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Abstract

Growing concern with online misinformation
has encouraged NLP research on fact veri-
fication. Since writers often base their as-
sertions on structured data, we focus here
on verifying textual statements given evi-
dence in tables. Starting from the Table
Parsing (TAPAS) model developed for ques-
tion answering (Herzig et al., 2020), we
find that modeling table structure improves a
language model pre-trained on unstructured
text. Pre-training language models on En-
glish Wikipedia table data further improves
performance. Pre-training on a question an-
swering task with column-level cell rank infor-
mation achieves the best performance. With
improved pre-training and cell embeddings,
this approach outperforms the state-of-the-art
Numerically-aware Graph Neural Network ta-
ble fact verification model (GNN-TabFact),
increasing statement classification accuracy
from 72.2% to 73.9% even without model-
ing numerical information. Incorporating nu-
merical information with cell rankings and
pre-training on a question-answering task in-
creases accuracy to 76%. We further ana-
lyze accuracy on statements implicating sin-
gle rows or multiple rows and columns of
tables, on different numerical reasoning sub-
tasks, and on generalizing to detecting errors
in statements derived from the ToTTo table-to-
text generation dataset.

1 Introduction

The rapid growth in the amount and sources of on-
line textual content has raised concerns about mis-
information and its potential harmful impacts on
society when quickly spread to a massive audience.
For example, a study on enhancing medical edu-
cation with Wikipedia in 2015 found that 97% of
medical students completing the survey disclosed
that they found mistakes in Wikipedia medical en-
tries (Herbert et al., 2015). Concerns about mis-

information have stimulated extensive research on
automatic fact verification, i.e., verifying whether
a given textual statement is entailed or refuted by
the given evidence.

Figure 1: Example from the TabFact dataset: the top
table contains the structured evidence; the bottom two
boxes contain the statements entailed and refuted by the
evidence. Errors are highlighted in red.

While most existing fact verification work fo-
cuses on unstructured textual evidence, fact ver-
ification with structured evidence is still under-
explored. Recently, Chen et al. (2019) introduced
a new large-scale dataset, TabFact, for verifying
statements based on structured evidence in tables.
Figure 1 presents an example table and the cor-
responding entailed and refuted statements from
TabFact. The task of fact verification based on
structured evidence is challenging in two aspects.
First, traditional language models trained on un-
structured text are not directly applicable to learn
representations for structured text. It is difficult
for such language models to understand a sentence
like “Round Pick Player College 1 1 Ralph Samp-
son Virginia ...” by directly concatenating the ta-
ble cells in Figure 1. Second, detecting misinfor-
mation with structured evidence involves not only
linguistic inference but also numerical reasoning
such as addition, subtraction, sorting, and counting
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over records. For example, to verify the statement
“Ralph Sampson was two picks ahead of Rodney
Mccray”, we need first to find in which order each
was picked and subtract them.

Table representation learning is important for
utilizing table data as evidence for fact verifica-
tion. Most existing methods apply BERT (Devlin
et al., 2018) model to learn table representations.
Table-BERT (Chen et al., 2019) uses simple tem-
plates to transform tables into “somewhat natural”
sentences, and fine-tunes BERT on pairs of state-
ment sentence and corresponding table “sentence”.
However, this model adds many extra tokens to
the tables, sometimes doubling the length of the
original table token sequence. Zhong et al. (2020)
propose to first derive logical forms from the table
and the statement. A heterogeneous graph is then
constructed to capture connections between table
cells, functions and arguments and statement to-
kens. A graph-enhanced contextual representation
is learned for each token by only paying attention
to the neighbor nodes in the graph when applying
BERT model. However, as we show in §4.2, BERT
is less effective when it is pre-trained on unstruc-
tured data but applied to structured data such as
tables.

Table-based fact verification also requires nu-
merical reasoning over table records. Chen et al.
(2019) propose a Latent Program Algorithm (LPA),
where the statements are parsed into potential pro-
grams and a weakly supervised discriminator is
trained to assign confidence score to each program.
The output from the latent programs are aggregated
or ranked according to their confidence score as
the final prediction. Zhong et al. (2020) propose
to learn a representation for the program with a
program-driven neural module network, where se-
mantic compositionality is dynamically modeled
along the program parsing structure in a bottom-
up style. The program representation and the to-
ken representation for the table, statement and lin-
earized program are then combined to make the fi-
nal prediction. However, these two models depends
on weakly-supervised labels, which could be noisy,
to derive potential programs. Recently, the same au-
thors of Table-BERT released a new model, GNN-
TabFact1, applying Numerical-aware Graph Neural
Networks (NumGNN) on top of Table-BERT to
learn to compare numerical cells in the same col-

1https://github.com/wenhuchen/
GNN-TabFact

umn. Nonetheless, it requires constructing a graph
neural network and conducting iterative message
passing among the nodes in the graph.

We propose to adapt the Table Parsing (TAPAS)
model (Herzig et al., 2020), which has proven ef-
fective in question answering over tables, to model
tables for fact verification. TAPAS concatenates all
table cells without adding extra tokens and then ex-
tends BERT’s architecture with additional embed-
ding layers to capture the table structure and numer-
ical comparison information for each token in the
table. We replace its original two top classification
layers for answer generation with a single classifica-
tion layer on the [CLS] token to classify whether
a given statement is entailed or refuted by the ta-
ble. Our experimental results show that with proper
pre-training, TAPAS outpeforms the state-of-the-
art GNN-TabFact model, increasing the accuracy
of statement classification from 72.2% to 73.9%
on the TabFact test set even without modeling nu-
merical information. By further adding ranking
information for numerical rows and pre-training on
the question answering task, TAPAS achieves 76%
accuracy, with 89% on the simple statements and
69.8% on the complex statements. We also perform
further analysis to examine: (1) how the numer-
ical comparison information improves TAPAS’s
performance when ranking information is needed;
(2) how the complexity of the training set affects
model performance on simple and complex state-
ments; and (3) how well systems trained on TabFact
generalize to other fact verification tasks.

This paper’s primary contributions are: (1) ex-
ploring the effect of table structure modeling on
fact verification; (2) measuring the importance of
language model pre-training on tabular data; and
(3) analyzing the performance of fact-verification
models on different numerical reasoning subtasks
and errors.

2 Related Work

Fact Verification Thorne et al. (2018) introduce
a new dataset for fact extraction and verifica-
tion (FEVER) with claims generated by altering
sentences extracted from Wikipedia. Nie et al.
(2019) propose a neural semantic matching net-
work based on a bidirectional LSTM to retrieve
related evidence and predict whether the claim is
entailed, neutral, or contradicted by the evidence.
(Soleimani et al., 2019) propose to adopt a pre-
trained BERT model for evidence retrieval and

https://github.com/wenhuchen/GNN-TabFact
https://github.com/wenhuchen/GNN-TabFact
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fine tuning it for evidence-claim relation predic-
tion. Jobanputra (2019) propose an unsupervised
question-answering based approach for fact check-
ing by generating questions for a claim first and
predicting the masked span, which is compared
to the ground truth answer for label classification.
Zhong et al. (2020) construct two graphs for evi-
dence and claim via semantic role labeling, and use
graph-based reasoning for fact checking.

Structured Data Modeling Modeling struc-
tured data is essential for multiple tasks, e.g., ta-
ble classification, table population, table retrieval,
question answering , data-to-text generation, and
table-based fact verification.

Ghasemi-Gol and Szekely (2018), Trabelsi et al.
(2019) and Deng et al. (2019) propose to embed tab-
ular data into a vector space, using table structure
to classify tables into different categories, adding
more rows or columns to tables and retrieving ta-
bles given query keywords. Nishida et al. (2017)
employ RNNs to encode cell content and CNNs to
encode table structure to better capture semantic
features for table classification.

Haug et al. (2018) propose to generate candi-
date logical forms from a question, convert logical
forms to paraphrases, and rank them according to
their similarity to the original question to generate
the answer for the questions. Herzig et al. (2020)
add additional embedding layers to a BERT model
to capture table structure and numerical informa-
tion, and add two classification layers to predict ag-
gregation functions and corresponding table cells
to generate an answer for a given question.

Much current table-to-text generation work fo-
cus on generating biographies from Wikipedia in-
foboxes (Lebret et al., 2016; Liu et al., 2018; Sha
et al., 2018; Bao et al., 2018) or summarizing bas-
ketball games (Wiseman et al., 2017; Puduppully
et al., 2019) according to the box- and line-score
tables. Parikh et al. (2020) release a dataset for con-
trolled table-to-text generation, where table cells
are highlighted for the target sentences. Chen et al.
(2020) propose a new natural language generation
task, where the model tasked with generating state-
ments that entailed by a given table.

Chen et al. (2019) introduce a dataset for fact
verification given tabular data as evidence and pro-
pose a BERT-based Table-BERT model and a la-
tent program algorithm (LPA) model for this task.
Zhong et al. (2020) propose to first drive the pro-
gram from the table and statement, and then learn

graph-enhanced contextual representations for both
the table tokens and the program to classify the
statements. After this paper was submitted, four
related papers were published, which explore ad-
ditional questions in table-based fact verification.
Zhang et al. (2020) propose to utilize masking in
the self attention layer to model table structure.
Shi et al. (2020) and Yang et al. (2020) explore
how to effectively combine both linguistic infor-
mation and symbolic information for table-based
fact verification. Eisenschlos et al. (2020) gener-
ate synthetic datasets to pre-train a TAPAS model
to better understand tables for downstream tasks
such as table-based fact verification and question
answering.

3 Methods

We describe adapting the TAPAS model to fact
verification over tables and then introduce differ-
ent pre-trained models on which we fine-tune the
TAPAS for the table verification task.

TAPAS for table-based fact verification Simi-
lar to the Table-BERT model, the TAPAS model
also flattens the input table into a sequence of to-
kens. It concatenates all the tokenized table cells in
a row and then concatenates all the row sequences
into a table sequence. In addition to the position
and segment embeddings used in Transformer lan-
guage models, four additional position embedding
layers are introduced for encoding table structure
and numerical comparison relations among cells in
each column. For each token in the table, there is
a column index and a row index indicating the po-
sition of the token in the table. For numerical and
date columns (as determined by pandas), table cells
are sorted to generate a rank index and a inverse
rank index for each token according to their posi-
tion in the sorted column. The sequence of tokens
in the statement to be verified is concatenated with
the corresponding table token sequence with the
[SEP] token to indicate where the table sequence
starts. For the statement sequence, all the row, col-
umn, rank and inverse rank indexes are set as 0.
A special token [CLS] is added before this entire
input sequence for classification purpose. Figure 2
shows how the table and statement from Figure 1
are indexed for each embedding layer. We remove
the top two classification layers used in the origi-
nal TAPAS model for the question answering task,
and use the pooled output for the [CLS] token
for statement classification. To explore the impact
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of different table encodings, we experiment with
two variants of TAPAS: TAPAS-Row-Col, which
only utilizes the column and row index embedding,
and TAPAS-Row-Col-Rank, which leverages the
additional ranking and inverse ranking information
for numerical columns.

Pre-training We fine-tune the adapted TAPAS
model for the table verification task starting from
three different pre-trained models. The first pre-
trained model is the widely applied BERT model
(Devlin et al., 2018) trained on the BooksCorpus
and Wikipedia text. Lists and tables are removed
from the training text, so this model is merely
trained on unstructured data. The second pre-
trained model is the TAPAS-Row-Col-Rank model
pre-trained by Herzig et al. (2020) on a large num-
ber of Wikipedia text-table pairs with a masked
language modeling task. This pre-trained model
should be able to better understand the tables by
capturing the structure information and numerical
information. The third pre-trained model is the
TAPAS-Row-Col-Rank model trained on the SQA
(Iyyer et al., 2017) dataset with a question answer-
ing task. We only utilize their parameters for the
bottom layers encoding the text and table sequence.
Since this model is trained to generate answers by
selecting table cells and predicting the aggregation
function to be used on the cells, it should be able to
capture more complicated numerical information.

4 Experiments

In this section, we first introduce the experimental
settings in detail (§4.1). Then we present the results
of comparing two variants of TAPAS model and
other state-of-the-art models on the table-based fact
verification task in §4.2. More discussions about
the models are provided in §4.3.

4.1 Experimental Setup

Dataset In the main experiment, we evaluate dif-
ferent models on TabFact, a large-scale dataset for
table-based fact verification proposed by Chen et al.
(2019). TabFact is generated by asking annotators
to write statements given a table and its caption.
The statements are either entailed or refuted by the
table content. This dataset contains both simple
and complex statements. Simple statements refer
to a single row of the table without complicated
logical inference and mention the table cells with-
out much modification. Complex statements are

more sophisticated and involve aggregation func-
tions such max, min, count, average, difference,
etc., over multiple table records. The mentioned
table records are rephrased to involve more seman-
tic understanding. A total of 118,275 statement
sentences are generated for 16,573 tables, of which
50,244 are simple statements and 68,031 are com-
plex statements. We use the training, validation and
test set splits from Chen et al. (2019) to conduct a
fair comparison with their models. Table 1 shows
the statistics of these splits.

Split #Statements #Tables
Train 92,283 13,182
Val 12,792 1,696
Test 12,779 1,695

Table 1: Statistics of the training, validation, and test
sets for the TabFact in Chen et al. (2019).

Comparisons We compare TAPAS-Row-Col
and TAPAS-Row-Col-Rank model with the follow-
ing state-of-the-art models:
a. Latent Program Algorithm (LPA). This model
(Chen et al., 2019) first uses trigger words to prune
pre-defined APIs including around 50 functions
such as min, max. Then candidate latent pro-
grams are constructed by using breadth-first-search
with memoization, and a discriminator is trained
with weakly-supervised labels to assign confidence
score to the programs. Their best performing model
ranks all the latent programs by the discriminator
confidence score and make the prediction by exe-
cuting the top-rated program.
b. Table-BERT. This model (Chen et al., 2019)
applies a pre-trained BERT model to classify the
concatenated table and statement. Their best per-
forming model first concatenates the header of each
column to each table cell in the same column by us-
ing the template [HEADER] is [CELL]. Then
table cells in the ith row are concatenated with the
“;” symbol and a short phrase row i is ... is
added to the beginning of the concatenated cells to
identify the cells from each row of the table. For
example, the first row of the table from Figure 1
would be flatted to “Row 1 is: Round is 1; Pick is
1; Player is Ralph Sampson; College is Virginia.”.
All the row sequences are then concatenated as the
table sequence, which is further concatenated to
the statement sequence with the [SEP] symbol
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Figure 2: Example of how TAPAS encoding the refuted statement and the table from Figure 1 for classification.

and fed into BERT model for classification.
c. GNN-TabFact. This is a newly released state-
of-the-art model by the creators of TabFact. It
first extracts the representations for table tokens
and statement tokens based on Table-BERT, then
the representations for the tokens in the same cell
are averaged as the representation for each table
cell. All the table cells with numerical values in
the same column are treated as nodes, and a graph
is constructed by connecting the nodes with two
types of edges—greater and less than—according
the values of the cells. A NumGNN layer is then
utilized to propagate information among the nodes
in the graph to integrate the numerical comparison
information into each table cell’s representation.
Cross attention is then computed over the new table
representation and the textual statement for final
classification.
d. LogicalFactChecker. This model (Zhong et al.,
2020) first derives a program from the table and
statement, then learns a contextual representation
for the tokens by constructing a heterogeneous
graph to capture the connections among the state-
ment, the table and the program. A program-guided
neural module network is introduced to learn a rep-
resentation for the program by capturing its struc-
tural and compositional semantics. The token repre-
sentations and the program representation are then
combined to make the final prediction.

Model Parameters Following Table-BERT, all
of our models are based on the open-source imple-
mentation of BERT with 12-layers, 768-hidden,
12-heads2. Both statements and tables are tok-
enized into sequences of subwords with the Stan-

2https://github.com/huggingface/
pytorch-pretrained-BERT

dard BERT tokenizer and joined by the [SEP]
special token. [CLS] is added to the beginning of
the joined sequence. We modify the BERT code by
adding embedding layers for special token types
such as row index, column index and (inverse) rank
index information following the TAPAS variants
described above modeling for table structure.

Evaluation Metric All models are evaluated for
accuracy on classifying test statements as entailed
or refuted by the corresponding evidence table.

4.2 Main Results
Table 2 presents our main results, comparing
TAPAS-derived models with baseline models on
table-based fact verification. As we can see, the
TAPAS-Row-Col-Rank model pre-trained on the
question answering task over tables achieves the
best performance. The TAPAS-Row-Col model
pre-trained on WikiTables and fine tuned on Tab-
Fact data outperforms the state-of-the-art GNN-
TabFact model no matter whether the full table
is used or only the subset columns related to the
statements are used. (This subsetting gives the best
results for GNN-TabFact.)

How do different ways of modeling table struc-
ture affect the model performance? We first
examine how the method of modeling table struc-
ture affects performance. Table-BERT uses a sim-
ple template to transform a table into a “somewhat
natural” sentence to exploit a language model pre-
trained on natural sentences. However, Table 2
shows that TAPAS-Row-Col, which directly con-
catenates all table cells and uses row index and col-
umn index position embedding to capture the table
structure, significantly outperforms Table-BERT
on the complex test set with the same pre-training,

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Model Pre-train Columns Test
All Simple Complex

BERT classifier w/o Table BooksCorpus + Wikipedia Text N/A 50.5 51.0 50.1
Table-BERT BooksCorpus + Wikipedia Text subset 65.1 79.1 58.2

LPA N/A N/A 65.3 78.7 58.5
LogicalFactChecker BooksCorpus + Wikipedia Text all 71.7 85.4 65.1

GNN-TabFact BooksCorpus + Wikipedia Text subset 72.2 86.4 65.4
TAPAS-Row-Col BooksCorpus + Wikipedia Text all 60.5 63.8 57.9
TAPAS-Row-Col BooksCorpus + Wikipedia Text subset 68.3 79.5 62.9
TAPAS-Row-Col Wikipedia Tables all 73.4* 86.6 67.0*
TAPAS-Row-Col Wikipedia Tables subset 73.9* 87.7* 67.2*

TAPAS-Row-Col-Rank Wikipedia Tables all 74.5* 87.0 68.5*
TAPAS-Row-Col-Rank Wikipedia Tables subset 74.8* 88.1* 68.5*
TAPAS-Row-Col-Rank Wikipedia Tables + SQA all 76.0* 89.0* 69.8 *
TAPAS-Row-Col-Rank Wikipedia Tables + SQA subset 74.6* 88.9* 67.7*

Table 2: Percent accuracy of different models for table-based fact verification on the TabFact test set. “Subset”
means only use the table columns with entities linked to the statements during training, while “all” means use
all the columns. Models with accuracies significantly surpassing the previous state of the art, GNN-TabFact, are
highlighted with * (p < 0.05, paired-permutation test). Bold indicates the best results in a column.

increasing the accuracy from 58.2% to 62.9%. It
reveals that TAPAS-Row-Col’s structural encoding
is more effective for verifying statements involving
complicated aggregation over multiple table rows.

Does filtering the table columns help? Table-
BERT works on the subset of the table columns
relevant to the statements, since the a table serial-
ized in “natural” language might be too long for
sequence models. Chen et al. (2019) filter tables to
the columns containing entities linked to the state-
ment. We run TAPAS-Row-Col model on both full
table and subset of the columns. Table 2 shows
that, when TAPAS-Row-Col is fine-tuned from the
original BERT model, shrinking the table only to
the related columns significantly improves its ac-
curacy from 60.5% to 68.3%. However, when we
fine tune TAPAS-Row-Col model pre-trained on
the Wikipedia tables, the difference is not that sig-
nificant. It shows that filtering the table columns
mainly helps when applying language models pre-
trained on unstructured data to structured data.

What is the effect of pre-training? We fine-
tuned TAPAS-Row-Col on two different types of
pre-trained model: the original BERT model pre-
trained on unstructured text and the TAPAS model
pre-trained on Wikipedia Tables together with sen-
tences from the corresponding text paragraph by
Herzig et al. (2020). Both of the pre-trained mod-
els are trained with the masked language modeling
task. As we can see, pre-training on tables signifi-
cantly improves performance of TAPAS-Row-Col
from 68.3% to 73.9%. Fine-tuning TAPAS-Row-
Col-Rank on the model pre-trained on the question

answering task, where numerical reasoning skills
are required to generate an answer for a given ques-
tion, further improves accuracy from 74.5% to 76%.
However, if we only fine-tune on the subset of table
columns matching the statement, TAPAS-Row-Col-
Rank does not benefit from the pre-trained question
answering model. We conjecture that it is because
the original model is pre-trained on full tables.

Does adding numerical comparisons help?
Both GNN-TabFact and TAPAS-Row-Col-Rank
model numerical comparison relations among cells
in the same column. GNN-TabFact learns a repre-
sentation for each table cell by iteratively passing
their numerical relations such as greater or less in
a graph neural network. TAPAS-Row-Col-Rank
model adds the rank and inverse rank index for
cells in the same column as special position embed-
ding for each token in the table cells. GNN-TabFact
significantly outperforms Table-BERT by adding
a numerically aware graph neural network on top
of it. It also outperforms the LogicalFactChecker
model, which first derives a program from the table
and the statement and then learns the representa-
tion for the programs via a program-guided neu-
ral module network. Also, TAPAS-Row-Col-Rank
model significantly outperforms TAPAS-Row-Col
by introducing rank position embedding for each
numerical column. We also find that TAPAS-Row-
Col-Rank outperforms GNN-TabFact without com-
plicated graph inference. It is worth noting that
even TAPAS-Row-Col, which does not utilize any
numerical information, outperforms GNN-TabFact,
the previous state of the art on TabFact. This again
demonstrates the advantage of directly encoding ta-
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Model Pre-train Columns Test
Superlative Comparative Sum Count

Table-BERT BooksCorpus + Wikipedia Text subset 59.2 56.3 60.9 54.9
GNN-TabFact BooksCorpus + Wikipedia Text subset 63.7 62.1 61.2 64.6

TAPAS-Row-Col BooksCorpus + Wikipedia Text all 58.7 61.2 57.8 59.8
TAPAS-Row-Col Wikipedia Tables all 66.3 63.4 65.6 65.3

TAPAS-Row-Col-Rank Wikipedia Tables all 72.0 64.7 63.3 67.2
TAPAS-Row-Col-Rank Wikipedia Tables + SQA all 74.6 66.8 66.3 70.6

Table 3: Results on test statements with superlative, comparative, sum, and count operations.

ble structure in TAPAS and the value of pre-training
on structured data.

4.3 Further Experiments and Discussion
To analyze model performance, we perform further
experiments on different training and test sets.

How does numerical information help? To ex-
amine how numerical comparison information
helps to improve performance, we use heuristic
rules to find the test statements involving com-
paring table records, summing table columns, and
counting table records. We first find all words end-
ing in -est in complex statements and remove those
that do not belong to superlative words. Then we
extract all test samples from the complex set con-
taining these words or the word most as the su-
perlative test set. We construct a comparative
test set in a similar way by finding words end-
ing in -er. Non-comparative words are removed
and the words more and less are added to the set.
We constrain the comparative samples to have the
word than together with one of the comparative
words. The sum test set is constructed by find-
ing all the samples containing total or sum, the
count set is constructed by finding all the samples
containing all, every, none, only and each. The
final superlative and comparative test sets contain
1,701 and 1,366 instances, respectively. The sum
and counting sets contain 344 and 1,710, respec-
tively. Table 3 shows the results of different models
on these four sets. All results are reported for en-
coding full tables for variants of TAPAS-Row-Col
models. As we can see, by modeling numerical
comparison information among table cells in the
same column, GNN-TabFact model significantly
outperforms Table-BERT model on the superlative,
comparative and count sets. Fine tuning TAPAS-
Row-Col model pre-trained on the Wikipedia ta-
bles dataset improves performance on all the sets
compared to fine tuning it from pre-trained BERT
model. By adding ranking information, TAPAS-
Row-Col-Rank significantly improves over TAPAS-

Row-Col model on the superlative set. The in-
crease of performance on other sets are not signif-
icant. Fine-tuning TAPAS-Row-Col-Rank on the
model pre-trained for question answering further
improves performance on all sets. It is also worth
noting that TAPAS-Row-Col, with pre-training on
Wikipedia tables, even outperforms GNN-TabFact
model without utilizing any numerical comparison
information. It also reveals that adding ranking
information model benefits superlative statements
most, and classifying comparative statements is
more difficult than superlative statements.

Training Set All Simple Complex
Complex 70.2 76.4 67.2
Simple 68.4 88.2 58.9
Mixed 73.0 86.1 66.6

Table 4: Results of fine-tuning Tapas-Row-Col-Rank
model on statements with different complexity.

How does training set complexity affect model
performance? We sampled three subsets from
the original training set: one only contains sim-
ple statements (as defined by TabFact), one only
contains complex statements, and one mixed set
with equal size of simple and complex statements.
All three sets have the same size: 41,366 training
samples and 12,793 validation samples. We fine-
tune the TAPAS-Row-Col-Rank model pre-trained
on the question-answering task on three different
sets and present the results in Table 4. The model
trained on the mixed data achieves the highest over-
all accuracy on the test set. A significant drop of
performance could be observed when the model
is trained and test on statements with mismatched
complexity.

How well do models trained on TabFact gen-
eralize to other data? Since statements in Tab-
Fact were generated by annotators specifically for
fact verification, we explored generalization per-
formance with a synthetic table-based fact verifi-
cation dataset generated from the ToTTo dataset, a
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Train TabFact Synthetic
All Simple Complex All Postive Negative

TabFact 76.0 89.0 69.8 79.2 86.9 71.6
Synthetic 63.3 76.4 57.0 87.0 92.1 81.8

Table 5: TAPAS-Row-Col-Rank model training and testing on TabFact and ToTTo-derived synthetic data.

Original Entailed Statement Synthetic Refuted Statements
1 Baron Fabian Von Fersen (1626 – 1677) Baron Fabian Von Fersen (626 – 1677)

was a Swedish field marshal. was a Swedish field marshal.
2 As a sophomore, Peters averaged 16.8 points As a sophomore, Peters averaged 16.8 points

and 6.7 rebounds per game. and 66.7 rebounds per game.
3 Ralph Herseth (1909 – 1969) was the 21st governor Ralph Herseth (1909 – 1969) was the 11st governor

of South Dakota from January 6, 1959 to of South Dakota from January 6, 1959 to
January 3, 1961. January 3, 1961.

Table 6: Examples of synthetic refuted statements that the Tapas-Row-Col-Rank model trained on TabFact failed
to recognize. The errors are in red and the corresponding correct numbers are underlined.

table-to-text generation dataset proposed by Parikh
et al. (2020). ToTTo was constructed by asking
annotators to modifying the original sentence in
Wikipedia that referenced a table. Annotators
deleted irrelevant parts of the sentence and replaced
pronominal references with a named entity from
the table or the contextual metadata. Annotators
were also asked to highlight the table cells that
support the sentence. In all, 128,461 tables were
annotated, with one sentence per table.

From ToTTo, using negative sampling, we derive
a synthetic dataset for fact verification to compare
with the TabFact data. We first removed all the
samples in Totto data that also appears in TabFact
data. Since the cells related to the summarizing
sentence are highlighted in ToTTo, we extract all
the sentences containing entities that exactly match
the highlighted table cells and treat them as as facts.
Then for each fact statement, we randomly choose
an entity in it and replace it with a randomly cho-
sen cell from the same column to generate a false
statement. To ensure the false statement is differ-
ent from the fact statement, we only choose cells
whose values differ from the original. We end up
with 75,292 training, 8,366 validation, and 5,242
test samples. We fine-tune the TAPAS-Row-Col-
Rank model on this synthetic dataset. The results
on this synthetic dataset and TabFact are listed in
Table 5. Training on synthetic data achieves 76.4%
accuracy on the simple TabFact statements, while
training on TabFact achieves 79.2% accuracy on
synthetic data. This confirms that the model trained
on TabFact model is able to recognize cell copying
errors. Both models are better at classifying posi-
tive statements than negative statements, which is

more obvious for the model trained on TabFact.
We also generated another synthetic dataset with

uniformly distributed character-editing errors on
digits to see whether models trained on TabFact
could capture this kind of error. We first extract
all the test sentences containing numbers that ex-
actly matches the highlighted table cells. Then
we randomly choose to insert, delete or substitute
one random digit in the first position (to make the
task easier) of a randomly chosen matching num-
ber in the sentence (to ensure there is clue in the
table). A total of 1,126 synthetic refuted statements
are generated for testing. We check whether the
TAPAS-Row-Col-Rank model trained on TabFact
can recognize this type of error. Only 43.0% of
these synthetic statements are classified as refuted
by the model, which is much lower than the 71.6%
accuracy on the refuted statements generated above
by cell copying. It reveals that models trained on
TabFact data are less sensitive to purely numerical
errors. Table 6 shows examples of synthetic false
statements the model trained on TabFact failed to
recognize.

5 Conclusions

We adapted the Table Parsing (TAPAS) model, with
efficient encoding of table content, structure, and
numerical comparison information for the task of
table-based fact verification. We compared two
variant models: TAPAS-Row-Col, which models
table contents and structure, and TAPAS-Row-Col-
Rank, which adds numerical comparison informa-
tion. Experiments showed that both TAPAS-Row-
Col and TAPAS-Row-Col-Rank outperform the
state-of-the-art numerically-aware graph neural net-
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work model by pre-training on tabular data. We
also examined how ranking information helps im-
prove TAPAS’s performance on superlative, com-
parative, sum, and count statements. Models
trained on different datasets were compared to
study how question complexity affects model per-
formance. We also constructed two synthetic
datasets to examine the generalization of these mod-
els. We find models trained on TabFact perform
well on errors arising from simple cell replacement
but not on digit-editing errors. In future, we aim to
extend TAPAS to explicitly model more numerical
operations for fact verification and to correct false
statements automatically given tabular evidence.
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