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Abstract

Reinforcement Learning (RL) is a powerful
framework to address the discrepancy between
loss functions used during training and the fi-
nal evaluation metrics to be used at test time.
When applied to neural Machine Translation
(MT), it minimises the mismatch between the
cross-entropy loss and non-differentiable eval-
uation metrics like BLEU. However, the suit-
ability of these metrics as reward function at
training time is questionable: they tend to be
sparse and biased towards the specific words
used in the reference texts. We propose to ad-
dress this problem by making models less re-
liant on such metrics in two ways: (a) with an
entropy-regularised RL method that does not
only maximise a reward function but also ex-
plore the action space to avoid peaky distri-
butions; (b) with a novel RL method that ex-
plores a dynamic unsupervised reward func-
tion to balance between exploration and ex-
ploitation. We base our proposals on the
Soft Actor-Critic (SAC) framework, adapting
the off-policy maximum entropy model for
language generation applications such as MT.
We demonstrate that SAC with BLEU reward
tends to overfit less to the training data and
performs better on out-of-domain data. We
also show that our dynamic unsupervised re-
ward can lead to better translation of ambigu-
ous words.

1 Introduction

Autoregressive sequence-to-sequence (seq2seq)
neural architectures have become the de facto
approach in Machine Translation (MT). Such
models include Recurrent Neural Networks
(RNN) (Sutskever et al., 2014; Bahdanau et al.,
2014) and Transformer networks (Vaswani et al.,
2017), among others. However, these models have
as a serious limitation the discrepancy between
their training and inference time regimes. They

are traditionally trained using the Maximum Like-
lihood Estimation (MLE), which aims to maximise
log-likelihood of a categorical ground truth distri-
bution (samples in the training corpus) using loss
functions such as cross-entropy, which are very dif-
ferent from the evaluation metric used at inference
time, which generally compares string similarity
between the system output and reference outputs.
Moreover, during training, the generator receives
the ground truth as input and is trained to minimise
the loss of a single token at a time without taking
the sequential nature of language into account. At
inference time, however, the generator will take the
previous sampled output as the input at next time
step, rather than the ground truth word. MLE train-
ing thus causes: (a) the problem of “exposure bias”
as a result of recursive conditioning on its own er-
rors at test time, since the model has never been
exclusively “exposed” to its own predictions during
training; (b) a mismatch between the training ob-
jective and the test objective, where the latter relies
on evaluation using discrete and non-differentiable
measures such as BLEU (Papineni et al., 2002).

The current solution for both problems is mainly
based on Reinforcement Learning (RL), where a
seq2seq model (Sutskever et al., 2014; Bahdanau
et al., 2014) is used as the policy which generates
actions (tokens) and at each step receives rewards
based on a discrete metric taking into account im-
portance of immediate and future rewards. How-
ever, RL methods for seq2seq MT models also have
their challenges: high-dimensional discrete action
space, efficient sampling and exploration, choice
of baseline reward, among others (Choshen et al.,
2020). The typical metrics used as rewards (e.g.,
BLEU) are often biased and sparse. They are mea-
sured against one or a few human references and do
not take into account alternative translation options
that are not present in the references.

One way to address this problem is to use
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entropy-regularised RL frameworks. They incor-
porate the entropy measure of the policy into the
reward to encourage exploration. The expectation
is that this leads to learning a policy that acts as
stochastically as possible while able to succeed at
the task. Specifically, we focus on the Soft Actor-
Critic (SAC) (Haarnoja et al., 2018a,b) RL frame-
work, which to the best of our knowledge has not
yet been explored for MT, as well as other natural
language processing (NLP) tasks. The main ad-
vantage of this architecture, as compared to other
entropy regularised architectures (Haarnoja et al.,
2017; Ziebart et al., 2008), is that it is formulated
in the off-policy setting that enables reusing previ-
ously collected samples for more stability and bet-
ter exploration. We demonstrate that SAC prevents
the model from overfitting, and as a consequence
leads to better performance on out-of-domain data.

Another way to address the problem of sparse
or biased reward is to design an unsupervised re-
ward. Recently, in Robotics, SAC has been suc-
cessfully used in unsupervised reward architectures,
such as the “Diversity is All You Need” (DIAYN)
framework (Eysenbach et al., 2018). DIAYN al-
lows the learning of latent-conditioned sub-policies
(“skills”) in unsupervised manner, which allows to
better explore and model target distributions. In-
spired by this work, we propose a formulation of
an unsupervised reward for MT. We thoroughly in-
vestigate effects of this reward and conclude that
it is useful in lexical choice, particularly the rare
sense translation for ambiguous words.

Our main contributions are thus twofold: (a)
the re-framing of the SAC framework such that it
can be applied to MT and other natural language
generation tasks (Section 3). We demonstrate that
SAC results in improved generalisation compared
to the MLE training, leading to better translation
of out-of-domain data; (b) the proposal of a dy-
namic unsupervised reward within the SAC frame-
work (Section 3.4). We demonstrate its efficacy in
translating ambiguous words, particularly the rare
senses of such words. Our datasets and settings
are described in Section 4, and our experiments in
Section 5.

2 Related Work

Reinforcement Learning for MT RL has been
successfully applied to MT to bridge the gap
between training and testing by optimising the
sequence-level objective directly (Yu et al., 2017;

Ranzato et al., 2015; Bahdanau et al., 2016). How-
ever, thus far mainly the REINFORCE (Williams,
1992) algorithm and its variants have been used
(Ranzato et al., 2015; Kreutzer et al., 2018). These
are simpler algorithms that handle the large natural
language action space, but they employ a sequence-
level reward which tends to be sparse.

To reduce model variance, Actor-Critic (AC)
models consider the reward at each decoding step
and use the Critic model to guide future actions
(Konda and Tsitsiklis, 2000). This approach has
also been explored for MT (Bahdanau et al., 2016;
He et al., 2017). However, more advanced AC mod-
els with Q-Learning are rarely applied to language
generation problems. This is due to the difficulty
of approximating the Q-function for the large ac-
tion space. The large action space is one of the
bottleneck for RL for text generation in general.
Pre-training of the agent parameters to be close to
the true distribution is thus necessary to make RL
work (Choshen et al., 2020). Further RL training of
the agent makes the overfitting problem even more
pronounced resulting in peaky distributions. Such
problems are traditionally addressed by entropy
regularised RL.

Entropy Regularised RL The main goal of this
type of RL is to learn an efficient policy while
keeping the entropy of the agent actions as high
as possible. The paradigm promotes exploration
of actions, suppresses peaky distributions and im-
proves robustness. In this work, we explore the
effectiveness of the maximum entropy SAC frame-
work (Haarnoja et al., 2018a).

The work closest to ours is of Dai et al. (2018)
where the Entropy-Regularised AC (ERAC) model
leads to better MT performance. The major differ-
ence between ERAC and SAC is that the former is
an on-policy model and the latter is an off-policy
model. On-policy approaches use consecutive sam-
ples collected in real-time that are correlated to
each other. In the off-policy setting, our SAC al-
gorithm uses samples from the memory that are
taken uniformly with reduced correlation. This key
characteristic of SAC ensures better model gener-
alisation and stability (Mnih et al., 2015). There
are also differences in the architectures of SAC and
ERAC, i.a., using 4 Q-value networks instead of
two. These differences will be covered in detail in
Section 3.
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Unsupervised reward RL Significant work has
been done in Robotics to improve the learning ca-
pability of robots. These approaches do not rely
on a single objective but rather promote intrinsic
motivation and exploration. Such an approach to
learn diverse skills (latent-conditioned sub-policies,
in practice, skills like walking or jumping) in un-
supervised manner was recently proposed by Ey-
senbach et al. (2018). The approach relies on the
SAC model and inspired our approach to designing
our unsupervised reward for MT. We are not aware
of other attempts to design dynamic unsupervised
RL rewards (learnt together with the network) in
seq2seq in general, or MT in particular. Recent
work on unsupervised rewards in NLP (Gao et al.,
2020) explores mainly static rewards computed
against synthetic references.

3 Methodology

In this section we start by describing the underly-
ing MT architecture and its variant using RL, to
then introduce our SAC formulation and the reward
functions used.

3.1 Neural Machine Translation (NMT)
A typical Neural Machine Translation (NMT) sys-
tem is a seq2seq architecture (Sutskever et al., 2014;
Bahdanau et al., 2014), where each source sentence
x = (x1, x2, · · · , xn) is encoded by the encoder
into a series of hidden states. At each decoding
step t, a target word yt is generated according to
p(yt|y<t, x) conditioned on the input sequence x
and decoded sequence y<t = (y1, · · · , yt−1) up
to the t-th time step. Given the corpus of pairs of
source and target sentences {xi, yi}Ni=1, the train-
ing objective function - maximum likelihood esti-
mation (MLE) is defined as:

LMLE = −
N∑
i=1

T∑
t=1

p(yit|yi1, ..., yit−1, x
i) (1)

3.2 Reinforcement Learning for NMT
Within the RL framework, the task of NMT can
be formulated as a sequential decision making pro-
cess, where the state is defined by the previously
generated words (y<t) and the action is the next
word to be generated. Given the state st, the agent
picks an action at (for seq2seq it is the same as yt),
according to a (typically stochastic) policy πθ and
observes a reward rt for that action. The reward
can be calculated based on any evaluation metric,
e.g. BLEU.

The objective of the RL training is to maximise
the expected reward:

LRL = Ea1,··· ,aT∼πθ(a1,··· ,aT )[r(a1, · · · , aT )]
(2)

Under the policy π, we can also define the values
of the state-action pairQ(st, yt) and the state V (st)
as follows:

Qπ(st, at) = E[rt|s = st, a = at]
Vπ(st) = Ea∼π(s)[Qπ(st, a = at)]

(3)

Intuitively, the value function V measures how
good the model could be when it is in a specific
state st. The Q function measures the value of
choosing a specific action when we are in such
state.

Given the above definitions, we can define a
function called advantage – denoted by Aπ – relat-
ing the value function V and Q function as follows:

Aπ(st, at) = Qπ(st, at)− Vπ(st) (4)

Therefore, the focus is on maximising one of the
following objectives:

maxa Aπ(st, at)→ maxa Qπ(st, at) (5)

Different RL algorithms have different ways to
search for the optimal policy. Algorithms such as
REINFORCE, as well as its variant MIXER (Ran-
zato et al., 2015), popular in language tasks, search
for the optimal policy via Eq. 2 using the Policy
Gradient. Actor-Critic (AC) models typically im-
prove the performance of Policy Gradient models
by solving Eq. 5 (left part) (Bahdanau et al., 2016).
Q-learning models that aim at maximising the Q
function (Eq 5, right part) to improve over both the
Policy Gradient and AC models (Dai et al., 2018).

3.3 Soft Actor-Critic (SAC)

The SAC algorithm (Haarnoja et al., 2018a) adds
to the Eq. 2 an entropy term:

L(π) =

T∑
t=1

E
at∼π(·|st)

[r(st, at) + αH(π(·|st))]

(6)
where α controls the stochasticity of the optimal
policy, a trade-off between the relative importance
of the entropy termH and the reward r(st, at) that
the agent receives by taking action at when the state
of the environment is st. Its aim is to maximise the
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entropy of actions at the same time as maximising
the rewards.

As mentioned earlier, SAC is an off-policy Q-
learning AC algorithm. As other AC algorithms it
consists of two parts: the actor (the policy function)
and the critic – action-value function (Q), parame-
terised by φ and θ, respectively.

During off-policy learning, the history of states,
actions and respective rewards are stored in a mem-
ory (D), a.k.a. the replay buffer.

• Critic Training

The Q-function estimates the value of an action
at a given state based on its future rewards. The
soft-Q value is computed recursively by applying a
modified Bellman backup operator:

Q(st, at) = r(st, at) + γ E
st+1∼D

[V (st+1)] (7)

where

V (st) = E
at∼π

[Q(st, at)− α log π(at|st)] (8)

is the expected future reward of a state and
log(π(at|st)) is the entropy of the policy.

The parameters of the Q-function are updated
towards minimising the mean squared error be-
tween the estimated Q-values and the assumed
ground-truth Q-value. The assumed ground-truth
Q-values are estimated based on the current reward
(r(st, at)) and the discounted future reward of the
next state (γVθ̄(st+1)). This mean squared error
objective function of the Q network is as follows:

L(θ) = E
st,at,rt,st+1∼D,at+1∼πφ

[(
Qθ(at, st)−

[r(st, at) + γ E
st+1∼D

[Vθ̄(st+1)]]
)2]

(9)

Note that the parameters of the networks are de-
noted as θ and θ̄ respectively. This is the best prac-
tice where the critic is modeled with two neural
networks with the exact same architecture but inde-
pendent parameters (Mnih et al., 2015).

The parameters of the target critic network (Qθ̄)
are iteratively updated with the exponential mov-
ing average of the parameters of the main critic
network (Qθ). This constrains the parameters of
the target network to update at a slower pace toward
the parameters of the main critic, which has been

shown to stabilise the training process (Lillicrap
et al., 2016).

Another advantage of SAC is the double Q-learning
(Hasselt, 2010). In this approach, two Q networks
for both of the main and the target critic functions
are maintained. When estimating the current Q
values or the discounted future rewards, the mini-
mum of the outputs of the two Q networks is used.
Thus the estimated Q values do not grow too large,
which improves the policy training (Haarnoja et al.,
2018a).

• Actor Training

SAC updates the policy to minimise the KL-
divergence to make the distribution of πφ(st) pol-
icy function look more like the distribution of the
Q function:

Lπ(φ) = E
st∼D

[πt(st)
T [α log(πφ(st))−Qθ(st)]]

(10)
where softmax is used in the final layer of the policy
to output a probability distribution over the actions.

We note that some versions of the SAC algorithm
allow to automatically tune the α parameter so that
while maximising the expected return, the policy
should satisfy the minimum entropy criteria. In our
experiments we however used a fixed α. Updating
α during training resulted in too short sentences in
the output.

Finally, we note that Eq. 10 does not simply add
an entropy term to the standard Policy Gradient.
The critic Qθ trained by Eq. 9 additionally captures
the entropy from future steps.

For more details on SAC for the discrete set-
ting (like MT) we refer to Christodoulou (2019).
For more formal details on the architecture,
see Haarnoja et al. (2018a,b).

3.4 Reward functions
Below we define the reward functions we use in
our SAC architecture.

Supervised BLEU reward: - SAC BLEU In
the supervised setup, we employ the sequence-level
BLEU score (Papineni et al., 2002) with add-1
smoothing (Chen and Cherry, 2014). As an ad-
ditional length constraint at each time step, we
deduct from the respective score the length penalty:
lp = |ly − lŷ|, where y is the reference transla-
tion. This penalty prevents longer translations that
are not penalised by the brevity penalty of BLEU.
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BLEU has been chosen in our study to ensure bet-
ter comparability with the related work in RL MT
traditionally using the BLEU reward (Bahdanau
et al., 2016; Dai et al., 2018).

Unsupervised reward - SAC unsuper As dis-
cussed above, using automatic metrics as reward
function can lead to a number of issues, e.g. reward
sparsity, overfitting towards single reference. More-
over, designing a good reward can be challenging.

Inspired by recent work on the SAC algorithm in
unsupervised RL (Eysenbach et al., 2018), we have
designed an unsupervised reward that balances the
quality and diversity in the model search space.

The pseudo-reward function we use is as follows:

rz(x, a) = log qδ(z|x, a)− log p(z) (11)

where p(z) is a categorical uniform distribution for
a latent variable z.
qδ(z|x, a) is provided by a discriminator

parametrised by a neural network. z is randomly
assigned to a word sampled at each step from the
actor distribution. The discriminator is a Bag-of-
Words model that takes as input the encoded source
sequence and the word itself to predict its z.

More intuitively, every time a word appears in
the translation hypothesis for a source sentence
(within the Bag-of-Words formulation) it is ran-
domly assigned a certain value of z. The more
times this word appears in the sampled hypotheses
(for a given source) the closer will be log qδ(z|x, a)
to the uniform prior p(z), hence reward rz(x, a)
will be close to 0. Thus, frequent translations will
be suppressed and search for less frequent trans-
lations will be encouraged in order to receive a
reward larger than 0.

Such a reward is less sparse than the traditional
ones and is also dynamic which prevents memoris-
ing and overfitting.

4 Experimental Setup

4.1 Data
We perform experiments on the Multi30K
dataset (Elliott et al., 2016)1 of image description
translations and focus on the English-German (EN-
DE) and English-French (EN-FR) (Elliott et al.,
2017) language directions. Following best prac-
tises, we use sub-word segmentation (BPE (Sen-
nrich et al., 2016)) only on the target side of the

1https://github.com/multi30k/dataset

corpus. The dataset contains 29,000 instances for
training, 1,014 for development, and 1,000 for test-
ing. We use flickr2016 (2016), flickr2017 (2017)
and coco2017 (COCO) test sets for model evalua-
tion.

2016 is the most in-domain test set since it was
taken from the same superset of descriptions as the
training set, whereas 2017 and COCO are from
different image description corpora and are thus
considered out-of-domain.

For more fine-grained assessment of our mod-
els with unsupervised reward, we use the MLT test
set (Lala and Specia, 2018; Lala et al., 2019), an an-
notated subset of the Multi30K corpus where each
instance is a 3-tuple consisting of an ambiguous
source word, its textual context (a source sentence),
and its correct translation. The test set contains
1,298 sentences for English-French and 1,708 for
English-German. It was designed to benchmark
models in their ability to select the right lexical
choice for words with multiple translations, espe-
cially when some of these translations are rarer.

Additionally, to allow for comparison with pre-
vious work, we evaluate on the IWSLT 2014
German-to-English dataset (Cettolo et al., 2012)
from TED talks, which has been used as testbed
in most work on RL for MT. The training set
contains 153K sentence pairs. We followed the
pre-processing procedure described in (Dai et al.,
2018).

When compared to the IWSLT 2014 dataset,
all the three Multi30K test sets are more out-of-
domain. This was found by the analysis of perplex-
ities of language models trained with respective
training data for each dataset (see Appendix A.4).

4.2 Training

We modify the original SAC architecture to adapt
it to MT following best practices (Bahdanau et al.,
2016) in the area. The functions πφ and Qθ are
parameterised with neural networks: πφ is an RNN
seq2seq model with a 2-layer GRU (Cho et al.,
2014) encoder and a 2-layer Conditional GRU de-
coder (Sennrich et al., 2017) with attention (Bah-
danau et al., 2014). For SAC BLEU, Qθ duplicates
the structure of the former, but encodes the refer-
ence instead of the source sentence to mimic inputs
to the actual BLEU function.

We first pretrain the actor and then pretrain the
critic, before the actor-critic training. The pretrain-
ing of actors is done until convergence according
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2016 2017 COCO
model BLEU METEOR TER BLEU METEOR TER BLEU METEOR TER

E
N

-F
R

MLE 57.5 71.7 27.5 50.9 66.8 33.0 42.8 61.5 37.3
ERAC (ours) 59.4* 73.3* 26.7* 51.2 66.8 32.5 42.5* 60.6* 37.6*
SAC BLEU 57.9 72.0 27.8 51.7* 67.5* 32.1* 44.4 62.9 36.4

SAC unsuper 56.9 71.4 28.2 51.1 67.1 32.5 43.6 62.6* 36.6

E
N

-D
E MLE 38.5 57.2 42.2 31.9 51.3 49.5 27.2 46.7 55.2

ERAC (ours) 38.9* 56.1* 41.9* 31.4* 49.6* 49.7* 25.0 44.0 56.0*
SAC BLEU 38.1 56.8* 42.5 31.9 51.2 49.1 27.7 47.0 54.5

SAC unsuper 38.0* 56.9 43.0* 31.6 50.8 49.7* 26.6 46.5 55.1

Table 1: Performance of SAC BLEU on the Multi30K test sets (EN-FR, EN-DE) trained on the Multi30K train
set. * marks statistically significant changes (p-value ≤ 0.05) as compared to MLE. Bold highlights best results.
ERAC (ours) indicates results obtained by us using the code openly provided by Dai et al. (2018).

to the early stopping criteria of 10 epochs wrt. to
the MLE loss. We have also found that our crit-
ics require much less pretraining (3-5 epochs as
compared to 10-20 epochs in general for AC archi-
tectures with the MSE loss). Also, to prevent diver-
gence during the actor-critic training, we continue
performing MLE training using a smaller weight
λmle. We set α to 0.01. Following Haarnoja et al.
(2018a), we rescale the reward to the value inverse
to α. Note that we did not find it useful to add
to SAC the smoothing objective minimising vari-
ance of Q-values (Bahdanau et al., 2016; Dai et al.,
2018). We presume that the double Q-learning sig-
nificantly contributes to the stability of the network
and additional smoothing is not required.

For SAC unsuper, we parameterise qδ by a
2-layer feed-forward neural network, which takes
the source as encoded by the actor and at and out-
puts qδ(z|x, a). We set z to take one of 4 val-
ues.2 For this unsupervised setting, we do not train
a Q-function. We instead operate in the oracle
mode and following (Keneshloo et al., 2018) de-
fine true Q-value estimates and use it to update our
actor. Details on training are given in Appendix A.
We use pysimt (Caglayan et al., 2020) with Py-
Torch (Paszke et al., 2019) v1.4 for our experi-
ments.3

4.3 Evaluation

We use the standard set of MT evaluation
metrics: BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014) and
TER (Snover et al., 2006). We perform signifi-

2This hyperparameter is tuned on the validation set. It
typically varies from 2 to several hundreds in the related
work (Haarnoja et al., 2018b).

3https://github.com/ImperialNLP/pysimt

cance testing via bootstrap resampling using the
Multeval tool (Clark et al., 2011).

For the lexical translation task, we measure the
Lexical Translation Accuracy (LTA) score (Lala
et al., 2019). The score provides an average es-
timation of how accurately the words have been
translated. For each ambiguous word, a score of
+1 is awarded if the correct translation of the word
is found in the output translation; a score of 0 is
assigned if a known incorrect translation is found,
or none of the candidate words are found in the
translation. We also propose a metric that not
only rewards correctly translated ambiguous words,
but also penalises words translated with the wrong
sense: the Ambiguous Lexical Index (ALI). ALI
assigns -1 for wrong translations in the given con-
text, whereas LTA simply does not reward them.

5 Results

5.1 Comparison to state-of-the-art

We first compare our SAC models against the MLE
model (baseline) and ERAC4 (state-of-the-art –
SOTA) both trained and tested on the Multi30K
data (Table 1). Compared to SAC, ERAC differs
in that it uses the on-policy setting (i.e., using sam-
ples collected in real time). Our SAC algorithm is
an off-policy algorithm and uses samples from the
memory to promote generalisation.

We clearly observe the tendency of ERAC
models to perform better on the more in-domain
2016 data (+1.9 BLEU, +1.6 METEOR, -0.8 TER

4For ERAC, we present results that we reproduced our-
selves using the code publicly provided by the authors. We
had to perform several modifications to this code to make it
conform recent deep learning framework software updates.
The performance of this model is on pair with this reported by
the authors.
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2016 2017 COCO
Model BLEU METEOR TER BLEU METEOR TER BLEU METEOR TER

U
N

K MLE 25.1 29.1 49.9 23.1 27.7 54.5 18.9 25.8 59.2
SAC BLEU 25.2 28.9 50.1 23.2 27.5 54.5 19.4 25.5* 58.3*

no
U

N
K MLE 34.4 37.8 40.4 31.6 37.7 46.4 25.9 34.2 50.6

SAC BLEU 34.9 38.0 40.0 32.1 37.6 45.9 28.3* 34.5 48.6

Table 2: Performance of SAC BLEU on Multi30K (German-English) trained on the IWSLT 2014 train set. UNK
indicates standard output containing the UNK symbol; noUNK – outputs with sentences containing UNK not taken
into account. * marks statistically significant changes (p-value ≤ 0.05) as compared to MLE. Bold highlights best
results.

against MLE for EN-FR) and the tendency of SAC
BLEU models to outperform other models on more
out-of-domain 2017 and COCO sets (+2.7 BLEU
and +3.0 METEOR, -1.5 TER against ERAC on
COCO for EN-DE).
SAC unsuper results are however worse than

the baseline and SOTA. We focus thus on the in-
vestigation of SAC BLEU and come back to SAC
unsuper in Section 5.2.

To further confirm our hypothesis that SAC
reduces overfitting and performs better on the
out-of-domain data, we train our models on the
IWSLT 2014 train set and test on the out-of-
domain Multi30K test sets (in the reverse direction,
German into English, Table 2).

We observe similar performance for complete set
of outputs (including sentences with UNK tokens)
for MLE and SAC BLEU. If the lines with UNK
words are not taken into account,5 we observe an
improvement for the 2016 and 2017 test sets (+0.5
BLEU, +0.1 METEOR, -0.5 TER on average), and
a much bigger improvement for the more out-of-
domain COCO set (+2.5 BLEU, +0.3 METEOR,
-2 TER on average). This confirms our hypothesis
that SAC helps to reduce overfitting.

Finally, we compare SAC to the SOTA AC-base
RL architectures, namely ERAC and AC, on the
IWSLT 2014 set that is commonly used for this
task. Compared to SAC, AC differs in that it does
not use entropy regularisation. We also provide
the performance for the popular MIXER algorithm.
Results are shown in Table 3.

In terms of the general performance, our SAC

5The original corpus pre-processing pipeline that we fol-
lowed to increase comparability does not include subword
segmentation. We take the intersection of hypotheses sen-
tences across Multi30K test setups that contain no generated
UNK token wrt. the IWSLT 2014 vocabulary. Reference files
may still contain the UNK token, we focus on the generated
text here.

performs on pair with the MLE model. SAC BLEU
even slightly lowers this score (-0.2 BLEU, -0.2
METEOR). We note that SAC BLEU results con-
tain an increased count of UNK words as compared
to MLE (+2.8%) This increased generation of UNK
words due to the entropy regularisation is partially
responsible for this similar performance. Another
cause is that SAC does not overfit to the BLEU
distribution of the target data.6

Model BLEU METEOR TER

MLE (ours) 29.8 31.2 48.9
MIXER (Ranzato et al., 2015) 20.73 - -
AC (Bahdanau et al., 2016) 28.53 - -
ERAC (w/feed) (Dai et al., 2018) 29.36 - -
ERAC (w/o feed) (Dai et al., 2018) 28.42 - -
ERAC (w/o feed, ours) 29.0* 30.6* 51.5*

SAC BLEU 29.6* 31.0* 48.8*

Table 3: Performance of MLE and different RL al-
gorithms on the IWSLT 2014 test set trained on the
IWSLT 2014 train set. * marks statistically significant
changes (p-value ≤ 0.05) as compared to MLE. Bold
highlights best RL results. MIXER, AC and ERAC
scores were taken from original papers. ERAC (ours)
indicates our results using the code provided in (Dai
et al., 2018).

5.2 Translation of ambiguous words

To further investigate the effect of the unsupervised
reward, we have evaluated SAC unsuper on the
MLT dataset. Results are shown in Table 4. We
calculate the scores on two conditions: All Cases
takes into account all possible lexical translations;
while for Rare Cases, only the instances where the
gold-standard translation is not the most frequent
translation for that particular ambiguous word. We
observe that both SAC BLEU and SAC unsuper

6We mean that the model would have a tendency to select
certain words to simply boost BLEU rather than picking words
to reflect the correct meaning.
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All Cases
2016 2017 COCO

Model LTA ALI LTA ALI LTA ALI
E

N
-F

R MLE 81.60 63.19 79.65 59.31 74.60 49.21
SAC BLEU 81.94 63.89 79.76 59.53 77.32 54.65

SAC unsuper 82.75 65.51 80.62 61.25 75.28 50.57

E
N

-D
E MLE 65.34 30.68 70.91 41.82 67.45 34.91

SAC BLEU 64.74 29.48 71.93 43.86 67.72 35.43
SAC unsuper 65.54 31.08 73.41 46.82 66.40 32.81

Rare Cases
2016 2017 COCO

LTA ALI LTA ALI LTA ALI

52.81 24.49 47.80 16.48 47.16 18.49
53.37 25.39 45.91 13.46 49.05 15.47
54.49 27.19 47.80 16.48 47.16 15.47

50.95 11.72 60.00 28.00 56.56 21.82
50.14 10.24 60.58 29.04 58.58 25.45
51.50 12.70 63.77 34.78 52.52 14.55

Table 4: Performance of SAC BLEU on the MLT test sets (EN-FR, EN-DE). We report Ambiguous Words Accu-
racy: LTA and ALI. Rare Cases indicates the cases where the correct translation is not the most frequent translation
in the training set.

outperform the MLE baseline across metrics in all
setups except for the COCO EN-FR translation in
Rare Cases, where MLE performs better. For SAC
BLEU, this observation is also shown by general
evaluation metrics BLEU, METEOR and TER on
all MLT test sets (see Table 9 in Appendix).

Moreover, SAC unsuper is particularly suc-
cessful when evaluated on 2016 and 2017 and out-
performs both MLE and SAC BLEU across setups.
This demonstrates the potential of the unsupervised
reward function for the cases when we have to
choose between possible translations for an am-
biguous word (i.e., better exploration of the search
space). BLEU reward, on the other hand, is more
reliable when we have to adjust distributions to
produce one single possible translation. Manual
inspection of these SAC unsuper improvements
confirmed their increased accuracy (see Table 5).
For example, the ambiguous French source word
‘hill’ (‘colline’) is translated as ‘pente’(‘slope’)
by both MLE and SAC BLEU, while only SAC
unsuper produces the correct sentence: ‘adoles-
cent saute la colline ‘hill’ avec son vélo’.

5.3 Qualitative analysis

To get further insights into the general results, we
also performed human evaluation of the outputs
for MLE, SAC BLEU, and SAC unsuper using
professional in-house expertise. This was done
for COCO EN-FR and 2016 EN-DE as two sets
with contrastive results in the lexical translation
experiment.

For this human analysis, we randomly selected
test samples (50 samples per language pair per
group) with source words of different frequency
in the training data: rare words (frequency 1) and
other words (frequency ≥ 10). These other words
are randomly chosen from the sentences that differ

in their translation across setups. The resulting
average frequency of those words is around 40 for
both language pairs. A rank of quality (both fluency
and adequacy together) is assigned by the human
evaluator from 1 to 3, allowing ties. Following
the common practice in MT, each system was then
assigned a score which reflects how often it was
judged to be better or equal to other systems (Bojar
et al., 2017).

Results are in Table 6. We observe a tendency
of SAC BLEU to do well on the translation of rare
source words, but not so well on the translation
of words in the middle frequency range (this ob-
servation is confirmed by the analysis of the fre-
quency of output words, see Appendix A.5, see
Table 10). Our unsupervised reward tends to in-
crease the performance on more frequent words
(‘Other’ in Table 6) by promoting their less com-
mon translations in the distribution, hence better
translations for ambiguous words from our previ-
ous experiment. These ambiguous words are quite
frequent, they potentially have multiple possible
translations but only one correct translation in a
given context.

6 Conclusions

We propose and reformulate SAC reinforcement
learning approaches to help machine translation
through better exploration and less reliance on the
reward function. To provide a good trade-off be-
tween exploration and quality, we devise two re-
ward methods in the supervised and dynamic unsu-
pervised manner. The maximum entropy off-policy
SAC algorithm mitigates the overfitting problem
when evaluated in the out-of-domain space; both
rewards introduced in our SAC architecture can
achieve better quality for lexical translation of
ambiguous words, particularly the rare senses of
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EN-FR source word hill
gold target word colline
source sentence the teen jumps the hill with his bicycle .
reference sentence ado saute sur la colline ‘hill’ avec son vélo .
MLE adolescent saute sur la pente ‘slope’ avec son vélo .
SAC BLEU adolescent saute la pente ‘slope’ avec son vélo .
SAC unsuper adolescent saute la colline ‘hill’ avec son vélo .

EN-DE source word outfit
gold target word outfit
source sentence a rhythmic gymnast in a blue and pink outfit performs a ribbon routine .
reference sentence eine rhythmische sportgymnastin in einem blauen und pinken outfit vollführt eine bewegung

mit dem band .
MLE ein begeisterter turner in blau-rosa kleidung ‘dress’ führt eine band auf .
SAC BLEU ein begeisterter turner in blau-rosa kleidung ‘dress’ führt eine band auf .
SAC unsuper ein aufgeregter turner in einem blau-rosa outfit führt eine band aus .

Table 5: Samples of ambiguous words translation on 2016 for both EN-FR and EN-DE. In both cases more correct
translations are provided by SAC unsuper. Bold highlights target words and their translations.

Lang Words MLE SAC BLEU SAC unsuper

EN-FR
Rare (Freq. 1) 1.76 1.88 1.68

Other 1.88 1.82 1.86

EN-DE
Rare (Freq. 1) 1.72 1.74 1.70

Other 1.93 1.83 1.94

Table 6: Human ranking results for 2016 EN-DE and
COCO EN-FR test set. Bold highlights best results
per group of word types. The first column indicates
the groups of word types. Results are averaged for all
words per word type group.

words. The formulation of the unsupervised reward
and its potential to influence translation quality
open perspectives for future studies on the subject.
We leave the exploration of how those supervised
and unsupervised rewards could be combined to
improve MT for future work.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Sec-
ond Conference on Machine Translation, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Ozan Caglayan, Julia Ive, Veneta Haralampieva,
Pranava Madhyastha, Loı̈c Barrault, and Lucia Spe-
cia. 2020. Simultaneous machine translation with vi-
sual context. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2350–2361, Online. Associa-
tion for Computational Linguistics.

Mauro Cettolo, C. Girardi, and Marcello Federico.
2012. Wit3: Web inventory of transcribed and trans-
lated talks. Proceedings of EAMT, pages 261–268.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level BLEU. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362–367,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
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A Training Details

A.1 Hyperparameters

For the NMT RNN agent, the dimensions of em-
beddings and GRU hidden states are set to 200
and 320, respectively. The decoder’s input and out-
put embeddings are shared (Press and Wolf, 2017).
We use Adam (Kingma and Ba, 2014) as the op-
timiser and set the learning rate and mini-batch
size to 0.0004 and 64, respectively. A weight de-
cay of 1e−5 is applied for regularisation. We clip
the gradients if the norm of the full parameter vec-
tor exceeds 1 (Pascanu et al., 2013). The four Q-
networks are identical to the agent (see Table 7).

For the unsupervised reward setting, we use 2
two-layer feed-forward neural network (both di-
mensionalities are equal to 100). We use again
Adam as the optimiser and set the learning rate and
mini-batch size to 0.0001 and 64, respectively.

Hyper-parameters

Pre-train Critic

optimiser Adam
learning rate 0.0003
batch size 64
τ (target net speed) 0.005
α (entropy regularization) 0.001
buffer size 1000
length penalty 0.0001

Joint Training

optimiser Adam
learning rate 0.0004
batch size 64
τ (target net speed) 0.005
α (entropy regularization) 0.001
buffer size 1000
length penalty 0.0001
λMLE 0.1

Table 7: Hyper-parameters for SAC training.

A.2 Training

We use PyTorch (Paszke et al., 2019) (v1.4, CUDA
10.1) for our experiments. We early stop the actor
training if validation loss does not improve for 10
epochs, we pretrain critics for 5 epochs for the
Multi30K datasets and for 3 epochs for the larger
IWSLT 2014. We early stop the SAC training if
validation BLEU does not improve for 10 epochs.
For all the setups, we also halve the learning rate if
no improvement is obtained for two epochs. On a
single NVIDIA RTX2080-Ti GPU, it takes around

5-6 hours up to 36 hours to train a model depending
on the data size and the language pair. The number
of learnable parameters is about 7.89M for smaller
Multi30K models and about for 15.64M for the
bigger IWSLT model. All models were re-trained
3 times to ensure reproducibility.

A.3 Soft Actor-Critic Training Algorithm

We describe the main steps of SAC training in
Algorithm 1.

Algorithm 1: Soft Actor-Critic.
Initialise parameters:
Q function: θ;
Policy: φ;
Unsupervised Reward: δ;
Replay Buffer: D ← ∅;
for each iteration do

for each translation step do
at ∼ πφ(at, st);
st+1 ∼ p(st+1|st, at);
D ← D ∪ {st, at, r(st, at), st+1} ;

end
for each gradient step do

θi ← θi − λQ
∇θiL(θi) for i ∈ {1, 2};
φ← φ− λπ∇φJ(φ);
α← α− λπ ∇αJ(α);
θi ← τθi + (1− τ)θ̄i
for i ∈ {1, 2};
if unsupervised reward then

δ ← δ − λz∇δr(δ);
end

end
end

LM 2016 2017 COCO

Multi30K 44.07 79.95 77.7
IWSLT 2014 579.47 403.54 381.56

Table 8: Perplexity on Multi30K testsets for Multi30K
and IWSLT 2014 language models.

A.4 Domain Distance

To assess to what extent the test sets used in our
experiments can be considered out-of-domain, we
train (i) an English language model on Multi30K
training set; and (ii) a German language model on
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2016 2017 COCO
model BLEU METEOR TER BLEU METEOR TER BLEU METEOR TER

E
N

-F
R MLE 58.8 73.8 26.7 54.2 70.2 30.1 42.6 62.1 36.0

SAC BLEU 59.4 74.0 26.7* 55.2 70.8 29.2 44.1 63.4 35.5
SAC unsuper 58.2 73.6 27.3 54.4* 70.6 29.8 43.5 63.2 35.7*

E
N

-D
E MLE 37.5 56.3 42.1 33.8 53.1 47.6 29.3 49.3 50.9

SAC BLEU 36.6 56.2* 43.2 33.5 53.1* 47.6* 29.6* 49.3* 51.0*
SAC unsuper 36.3 56.5* 44.1 33.1 52.9* 48.7 28.3 48.6 51.5

Table 9: Results on the test sets for ambiguous words.

Freq. 1 source word traveler
gold target word reisender
source sentence an oriental traveler awaits his turn at the currency exchange .
reference sentence ein orientalischer reisender ‘traveler’ wartet am wechselschalter bis er dran ist .
MLE ein orientalisch aussehender behinderter ‘disabled’ wartet darauf , dass die kurve sich die

glastür aufhebt .
SAC BLEU ein orientalisch aussehender techniker ‘technician’ wartet auf die hecke seiner kurve .
SAC unsuper ein orientalisch aussehender mann ‘man’ wartet darauf , dass seine kurve auf den fehenk die

kurve ist .
Freq. 28 source word check

gold target word scheck
source sentence a woman is holding a large check for kids food basket .
reference sentence eine frau hält einen großen scheck ‘check’ für ” kids’ food basket ” .
MLE eine frau hält ein großes überprüfen ‘proof’ für kinder .
SAC BLEU eine frau hält einen großen informationen ‘information’ für kinder in den korb .
SAC unsuper eine frau hält ein großes überprüfen ‘proof’ für kinder , die einen korb zu verkaufen ist .

Table 10: Samples of translations for words of different frequency on 2016 EN-DE. In both cases more correct
translations are provided by SAC unsuper. Bold highlights target words and their translations.

Figure 1: Training frequency for COCO words as
translated by MLE and SAC BLEU. We also report ref-
erence frequencies.

the IWSLT 2014 training set.7 Table 8 shows lan-
guage model perplexities on the Mutli30k test data.
With respect to the IWSLT 2014 model, Multi30K
test sets are clearly very different from the training
data. With respect to the Multi30K model, 2017
and COCO are more distant from the train parti-
tion than 2016 testset.

7We train Transformer language models using the fairseq
toolkit (Ott et al., 2019).

A.5 Analysis of distributions
We argue that the improvement over MLE can be
partially attributed to a better handling of less fre-
quent words. It has been shown that rare words
tend to be under-represented in NMT (Koehn and
Knowles, 2017; Shen et al., 2016). RL training with
regularized entropy might mitigate this issue due
to a better exploration of the action space. To illus-
trate this point, we compute the training frequency
of the words generated by the NMT systems for the
sentences where an improvement over MLE is ob-
served. Figure 1 shows the training frequency per-
centiles for MLE and SAC BLEU English-French
translations of the COCO testset. Reference fre-
quencies are also provided for comparison. We
observe that although both MLE and SAC contain
more frequent words than the reference, this ten-
dency is less pronounced for SAC. We relate this
observation to the fact that our SAC outperforms
MLE for the ambiguous word translation (Table 4)
where the most frequent translation is not always
the correct one.


