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Abstract

Designing profitable trading strategies is com-
plex as stock movements are highly stochastic;
the market is influenced by large volumes of
noisy data across diverse information sources
like news and social media. Prior work mostly
treats stock movement prediction as a regres-
sion or classification task and is not directly op-
timized towards profit-making. Further, they
do not model the fine-grain temporal irregular-
ities in the release of vast volumes of text that
the market responds to quickly. Building on
these limitations, we propose a novel hierar-
chical, learning to rank approach that uses tex-
tual data to make time-aware predictions for
ranking stocks based on expected profit. Our
approach outperforms state-of-the-art methods
by over 8% in terms of cumulative profit and
risk-adjusted returns in trading simulations on
two benchmarks: English tweets and Chinese
financial news spanning two major stock in-
dexes and four global markets. Through abla-
tive and qualitative analyses, we build the case
for our method as a tool for daily stock trading.

1 Introduction

The stock market, a financial ecosystem involv-
ing quantitative trading and investing, observed
a market capitalization exceeding $US 60 trillion
as of 2019.1 Stock trading presents lucrative op-
portunities for investors to utilize the market as a
platform for investing funds and maximizing prof-
its. However, making profitable investment deci-
sions is challenging due to the market’s volatile and
rapid-changing nature (Adam et al., 2016; Foucault
et al., 2016). Research at the intersection of natural
language processing (NLP) and finance presents
encouraging prospects in stock prediction (Jiang,

*Equal contribution.
1World Federation of Exchanges: https://data.

worldbank.org/indicator/CM.MKT.LCAP.CD/

Figure 1: Here, we study how Tesla’s tweets influence
investors’ opinions about the company and impact its
stock price trend. The first tweet shows positive opin-
ions, and we observe a rise in prices. Later, the tweets
made by the CEO rapidly lead to drastic price drops
within minutes. Further, without a sequential context,
it gets challenging to understand the tweets that follow.

2020). Conventional work forecasts future trends
by modeling numerical historic stock data (Lu et al.,
2009; Bao et al., 2017). However, price signals
alone can not capture market surprises, news, and
company announcements. Such events, often re-
ported across financial news and social media, have
shown to influence market dynamics (Laakkonen,
2004). As shown in Figure 1, prices immediately
react to breaking news about the related company.
Such reactions conform to the Efficient Market Hy-
pothesis (EMH), which states that financial markets
are informationally efficient and prices reflect all
available information (Malkiel, 1989).

The abundance of stock affecting information
across news and Twitter helps investors analyze
market trends and inspires the adoption of NLP to
study the interplay between textual data and stock
prices (Xu and Cohen, 2018; Oliveira et al., 2017).
However, unlike structured numerical data, ana-
lyzing natural language poses various challenges.
First, analyzing individual tweets or news headlines
may not be informative enough. They often exhibit
a sequential context-dependency, where analyzing
them together can provide a greater unified context,

https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/
https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/
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Figure 2: More accurate methods M1 (higher accu-
racy) may not always be more profitable than less accu-
rate methods M2 (lower accuracy). Profit is gained by
selling stocks having á prediction for price movement
from trading day t to t+1.

as shown in Figure 1. Despite the success of recur-
rent neural networks (RNNs) in modeling such a
sequential context (§2), a critical drawback is that
they assume all text to be equally spaced in time,
ignoring the inherent dynamic timing irregularities
of social media and news. Timing plays a critical
role as stock markets rapidly react to new informa-
tion (Foucault et al., 2016), leading to significant
price changes within minutes, as shown in Figure 1.
Scholtus et al. (2014) show that reacting one second
slower than other market participants can lead to a
loss in thousands of dollars. Further, not each text
holds the potential to influence stock prices, texts
have a diverse influence on stock prices based on
their content, such as breaking news or tweets from
a reliable source, as opposed to noise like vague
comments as shown in Figure 1. These observa-
tions mandate the need to factor in the time-aware
dependencies and diverse influence in analyzing
online natural language data for stock trading.

Despite profitability being the prime objective
of trading, NLP methods for stock prediction (Xu
and Cohen, 2018; Hu et al., 2017) are commonly
framed as classification or regression tasks, and
are not directly optimized towards profitable stock
selection. Consider the toy example in Figure 2 that
shows how methods having a higher classification
accuracy may not always lead to higher overall
profits. This research gap in NLP methods for
stock prediction presents a new direction for stock
selection, where both predictive performance and
profits are jointly and directly optimized.

Contributions: We formulate stock prediction
as a learning-to-rank problem (§3.1) and present
FAST: Financial News and Tweet based Time
Aware Network for Stock Trading, which uses text

for maximizing profit by jointly optimizing predic-
tive power and the optimal ranking of stocks. FAST
learns time-aware representations of financial news
and tweets, and captures relevant market signals
using hierarchical temporal attention for ranking
stocks (§3). Through experiments (§4) on English
and Chinese text corresponding to the NASDAQ,
Shanghai, Shenzhen, and Hong Kong markets, we
show that FAST outperforms state-of-the-art meth-
ods in terms of intraday returns by over 8% and
risk-adjusted returns by over 10% (§5.1, §5.2). Fur-
ther, through exploratory (§5.3, §5.4) and qualita-
tive (§6) analyses, we demonstrate the practical
applicability of FAST to daily stock trading.

2 Background

Conventional Methods: Stock prediction spans
various methods, commonly framed as regression
or classification tasks (Jiang, 2020). Conventional
methods rely on numeric features like historical
prices (Kohara et al., 1997; Lin et al., 2009), techni-
cal (Shynkevich et al., 2017), and macroeconomic
indicators (Hoseinzade et al., 2019). These include
discrete (Bollerslev, 1986), continuous (Andersen,
2007), and neural approaches (Zhang et al., 2017;
Feng et al., 2019a). Despite their success, a limi-
tation of these methods is that they are limited to
numerical features and do not factor crucial stock
influencing factors such as text (Lee et al., 2014).

Contemporary Methods: Newer models based
on the EMH, leverage natural language features
extracted from investor sentiments (Li and Shah,
2017), financial reports (Kogan et al., 2009; Rek-
absaz et al., 2017), earnings calls (Qin and Yang,
2019), online news (Peng and Jiang, 2016; Chen
et al., 2019a,b; Du and Tanaka-Ishii, 2020) and
social media (Si et al., 2013; Tabari et al., 2018;
Sawhney et al., 2020a) for stock price regression
and movement classification tasks. These meth-
ods show how NLP can complement conventional
price-based methods in capturing the effect of
events like market surprises and mergers over stock
returns. However, these methods do not directly
optimize profit, and do not factor the fine-grain
irregularities in release times of stock affecting
text. For stock trading, the timing of release of
information across these sources plays a critical
role, as price changes rapidly factor all publicly
available information (Norman, 2014). Firms may
exploit investors’ perception of market information
(Forbes, 2009), for instance, by timing the release
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Figure 3: FAST: Time-aware modeling, hierarchical temporal attention, joint optimization for ranking.

of negative news between positive ones to mini-
mize losses (Segal and Segal, 2016). These limita-
tions hinder contemporary methods from modeling
a time-aware progression of stock-affecting market
signals to directly optimize profit generation.

Time-aware Methods: Recently, time-aware
modeling of time series data has shown improve-
ments over conventional sequential models like
RNNs and LSTMs on various tasks such as patient
subtyping (Baytas et al., 2017), suicide ideation
and buildup detection using Twitter history (Sawh-
ney et al., 2020b), disease progression (Gao et al.,
2020), and much more. However, modeling the
temporal dynamics inherent in social media and
online news is complex as it involves noisy and
diversely influential data across irregular time in-
tervals. The intersection of modeling the temporal
dynamics of natural language with finance presents
an underexplored yet promising research avenue.

3 Proposed Approach: FAST

3.1 Problem Formulation: Stock Ranking

We adopt a learning to rank formulation for stock
selection. Let S = {s1, s2, . . . , sN} represent a set
of N stocks, where for every stock si ∈ S, on a
trading day τ , there is an associated closing price
pτ and a one-day return ratio rτi = pτ−pτ−1

pτ−1 . On
any given trading day τ , there exists an optimal
ranking Y τ = {yτ1 > yτ2 · · · > yτN} of the stocks,
such that a total order exists between the ranks
yτi > yτj for any two stocks si, sj ∈ S, provided
rτi > rτj . Such an ordering of stocks S on a trad-
ing day τ represents a ranking list, where stocks
achieving higher ranking scores Y are expected to
generate a higher investment revenue (profit) on

day τ . Formally, given stock-relevant textual data
(financial news or tweets) for a lookback period
of length T days (i.e., days ∈ [τ − T, τ − 1]), we
aim to learn a ranking function that outputs a score
r̂τ to rank each stock s on day τ in terms of their
expected profit.

We now describe the components of FAST as
shown in Figure 3, for hierarchically and atten-
tively learning time-aware representations of news
and tweets within (§3.2) and across (§3.3) the days
in the lookback period. Lastly, we optimize FAST
to rank stocks in terms of expected profitability
(§3.4) for daily stock trading.

3.2 Intra-Day Textual Information Encoder

To model the news or tweets over a day, FAST first
encodes the texts via an embedding layer.

Text Embedding Layer: Owing to the success
of transfer learning and pre-training of language
models in NLP, we use Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019) to encode the texts. BERT has shown
to capture more contextual text representations as
opposed to methods like word2vec (Hu et al., 2017),
GloVe (Xu and Cohen, 2018), ELMO (Moham-
madi et al., 2019). We encode each text t to a higher
dimensional representation m = BERT(t) ∈ Rd
where d = 768, obtained by averaging the token
level outputs from the final layer of BERT.

Learning Stock Representations for One Day:
For each stock s on any given day i, a variable
number of texts (news or tweets) [t1, t2, . . . tK ] are
posted at times [k1, k2, . . . kK ] that may discuss
news or express sentiments towards the stock. We
encode each of the K texts posted in a day, using
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BERT as [m1,m2, . . .mK ]. Often, analyzing a sin-
gle text alone may not be informative enough to an-
alyze a stock (Barber and Odean, 2007). Whereas,
analyzing a sequence of texts released over the day
provides a unified context to gain a more informed
understanding of the performance of a stock (Hu
et al., 2017).

RNNs, particularly LSTMs are a natural way to
capture such sequential context dependencies in
tweets and news over time (Akhtar et al., 2017).
However, a standard LSTM assume inputs (texts)
to be equally spaced sequences in time. In contrast,
the time interval between news releases or tweets
can vary widely, from a few seconds to many hours
that can have a drastic impact on their influence on
the market (Robertson et al., 2007; O’Hara, 2015).
Consequently, news and opinions may change sub-
stantially over a day. Capturing the fine-grained
granularities in the posting times of online text can
lead to better and quicker reactions to market op-
portunities and increased profits.2

Since timing serves as a crucial factor to model
the progression of market data (Tafti et al., 2016),
we propose the use of a time-aware LSTM (t-
LSTM) (Baytas et al., 2017), by modifying a stan-
dard LSTM. We feed the time between texts to the
t-LSTM cell to model the temporal irregularities
in news and tweets. The t-LSTM applies a decay to
the short-term memory in the LSTM according to
the time elapsed between the release of two succes-
sively posted texts. Formally, the t-LSTM adopts
a decaying function of elapsed time, transforming
the time differences into appropriate weights for
each input as:

CSk−1 = tanh(WdCk−1 + bd) (Short-term memory)

C̃Sk−1 = CSk−1 ∗ g(∆k) (Discounted short-term memory)

CLTk−1 = Ck−1 − CSk−1 (Long-term memory)

C∗k−1 = CLTk−1 + C̃Sk−1 (Adjusted previous memory)

where Ck−1 is the previous cell memory,
{Wd, bd} are the network parameters, ∆k is the
elapsed time between two financial news or tweets
[tk, tk−1], and g(·) is a heuristic decaying function.
We select g(∆k) = 1/∆k empirically as suggested
by Baytas et al. (2017). Intuitively, the greater the
elapsed time between two news or tweets, the lesser
impact they should have on each other due to the

2Every millisecond lost results in $100m per annum in lost
opportunity. Details: https://en.wikipedia.org/
wiki/Low_latency_(capital_markets)

market’s dynamic nature. The t-LSTM computes
the current hidden state hk for each input text tk
generated in a day, as:

C̃ = tanh(Wcm+ Uchk−1 + bc) (Candidate memory)

Ck = fk ∗ C∗k−1 + ik ∗ C̃ (Current memory)
hk = ok ∗ tanh(Ck) (Current hidden state)

where {Wc, Uc, bc} are the network parameters
of the candidate memory C̃, m is the embedding
for text tk and {ik, fk, ok} are input, forget and
output gates. We encode the texts for each stock s
on day i using the t-LSTM as:

hj = t-LSTM(mj ,∆j, hj−1); j ∈ [1,K] (1)

where the hidden state hj represents the current
text j as well as the preceding texts while focusing
on text j in a time-aware fashion. All news and
tweets released in a day may not be equally infor-
mative, and have diverse influence over a stock’s
trend (Barber and Odean, 2007). We use an intra-
day attention mechanism (Luong et al., 2015) to
emphasize texts likely to have a more substantial
influence on the price. As shown in Figure 3, the
intra-day attention mechanism learns to adaptively
aggregate the variable number of hidden states of
the t-LSTM (due to a variable number of texts per
day) into an intra-day text information vector xi as:

xi =
∑
j

γjhj , γj =
exp (hT

j (Whm))∑K
j=1 exp (hT

j (Whm))
(2)

where hm ∈ RK×dm denotes the concatenation
of all the hidden states from the t-LSTM, dm is the
dimension of each hidden state, γj represents the
learned attention weights, and W is a parameter.

3.3 Inter-Day Temporal Encoder
We now combine the representations learned from
texts in each day across multiple days in a look-
back period. We combine these representations in a
hierarchical manner within and across days, using
the sequence of intra-day text information vectors
x. Since days are equally spaced in time, we first
feed the vectors x to an LSTM layer as:

hi = LSTM(xi, hi−1); τ − T ≤ i ≤ τ − 1 (3)

where, hi is the hidden state representation for
day i. However, as per the the adaptive market
hypothesis (Lo, 2004), tweets and news published
across different days have shown to have a vary-
ing impact on stock prices (Calvet and Fisher,

https://en.wikipedia.org/wiki/Low_latency_(capital_markets)
https://en.wikipedia.org/wiki/Low_latency_(capital_markets)
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2007), due to financial phenomena such as cal-
endar anomalies (Jacobs and Levy, 1988), the
week-day effect (Berument and Kiymaz, 2001), etc.
To selectively weigh critical days, we employ an
inter-day attention mechanism (Luong et al., 2015).
The inter-day attention aggregates representations
across all days into an overall representation zτ
using the learned attention weights βi for day i as:

zτ =
∑
i

βihi, βi =
exp (hT

i (Whz))∑T
i=1 exp (hT

i (Whz))
(4)

where, W is a learned linear transform, hz ∈
RT×dz represents the concatenated hidden states,
dz is the size of output space of LSTM. The inter-
day and the intra-day attention together comprise
a hierarchical temporal attention. FAST cap-
tures time-aware dependencies in large volumes
of chaotic text to rank stocks, as described next.

3.4 Ranking and Network Optimization
To optimize FAST for stock ranking, we first con-
catenate the temporal representations zτ obtained
for each stock s to form stock-level features Z. We
then feed Z to a feed-forward neural network fol-
lowed by a Leaky-ReLU activation (Maas et al.,
2013) which outputs the predicted return ratio r̂τ

for stock ranking. We optimize FAST through
a joint point-wise regression and pairwise rank-
aware loss L, to minimize the differences between
the predicted and the actual return ratios, while
maintaining the relative order of the top-ranked
stocks as:

L=‖r̂τ−rτ‖2+φ

N∑
i=1

N∑
j=1

max
(
0,−

(
r̂τi − r̂τj

) (
rτi − rτj

))
(5)

where r̂τ and rτ are the predicted and actual
scores for ranking stocks on day τ and φ is a loss
weighing parameter.

4 Experimental Setup

4.1 Datasets and Stock Markets
US S&P 5003 (Xu and Cohen, 2018): Comprises
109, 915 English tweets from social media platform
Twitter spanning January 2014 to December 2015,
related to 88 high-trade-volume-stocks from the
NASDAQ Stock Exchange forming the S&P 500
index. Xu and Cohen (2018) extract stock specific
tweets using regex queries made of stock tickers
(e.g., $AAPL for Apple, $ is a cashtag on Twitter).

3US S&P 500 dataset: www.github.com/yumoxu/
stocknet-dataset

China & Hong Kong4 (Huang et al., 2018):
Comprises 90, 361 financial news headlines in Chi-
nese spanning from January to December 2015, ag-
gregated by Wind5 related to 85 top-traded China A-
share stocks in Shanghai, Shenzhen and the Hong
Kong Stock Exchange. Huang et al. (2018) extract
corporate news from major financial websites.

Pre-processing: We pre-process English tweets
using NLTK (Twitter mode), for treatment of URLs,
identifiers (@) and hashtags (#). We adopt the Bert-
Tokenizer for tokenization. For the English tweets,
we use the pre-trained BERT-base-cased.6 For the
Chinese news, we adopt the Chinese-BERT.6 We
collect historical prices for all stocks from Yahoo
Finance.7 We align trading days by dropping sam-
ples that lack tweets for a consecutive 5-day trading
window, and further align the data across trading
windows for stocks to ensure data is available for
all trading days in the window for the same set of
stocks. We split the US S&P 500 temporally based
on date ranges from 01/01/2014 to 31/07/2015 for
training, 01/08/2015 to 30/09/2015 for validation,
and 01/10/2015 to 01/01/2016 for testing. We split
the China & HK dataset temporally based on date
ranges from 01/01/2015 to 31/08/2015 for train-
ing, 01/09/2015 to 30/09/2015 for validation, and
01/10/2015 to 01/01/2016 for testing all models.

4.2 FAST Training Setup

We conduct all experiments on a Tesla P100 GPU.
We use grid search to find optimal hyperparame-
ters based on the validation Sharpe Ratio (§4.3) for
all models. We explore lookback window length
T ∈ range[2, 10] (best T = 5), loss weighing fac-
tor φ ∈ range[1, 10] (best φ = 4), and the hid-
den state dimension for both t-LSTM and LSTM
d ∈ [32, 64, 128] (best d = 64) for both datasets.
We use Xavier initialization (Glorot and Bengio,
2010) to initialize all weights. We use an exponen-
tial learning rate scheduler (Li and Arora, 2019)
with a decay rate of 0.05 and an initial learning
rate of 5e−4. We train FAST end-to-end using the
Adam optimizer (Kingma and Ba, 2014) for 500
epochs requiring 8 hours of compute time.

4China & Hong Kong dataset: https://pan.baidu.
com/s/1mhCLJJi

5https://www.wind.com.cn/en/wft.html
6www.github.com/google-research/bert
7Prices from: https://finance.yahoo.com/

www.github.com/yumoxu/stocknet-dataset
www.github.com/yumoxu/stocknet-dataset
https://pan.baidu.com/s/1mhCLJJi
https://pan.baidu.com/s/1mhCLJJi
https://www.wind.com.cn/en/wft.html
www.github.com/google-research/bert
https://finance.yahoo.com/
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4.3 Evaluation Metrics and Trading Strategy

Returns: To assess the profit generation ability
of all methods (§4.4), we compute the Sharpe ra-
tio (SR), a measure of the return of a portfolio
compared to its risk (Sharpe, 1994), and the cumu-
lative investment return ratio (IRR). Following
Feng et al. (2019b), we adopt a daily buy-hold-sell
trading strategy, that is, when the market closes on
trading day τ − 1, the trader uses the method to get
a ranked list of the predicted return ratio for each
stock. The trader then buys the top η stocks and
then sells the bought stocks on the market close
of the trading day τ . The IRR on any day τ is de-

fined as, IRRτ =
∑

i∈Sτ−1
pτi −p

τ−1
i

pτ−1
i

where, Sτ−1

denotes the set of stocks in the portfolio on day τ−1
and pτi , pτ−1i are the closing price of the stock i on
days τ and τ − 1 respectively. We calculate SR by
computing the earned return Ra in excess of the
risk-free return8 Rf , defined as: SR =

E[Ra−Rf ]
std[Ra−Rf ] .

Ranking: We also evaluate the stock ranking
ability of FAST using two widely-used rank-
ing metrics: Mean Reciprocal Rank (MRR)
and Normalized Discounted Cumulative Gain
(NDCG@η). MRR is the reciprocal rank of the
first relevant stock while, NDCG@η sums the true
scores for the top η stocks, ranked in the order
induced by the predicted scores, after applying a
logarithmic discount. For both returns and NDCG,
we report results for top η = 5 stocks, and present
performance variations with different values of top
stocks η (§5.4).

4.4 Baselines

We compare FAST with baselines spanning differ-
ent formulations: regression, classification, rein-
forcement learning, and ranking. We follow the
same preprocessing protocols as proposed by the
works and adopt their implementation, if available.

Regression (REG) These methods regress return
ratios from past data and trade the top stocks.

• AZFinText: Proper noun-based text represen-
tations fed to Support Vector Regression for
forecasting return ratios (Schumaker and Chen,
2009).

• W-LSTM: LSTMs with stacked autoencoders
that encode noise-free data obtained through

8T-Bill rates: https://home.treasury.gov/

wavelet transform of historic prices (Bao et al.,
2017).

Classification (CLF) The following methods
classify movements as [up, down, neutral] and
trade the stocks where prices are expected to rise.

• TSLDA: Topic Sentiment Latent Dirichlet Al-
location, a generative model jointly exploiting
topics and sentiments in text (Nguyen and Shi-
rai, 2015).

• CH-RNN: An RNN with cross-modal attention
on price trends and texts across days (Wu et al.,
2018).

• StockEmb: Stock embeddings acquired using
prices, and dual vector (word-level, context-
level) representation of texts (Du and Tanaka-
Ishii, 2020).

• SN - HFA: StockNet - HedgeFundAnalyst, a
variational autoencoder with attention on texts
and prices (Xu and Cohen, 2018).

• HAN: A Hierarchical Attention Network us-
ing GRU encoders with temporal attention on
texts and days in the lookback period (Hu et al.,
2017).

Reinforcement Learning (RL) The following
approaches optimize quantitative trading through
reinforcement learning.

• iRDPG: An imitative RDPG algorithm exploit-
ing temporal stock price features, while optimiz-
ing the Sharpe Ratio as the reward (Liu et al.,
2020).

• S-Reward: Inverse-RL method to model re-
lations between sentiments and returns (Yang
et al., 2018).

Ranking (RAN) The following methods rank
stocks to select most profitable trading candidates.

• R-LSTM: Utilizes 5, 10, 20, 30-day averages
and closing prices to train an LSTM (Feng et al.,
2019b).

• RankNet: A DNN that utilizes sentiment-based
shock and trend scores to optimize a probabilis-
tic ranking function (Song et al., 2017).

https://home.treasury.gov/
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FAST: Model Components US S&P 500 China & Hong Kong
Intra-Day
Encoder

Intra-Day
Attention

Inter-Day
Attention MRR↑ IRR↑ NDCG↑ SR↑ MRR↑ IRR↑ NDCG↑ SR↑

s-LSTM – – 0.050 0.794 0.521 0.571 0.072 0.861 0.580 0.663
LSTM 7 7 0.056 0.913 0.582 0.654 0.074 0.902 0.623 0.714
LSTM 7 3 0.060 0.922 0.611 0.713 0.080 1.027 0.695 0.773
LSTM 3 7 0.063 1.097 0.630 0.865 0.090 1.148 0.728 0.901
LSTM 3 3 0.064 1.214? 0.725? 0.919 0.096? 1.244? 0.756? 0.965?

t-LSTM 7 7 0.063 1.131 0.621 0.842 0.095 1.160 0.703 0.911
t-LSTM 7 3 0.065? 1.224?† 0.703 0.933? 0.109? 1.295? 0.759? 1.018?

t-LSTM 3 7 0.067?† 1.267?† 0.760? 0.949?† 0.114?† 1.383?† 0.804?† 1.165?†

t-LSTM 3 3 0.068?† 1.336?† 0.762?† 0.957?† 0.117?† 1.441?† 0.810?† 1.193?†

Table 1: Ablation study over components of FAST. s-LSTM is a single LSTM layer, which models all texts within
and across days. All model variations except s-LSTM use LSTM as the Temporal Encoder. Intense color indicates
better results. Bold, italics indicate best, second best results. ? & † imply statistically significant (p<0.001)
improvements over s-LSTM & RankNet (Wilcoxon’s signed rank test). ↑ indicates that higher values are better.

US S&P500 China&HK
Model & Components IRR↑ SR↑ IRR↑ SR↑

R
E

G AZFinText T + P 0.42 0.40 0.49 0.50
W-LSTM P 0.40 0.41 0.47 0.49

C
L

F

TSLDA T + P 0.40 0.39 0.50 0.51
CH-RNN T + P + A 0.78 0.54 0.83 0.70
StockEmb T + P + A 0.70 0.51 0.89 0.74
SN - HFA T + P + A 1.09 0.81 1.12 0.93
HAN T + A 1.07 0.80 1.20 1.01

R
L iRDPG P 1.05 0.79 1.19 1.03

S-Reward T 0.93 0.73 1.33 1.08

R
A

N

R-LSTM P 1.01 0.78 1.17 0.96
RankNet T 1.16? 0.87? 1.14 0.95
FAST T + A 1.34?† 0.96?† 1.44?† 1.19?†

Table 2: Profitability comparison with baselines (§4.4).
Within Components, T = Text, P = Prices, A = Atten-
tion across modalities. Green & Blue depict Best &
Second-best (SOTA) results. ? & † imply statistically
significant (p<0.001) improvements over S-Reward
and RankNet (under Wilcoxon’s signed rank test).

5 Results and Discussion

5.1 Profitability Comparison with Baselines

As the ultimate goal of stock prediction is profit, we
compare the profitability of FAST against baseline
methods in Table 2. FAST generates significantly
(p < 0.001) higher cumulative and risk-adjusted re-
turns than all methods. Overall, we observe that RL
and ranking methods are more profitable as they
are directly optimized towards profit generation
through stock selection. This observation validates
the premise of formulating stock prediction as a
learning-to-rank problem, compared to convention-
ally adopted regression and classification tasks.

Further, we find methods that study stock affect-
ing information from news and tweets, generate

profits higher or comparable to methods that only
use historical prices. These improvements revali-
date the effectiveness of leveraging textual sources
to capture stock affecting signals like market sur-
prises, announcements (mergers, acquisitions) and
public sentiment. We attribute the higher profitabil-
ity of FAST to two major reasons. First, through its
hierarchical temporal attention mechanism, FAST
captures the diverse influence of different texts and
days over stock movements. Second, as FAST is
time-aware, it models the influence of fine-grain
temporal irregularities in the release of financial
news and tweets over stock movements.

The test periods of the US S&P 500 and the
China & Hong Kong datasets span diverse market
conditions. The China & Hong Kong test period
covers the 2015-16 China Stock Market Turbulence
(Liu et al., 2016), a bearish market scenario,9 and
that of US S&P 500 covers standard market condi-
tions. We find that FAST is profitable and outper-
forms existing baselines over such diverse market
scenarios. Next, we further probe the performance
of FAST through a series of ablative experiments.

5.2 FAST Component Ablation

Table 1 shows how FAST’s stock ranking ability and
profitability benefits from each of its components.
On just feeding all data into a single LSTM, we
observe poor performance. As we adopt the intra-
day (LSTM) and the temporal (LSTM) encoders,
we observe higher profits that suggest benefit in
modeling the sequential context of texts hierarchi-

9Bearish markets are those that experience prolonged price
declines, and experience high volatility and risk on invest-
ments.
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Figure 4: Profitability and ranking performance against
granularities of time difference ∆k adopted by t-LSTM

cally within and across days. Further, on adding
intra-day attention, we note improvements in profit
as FAST can better distinguish noise inducing text
from relevant market signals, minimizing false eval-
uations and overreactions (De Long et al., 1990).
The attention mechanism can likely diminish the
impact of such noise (rumours, vague comments).
Intuitively, complementing the intra-day with the
inter-day attention lead to further improvements
as FAST can better capture the diverse influence of
texts, hierarchically within and across days.

Next, we note the biggest improvements on
adding the t-LSTM instead of a standard LSTM as
the intra-day encoder, suggesting that FAST bene-
fits by factoring the fine-grain time irregularities in
texts to model the flow of stock-affecting informa-
tion (Kalev et al., 2004). Through this time-aware
mechanism, FAST can potentially better react to
online news and tweets, by discounting stale infor-
mation more accurately by factoring in fine-grained
elapsed time differences (seconds). We further
quantify the impact of time-aware modeling on
the improvements in ranking and profitability, next.

5.3 Advantages of Time-Aware Modeling

The influence of older information over the market
decreases rapidly as newer data is released (Rus-
sell, 2010). As we coarsen the granularity of the
elapsed time difference between two texts fed to
the t-LSTM, from minutes, to hours, to a day, we
observe drops in FAST’s performance as shown in
Figure 4. At the coarsest granularity of a day, the
t-LSTM essentially degenerates to an LSTM, and
attains the lowest performance. The drops show
that factoring time at finer granularities benefits
FAST in modeling the temporal dynamics of mar-
ket response to stock affecting signals. Our findings
line with financial research that shows market re-
actions to news complete within minutes (Smales,
2013), and the impact of news and tweets achieves
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Figure 5: Sensitivity to parameters T and η

an equilibrium over time (Shen et al., 2018).

5.4 Parameter Analysis: Probing Sensitivity
Lookback window length T: Here, we
study how FAST’s stock ranking performance
(NDCG@5) varies with the length of lookback
T ∈ [2, 10] days in Figure 5. Lower ranking
performance indicates the inability of shorter
lookbacks to capture stock affecting market
information, likely as public information requires
time to absorb into price movements (Luss and
D’Aspremont, 2015). As we increase T , we find
that larger lookbacks allow the inclusion of stale
information from older days having relatively
lower influence on prices (Bernhaedt and Miao,
2004), thus deteriorating the ranking performance.
We observe the best stock ranking performance for
mid-sized (approx. 5-day) lookback periods.

Selected top stocks η: We analyze FAST’s prof-
itability (SR) variation with the number of top
stocks η in Figure 5. We find that FAST performs
well across varying η, showing suitability to strate-
gies having different risk taking appetites.

6 FAST Qualitative Analysis

We now conduct an extended analysis as shown in
Figure 6 to elucidate on FAST’s explainable predic-
tions and practical applicability to real-world quan-
titative trading. Here, we study the China & Hong
Kong market during 5th - 9th December 2015. We
visualize token-level and hierarchical temporal at-
tention to analyze how FAST ranks stocks on 10th

December 2015, outperforming the state-of-the-art
baseline methods: RankNet and SN-HFA.

Analyzing Hierarchical Attention: Within
days, the intra-day attention filters less informative
news and emphasizes more influential ones. For
instance, we observe that the second news about
BOE Technology on 7th categorizes the stock
as “overweight,” a rating through which equity



2172

Figure 6: Financial news in Chinese (shown with corresponding English translations) during 5th-9th December
2015 for stocks in the China & Hong Kong dataset (test split), with visualization of FAST’s attention mechanisms
(left); Stock trading performance for 10th December 2015 across FAST and competitive baseline methods (right).

analysts forecast better future performance (Kumar,
2009). Such news would likely induce positive
public sentiments and drive more investment
to the stock, as opposed to the less informative
news about “margin trading data.” The intra-day
attention accurately captures the diverse influence
of such news headlines. Further, we observe
that news released on 9th comprises relatively
more crucial information than other days, and
the inter-day attention accurately emphasizes
its importance. These observations reiterate the
diverse influence of different news and days over
future stock returns, accurately captured by the
hierarchical temporal attention mechanism.

Probing Time-aware Modeling: The news re-
leased for Shanghai Electric (SE) on the morning
of 9th reports a positive event, likely indicating fu-
ture profits. Later during that afternoon, after a few
hours, two other news report negative impacts over
SE due to a loss in nuclear power stocks, indicating
a downtrend for the upcoming days. FAST disre-
gards older news to emphasize on the newer ones
to forecast the upcoming loss and allots a lower
rank to SE. In contrast, ranking methods such as
RankNet assign a higher rank to SE, potentially due
to their inability to model the time-aware dependen-
cies. Further, classification methods like SN-HFA
do not correctly predict the stock return trends, as
they do not capture the fine-grain temporal irreg-

ularities in texts, and are not optimized towards
profit. Consequently, FAST relatively outperforms
SN-HFA by a margin of 47.5%, and RankNet by
28.4% in profits on 10th December 2015.

7 Conclusion

We propose FAST, a neural approach to rank
profitable stocks using stock-relevant textual data
across online financial news and tweets. To model
the market information, FAST hierarchically learns
temporally relevant signals from texts and shows
the positive effects of factoring the fine-grain tem-
poral irregularities in textual data. Through quan-
titative and qualitative analyses on English tweets
and Chinese financial news spanning four stock
markets, we highlight the real-world applicability
of FAST. In trading simulations on the S&P 500 and
China A-shares indexes, FAST outperforms state-of-
the-art methods across four different formulations
by over 8% in terms of profit and Sharpe Ratio.
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