus
achieves 7.5% more accuracy on the train split of
Volkova et al., and test performance is significantly
higher (27%). We might therefore expect better
obfuscation performance from the latter.

5.2 Baselines

The results for all attacks are shown in Table 3.
Note that these are performances for f ; therefore,
when no attacks are applied (none), the perfor-
mance for both substitute corpora stays the same
(as those only influence the attacks). For the heuris-
tic attacks, 1337 seems to make the more robust
baseline; outperforming some of the other settings—
even on transferability. A surface-level advantage
is that this attack has a minor impact on readabil-
ity (when applied conservatively) and does not
change semantics; however, the heuristic attacks
are fairly simple to mitigate in preprocessing (Juola
and Vescovi, 2011) and through character features
(as shown by the performance of the N-GrAM
model). For transferability, we evidently need to
do more than simply trying to convert words to be
out-of-vocabulary (OOV) with noise. While it can
be argued the heuristics could change all words,
shifting everything OOV would not be robust; the
target model side could easily spot the anomalous
input and might act (e.g., reject) accordingly.

5.3 Attack Transferability

Transferability can be assessed by comparing the
LR and N-GrAM (NG) columns. Globally it can be
observed that the substitute models trained on the
Emmery et al. corpus systematically outperform
those trained on Huang et al.; both for the settings
where the adversary’s architecture is known (LR),
and where it is unknown (NG). This matches our

https://www.nltk.org/_modules/nltk/translate/meteor_score.html
https://www.nltk.org/_modules/nltk/translate/meteor_score.html
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Figure 2: Rewrite metrics for the three different attacks:
TextFooler (TF), Masked (MB) and Dropout BERT
(DB)—split by corpora Huang et al. (H), Emmery et al.
(Q). Shown are the relative number of changes (by doc-
ument length), BERTScore (F1), and METEOR (MET)
with respect to the original document.

expectations from the observed domain shift. Our
results also show that a noticeable decrease in ob-
fuscation performance occurs (10-30% increased
target model performance) when the attacks are
transferred to different data and another model.
In contrast, as can be observed from the last two
columns in Table 3, in a practically unrealistic set-
ting where the model and data are available, the
obfuscation is specifically tailored to known weak-
nesses and therefore highly effective.15

5.4 Transformer Performance
Looking at the Top-1, Check and Check brack-
ets (Table 3), other than the BERT-based models
having higher success of transferability than TF,
they also retain obfuscation success; deteriorat-
ing the target model’s performance to lower than
chance level (55%) for the settings not using addi-
tional checks. This comparison also demonstrates
the synonym ranking to work (Top-1 vs. Check
and Check), and the Check condition to be too
restrictive; attaining lower attack power, and low
transferability. This is further illustrated by the %-
changes shown in Figure 2. Comparing the MB
and DB variants, their performance seems almost
identical, with masking having a slight advantage.
As Zhou et al. (2019) argued, applying dropout
should produce words that are closer to the original
(compared to MB), which might affect obfuscation
performance. Additionally, the BERT similarity
ranking (described in Section 3.3) applied to the
Masked substitution candidates could have some
beneficial effect. This will have to be studied in
more detail using the output evaluations.

15Jin et al. (2020) found similar drops to 0% accuracy with
a comparable percentage of changes for word-level models.

Huang et al. Emmery et al.

ORG TF MB DB TF MB DB

ALTERED .888 .967 .633 .783 .950 .617 .633
WORD - .950 .583 .700 .867 .433 .433

Table 5: Human accuracy scores of predicting if a text
was altered, and guessing the attacked word (lower
is better). All substitute models are those with the
Check setting, trained on different corpora (i.e., differ-
ent words are attacked per training corpus). ORG indi-
cates correct prediction of the originals.

Rewrite Metrics The metrics in Figure 2 show
a common initial limitation in their application to
this task: the more frequent an attack makes no
changes, the higher the automatic evaluation met-
rics (BERTScore, METEOR). Hence, to compare
models, these scores need to be considered in light
of the obfuscation performance, and related work.
It can be observed that with consistently higher
changes, MB and DB score lower on semantic con-
sistency than TF. However, between MB and DB,
and TF for the Emmery et al. corpus, these differ-
ences are minor. Furthermore, despite being fit on
a different domain, these scores are comparable to
prior obfuscation work (e.g., Shetty et al. (2018)
show METEOR scores between 0.69 and 0.79).

Human Evaluation The results in Table 5 reflect
the same trend that can be observed in Table 3; high
obfuscation success seems to result in higher hu-
man error when predicting if a sentence was obfus-
cated. Conversely, it seems that despite higher se-
mantic consistency scores, the original TF pipeline
is easier to detect. This can be attributed to the
number of spelling and grammar errors the model
makes without its additional checks. Furthermore,
the 11% error in identifying the original sentences
also reflects some expected margin of error in this
task, as our Twitter data is inherently noisy. Finally,
while these results are in line with the obfuscation
success, and are lower than detectability scores in
related work (Mahmood et al., 2020), they also
indicate that the models are still detectable above
chance-level. Given three alternatives (including
the original), performance should be 25% or lower
to indicate no intrusive changes are made to text
(that are not semantically coherent or not inconspic-
uous enough—both metrics used by Potthast et al.,
2016). Therefore, while the presented approaches
are effective, and realistically transferable, there is
room for improvement for practical applicability.
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ORG ready to go home already . a better relationship with god . i need another job asap .

HTF loan to go houses already . a improved relations with jesus . i should another labour asap .

HMB ready to go on already . a better relationship with god . i need another guy man .

HDB ready to go somewhere already . a better relationship with god . i need another position vs .

ORG trump criticizes kim jong un after missile launch : ‘ does this guy have anything better to do ? ’ .

HTF tramp criticized kam yung jt after rocket start : ‘ does this boyfriend have anything best to do ? ’ .

HMB trump criticizes ha woman congressman after campaign launch : ‘ does this book have anything else to do ? ’ .

HDB trump criticizes in at sin after bomb launch : ‘ does this kid have anything less to do ? ’ .

Table 6: Example ratings of different attacks (not shown together to the human evaluators) on two sentences with
varying semantic consitency and human detection accuracy. In the first example, HMB was marked unaltered by all
raters, HDB by the majority, and HTF by none. In the second, only HDB was marked unaltered, by only one rater.
Attacked words are marked in bold, guessing any one of these would count as correctly identifying the attack.

6 Discussion and Future Work

We have demonstrated the performance of author at-
tribute obfuscation under a realistic setting. Using
a simple Logistic Regression model for candidate
suggestion, trained on a weakly labeled corpus col-
lected in a day, the attacks successfully transferred
to different data and architectures. This is a promis-
ing result for future adversarial work on this task,
and its practical implementation.

It remains challenging to automatically evalu-
ate how invasive the required number of changes
are for successful obfuscation—particularly to an
author’s message consistency as a whole. How-
ever, in practice such considerations could be left
up to the author. In this human-in-the-loop sce-
nario, a more extensive set of candidates could be
suggested, and their effect on the substitute model
shown interactively. This way, the attacks can be
manually tuned to find a balance of effectiveness,
inconspicuousness, and to guarantee semantic con-
sistency. It would also show the author how their
writing style affects potential future inferences.

Regarding the performance of the attacks: we
demonstrated the general effectiveness of contex-
tual language models in retrieving candidate sug-
gestions. However, the quality of those candidates
might be improved with more extensive rule-based
checks; e.g., through deeper analyses using parsing.
Nevertheless, such venues leave us with a core lim-
itation of rewriting language, and therefore more
broadly NLP: while the Masked attacks seemed
more successful in our experiments, after manual
inspection of the perturbations Dropout was found
to often be semantically closer (see also Table 6)—
which was not reflected in the human evaluation.
This begs the question if any automated approach,
evaluated under the current limitations of semantic

consistency metrics, could realistically optimize
for both obfuscation and inconspicuousness.

As such, we would argue that future work should
focus on making as few perturbations as possible,
retaining only the minimum amount of required ob-
fuscation success. Given this, the other constraints
become less relevant; one could generate short sen-
tences (e.g., a single tweet) that might be semanti-
cally or contextually incorrect, but if it is a message
in a long post history, it will hardly be detectable
or intrusive. This would require certain triggers (as
demonstrated by Wallace et al. (2019) for example),
and ascertaining how well they transfer.

7 Conclusion

In our work, we argued realistic adversarial stylom-
etry should be tested on transferability in settings
where there is no access to the target model’s data
or architecture. We extended previous adversarial
text classification work with two transformer-based
models, and studied their obfuscation success in
such a setting. We showed them to reliably drop
target model performance below chance, though
human detectability of the attacks remained above
chance. Future work could focus on further mini-
mizing this detection under our realistic constraints.
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information Ákos Kádár may have learned while
employed by Borealis AI.



2397

References

Martı́n Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. 2016a. Tensorflow:
a system for large-scale machine learning. In
Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation,
pages 265–283. USENIX Association.

Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016b. Deep learning with differen-
tial privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Commu-
nications Security, pages 308–318.

Carlisle Adams. 2006. A classification for privacy
techniques. U. Ottawa L. & Tech. J., 3:35.

Jalal S Alowibdi, Ugo A Buy, and Philip Yu. 2013.
Empirical evaluation of profile characteristics
for gender classification on twitter. In Machine
Learning and Applications (ICMLA), 2013 12th
International Conference on, volume 1, pages
365–369. IEEE.

Shlomo Argamon, Sushant Dhawle, Moshe Kop-
pel, and James W Pennebaker. 2005. Lexical
predictors of personality type. In Proceedings of
the 2005 Joint Annual Meeting of the Interface
and the Classification Society of North America,
pages 1–16.

Harald Baayen, Hans van Halteren, Anneke Neijt,
and Fiona Tweedie. 2002. An experiment in
authorship attribution. In 6th JADT, volume 1,
pages 69–75.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor:
An automatic metric for mt evaluation with im-
proved correlation with human judgments. In
Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine
translation and/or summarization, pages 65–72.

Angelo Basile, Gareth Dwyer, Maria Medvedeva,
Josine Rawee, Hessel Haagsma, and Malvina
Nissim. 2018. Simply the best: minimalist sys-
tem trumps complex models in author profil-
ing. In International Conference of the Cross-
Language Evaluation Forum for European Lan-
guages, pages 143–156. Springer.

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and natural noise both break neural ma-
chine translation. In International Conference
on Learning Representations.

Charley Beller, Rebecca Knowles, Craig Harman,
Shane Bergsma, Margaret Mitchell, and Ben-
jamin Van Durme. 2014. I’ma belieber: Social
roles via self-identification and conceptual at-
tributes. In Proceedings of the 52nd Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 181–
186.

Janek Bevendorff, Martin Potthast, Matthias Ha-
gen, and Benno Stein. 2019. Heuristic author-
ship obfuscation. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1098–1108.

Janek Bevendorff, Tobias Wenzel, Martin Potthast,
Matthias Hagen, and Benno Stein. 2020. On
divergence-based author obfuscation: An attack
on the state of the art in statistical authorship ver-
ification. it-Information Technology, 62(2):99–
115.

Haohan Bo, Steven HH Ding, Benjamin Fung,
and Farkhund Iqbal. 2019. Er-ae: differentially-
private text generation for authorship anonymiza-
tion. arXiv preprint arXiv:1907.08736.

Michael Brennan, Sadia Afroz, and Rachel Green-
stadt. 2012. Adversarial stylometry: Circumvent-
ing authorship recognition to preserve privacy
and anonymity. ACM Transactions on Informa-
tion and System Security (TISSEC), 15(3):1–22.

John D Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating gender on
twitter. In Proceedings of the Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 1301–1309. Association for Com-
putational Linguistics.

Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber,
Richard E. Harang, Konrad Rieck, Rachel Green-
stadt, and Arvind Narayanan. 2018. When cod-
ing style survives compilation: De-anonymizing
programmers from executable binaries. In 25th
Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Soci-
ety.



2398

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, Brian Strope, and Ray Kurzweil. 2018.
Universal sentence encoder for English. In Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 169–174, Brussels,
Belgium. Association for Computational Lin-
guistics.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan
Zhang, and Cho-Jui Hsieh. 2020. Seq2sick:
Evaluating the robustness of sequence-to-
sequence models with adversarial examples. In
The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 3601–3608. AAAI
Press.

Corinna Cortes and Vladimir Vapnik. 1995.
Support-vector networks. Machine learning,
20(3):273–297.

Walter Daelemans. 2013. Explanation in compu-
tational stylometry. In International Confer-
ence on Intelligent Text Processing and Com-
putational Linguistics, pages 451–462. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou.
2018. On adversarial examples for character-
level neural machine translation. In Proceedings
of the 27th International Conference on Compu-
tational Linguistics, pages 653–663.

Harrison Edwards and Amos J. Storkey. 2016. Cen-
soring representations with an adversary. In 4th
International Conference on Learning Represen-

tations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.
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